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GSK-3p signaling determines autophagy activation
in the breast tumor cell line MCF7 and inclusion
formation in the non-tumor cell line MCF10A in
response to proteasome inhibition

E Gavilan"2®, | Sanchez-Aguayo*, P Daza** and D Ruano*'2

The ubiquitin-proteasome system and the autophagy-lysosome pathway are the two main mechanisms for eukaryotic
intracellular protein degradation. Proteasome inhibitors are used for the treatment of some types of cancer, whereas autophagy
seems to have a dual role in tumor cell survival and death. However, the relationship between both pathways has not been
extensively studied in tumor cells. We have investigated both proteolytic systems in the human epithelial breast non-tumor cell
line MCF10A and in the human epithelial breast tumor cell line MCF7. In basal condition, tumor cells showed a lower proteasome
function but a higher autophagy activity when compared with MCF10A cells. Importantly, proteasome inhibition (PI) leads to
different responses in both cell types. Tumor cells showed a dose-dependent glycogen synthase kinase-3 (GSK-3)p inhibition, a
huge increase in the expression of the transcription factor CHOP and an active processing of caspase-8. By contrast, MCF10A
cells fully activated GSK-3$ and showed a lower expression of both CHOP and processed caspase-8. These molecular
differences were reflected in a dose-dependent autophagy activation and cell death in tumor cells, while non-tumor cells
exhibited the formation of inclusion bodies and a decrease in the cell death rate. Importantly, the behavior of the MCF?7 cells can
be reproduced in MCF10A cells when GSK-3p and the proteasome were simultaneously inhibited. Under this situation, MCF10A
cells strongly activated autophagy, showing minimal inclusion bodies, increased CHOP expression and cell death rate. These
findings support GSK-3f signaling as a key mechanism in regulating autophagy activation or inclusion formation in human
tumor or non-tumor breast cells, respectively, which may shed new light on breast cancer control.
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The ubiquitin-proteasome system (UPS) and the autophagy—
lysosomal pathway are the two main systems for eukaryotic
intracellular protein degradation. The 26S-proteasome is
responsible for catalysis of the ATP-dependent degradation
of poly-ubiquitinated proteins."? In this sense, K48-ubiquiti-
nation is the canonical mark for proteins degraded by the
proteasome.® Moreover, in the presence of the pro-inflam-
matory cytokines interferon (IFN)-y or TNF-« cells can induce
the synthesis of the immunoproteasome.*™® Unlike the UPS,
the autophagy—lysosomal pathway is a catabolic process
that can sequester and degrade cytoplasmic components
through the lysosomes. Among the three types of autophagic

degradation,” macroautophagy (hereinafter referred to as
autophagy) is the most important form of autophagy. It
involves the formation of a double-membrane vesicle, called
autophagosome, initiated by elongation of a de novo-formed
membrane that seals on itself, sequestering cargo inside.
Finally, the double-membrane vesicle fuses with lysosomes
leading to autophagolysosome formation, where the cargo is
degraded. Selective degradation of proteins is thought to be
an exclusive function of the UPS, but a growing body of
evidence claims that participation of autophagy may also be
relevant. The identification of proteins that target proteins for
autophagy degradation, or mediate cargo of phagosomes,
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argues in favor of this idea. Destination of proteins for
proteasome or autophagy degradation is regulated, at least
in part, by the Bcl-2-associated athanogen (BAG) proteins.
The expression of BAG1 and BAG3 acts as a molecular
switch mechanism determining whether proteins are
degraded by the proteasome or autophagy, respectively.®°
In this sense, BAG3 was found to act in concert with the
ubiquitin-binding protein p62/SQSTM1 to increase autopha-
gic activity. Moreover, p62/SQSTM1 binds also to LC3II- and
K63-ubiquitinated proteins, putting together all the elements
necessary for the autophagy activation and targeted cargo
proteins. Here we focused on both the proteolytic systemsina
non-tumor and in a tumor cell line. We show that tumor cells
are more dependent on autophagy. Indeed, proteasome
inhibition (PI) in MCF10A cells induced the formation of
inclusion bodies with minor cell death, while increased basal
autophagy in MCF7 cells, avoiding the formation of inclusion
bodies, but raising the cell death rate. We provide solid
evidence supporting that glycogen synthase kinase-3
(GSK-3)p inhibition regulates autophagy activation induced
by Pl in the human breast cancer MCF7 cells.

Results

BAG1 and BAG3 are differentially expressed in MCF10A
and MCF7 cells. As BAG-family proteins are involved in
protein quality control,’®""® we characterized the expression
of BAG1 and BAG3 in MCF7 and MCF10A cells, respec-
tively. Among the four BAG1 isoforms,'® BAG1 (~36kDa)

and BAG1M (~46kDa) were mostly detected in MCF10A
cells, whereas in MCF7 cells predominated BAG1, in a
very low extent, BAG1M and BAG1L (~50kDa) (Figure 1a).
On the other hand, basal expression of BAG3 was higher in
MCF7 than in MCF10A cells, where it was practically absent
(P<0.05; Figure 1a). In consequence, the BAG3/BAG1
(~36kDa) ratio was fourfold higher in tumor than in
non-tumor cells.

Proteasome activity predominates in MCF10A and
autophagy markers are increased in MCF7 cells. We
further analyzed whether the different expression of BAG1
and BAGS affected intracellular proteolytic systems. As shown
in Figure 1b, MCF7 cells showed a significant reduction in the
chymotrypsin-like activity of proteasome when compared with
MCF10A cells (P<0.05). This activity is catalyzed by both the
constitutive 5 and the inducible $5i/LMP7 subunits."' Both
the subunits were expressed in MCF10A cells, but only the
constitutive 5 in MCF7 cells was detected (Figure 1c). The
low expression of f5/LMP7 was not restricted to this subunit,
but also to the f1i/LMP2 (Figure 1c). This could be
consequence of the very low, if any, transcriptional expression
of both subunits (Figure 1d). However, the structural subunit
o2, present in both constitutive and immunoproteasome, was
similarly expressed in both cell types, pointing to qualitative
rather than quantitative differences in proteasomes between
MCF7 and MCF10A cells. On the other hand, MCF7 cells
showed a higher expression of several proteins related to the
autophagy—Ilysosomal system. The autophagosome marker
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Figure 1

Proteasome and autophagic markers expressed in MCF10A and MCF7 cells in basal condition. (a) Different isoforms of the BAG1 protein were expressed in the

MCF10A and MCF7 cells. In MCF10A cells BAG1 (~ 36 kDa) and BAG1M (~ 46 kDa) isoforms were detected, whereas BAG1 predominated in MCF7 cells. The BAG3
protein was observed in MCF7 but not in MCF10A cells. The graph shows the BAG3/BAG1(~ 36 kDa) ratio in both cell types. Data are presented as mean £ S.D. of three
independent experiments. (b) The chymotrypsin activity of proteasome was lower in MCF7 compared with MCF10A cells. Data are presented as mean + S.D. of four
independent quantifications. (c) Constitutive and inducible proteasome catalytic subunits expressed in MCF10A and MCF7 cells. Note the low expression of inducible subunits
in MCF7 cells. Experiments were repeated at least three times with similar results. (d) The mRNA expression of inducible catalytic subunits is downregulated in MCF7 cells
compared with MCF10A cells. Data are presented as mean + S.D. of three independent experiments. MCF10A and MCF7 cells were analyzed in parallel. (e) Molecular
markers of autophagy and cathepsin D expressed in MCF10A and MCF7 cells. Note the lower expression in MCF10A compared with MCF?7 cells. Experiments were repeated
at least three times with similar results. *P< 0.05, significant differences compared with MCF10A cells
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Figure 2 Pl has a different effect on cell viability in MCF10A and MCF7 cells. (a) Graph representation of SRB assays performed in MCF10A and MCF7 cells using
increasing doses of MG132. Note the higher sensitivity of MCF7 cells to PI. (b) Molecular analysis of caspase-8 (upper panel), ATF4 (middle panel) and CHOP (lower panel)
expressed in MCF10A and MCF7 cells in control condition and 24 h after Pl (1 and 5 M of MG132). Note the higher processing of caspase-8 and the strong expression of
CHOP in MCF?7 cells. (c and d) Graphs show quantification of active fragments of caspase-8 (18 kDa) and CHOP, respectively. Data are presented as mean + S.D. of three
independent experiments done in parallel. *P< 0.05, significant differences compared with control condition. *P< 0.05, significant differences compared with MCF10A cells

LC3Il, in addition to proteins involved in the initiation of
autophagy, such as Beclin-1 and Atg7, or the lysosomal
enzyme cathepsin D, were more expressed in MCF7 than in
MCF10A cells (Figure 1e). These data strongly indicate
that intracellular proteolytic systems are altered in tumor
MCF7 cells.

MCF7 are more vulnerable than MCF10A cells to
cytotoxicity induced by acute Pl. We next analyzed how
Pl affected cell survival. For that, proteasome activity was
inhibited with MG132 for 24 h, and then cell viability was
analyzed by sulforhodamine B (SRB) assay. Cell viability
was similarly affected with lower dose tested in both cell lines
(Figure 2a). However, higher concentrations of MG132
significantly decreased the cell viability in MCF7 but not in
MCF10A cells (P<0.05), indicating that MCF7 cells were
more sensitive to Pl. Then, we studied the expression of
molecular markers corresponding to the extrinsic and
intrinsic apoptotic pathways, in addition to markers of the
unfolded protein response (UPR). Caspase-8 was highly
processed in MCF7, but not in MCF10A cells (Figure 2b,
upper panel and 2c). However, caspase-9 was not pro-
cessed in any of both cell types (data not shown). By
contrast, components of the UPR-PERK pathway such as
the transcription factor activating transcription factor 4
(ATF4) was increased in both cell types, but the pro-
apoptotic transcription factor CHOP, under control of ATF4,
was strongly upregulated in MCF7, but weakly in MCF10A
cells (Figure 2b, lower panel and 2d). Importantly, autophagy
inhibition with 3-methyladenine mostly abolished CHOP
expression (Figure 3a), supporting that CHOP induction is

more dependent on autophagy activation than on Pl. More-
over, cell death induced by Pl was almost abolished in Atg5
small interfering RNA (siRNA) MCF7 cells when compared
with control siRNA MCF7 cells (Figure 3b), supporting that
autophagy is a potential mechanism underlying cell death
induced by Pl in MCF7 cells.

Pl induces autophagy activation in MCF7 but formation
of inclusion bodies in MCF10A cells. We further investi-
gated the cellular response induced by PI by performing a
molecular analysis in both cell types. On the basis of
previous data, we used 1uM and 5uM of MG132. We
focused on the expression of BAG1 and BAG3 proteins.
Regarding BAG1, we only analyzed the BAG1 isoform
(~36kDa) because it was the most abundantly expressed
in both cell types. In MCF10A, BAG1 expression decreased
following Pl (P<0.05), whereas in MCF7 cells it remained
similar to the control condition (Figures 4a and b). By
contrast, BAG3 was massively upregulated in both cell types
(Figures 4a and c; P<0.05), and consequently, the BAG3/
BAG1 ratio was significantly increased (P<0.05). To test
whether Pl shifted towards autophagy degradation, as the
BAGS3/BAGH1 ratio suggested, we analyzed the expression of
two crucial proteins involved in the induction and execution of
autophagy. The autophagosome marker LC3Il was
increased after Pl in both cell types, but with different
dynamics. In MCF10A, autophagosome marker LC3Il only
augmented with the higher dose of MG132 (P<0.05),
whereas in MCF7 cells it increased in a dose-dependent
manner (P<0.05). The expression of p62/SQSTM1, the
protein acting as a cargo receptor for the degradation of
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Figure 3 Effects of autophagy inhibition in MCF7 cells subjected to PI.
(a) Autophagy initiation or autophagy completion were inhibited using 10mM of
3-methyladenine or 5 uM of chloroquine, respectively, and the expression of the
pro-apoptotic transcription factor CHOP was analyzed in MCF?7 cells. Note the very
low expression of CHOP in cells cotreated with MG132 and 3-MA. (b) Cell viability
assay in Atg5 knockdown MCF7 cells. Control siRNA cells, or control siRNA cells
treated with 1 M MG132 for 24 h, or Atg5 siRNA cells, or Atg5 siRNA cells treated
with 1 uM MG132 for 24 h, were subjected to SRB cell viability assay. Data are
presented as mean+ S.D. of four independent experiments done in parallel.
*P<0.05, significant difference compared with control condition. *P<0.05,
significant difference compared with control MCF7 cells treated with MG132 1 uM

ubiquitinated protein by autophagy,'® increased at both
doses in MCF10A (Figures 5A and C; P<0.05), peaking at
the lower dose, whereas in MCF7 cells it augmented in a
dose-dependent manner (Figures 5A and C; P<0.05). Thus,
we speculate that MCF7 cells are more dependent on
autophagy activity, whereas MCF10A cells are more
dependent on proteasome degradation and need a stronger
Pl to activate autophagy. To prove directly this supposition,
we performed an ultrastructural analysis using transmission
electron microscopy (TEM). In control condition, we did not
observe any relevant differences between both cell types
(Figures 5Da and d). However, the morphological features
induced by Pl were completely different. On one hand,
MCF10A cells accumulated electron-dense structures
around the nucleus that increased in number and size in a
dose-dependent manner (Figure 5Db). These aggregated-
like structures were membrane-free and were surrounded by
numerous mitochondria (Figure 5Dc). The presence of
multilamellar structures resembling autophagolysosomes
was never observed in these cells. On the other hand, tumor
cells MCF7 displayed a significant cytoplasmic vacuoli-
zation that increased also in a dose-dependent manner
(Figure 5De). These cytoplasmic structures were different in
size and showed a heterogeneous content that corre-
sponded to digestion products (Figure 5Df). Importantly,
the presence of inclusion bodies was never observed in
MCF7 cells. To test whether these cytosolic vacuoles could
correspond to autophagolysosomes, we used acridine
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Figure 4 BAG1 and BAG3 proteins are differentially affected by Pl in MCF10A
and MCF7 cells. (a) Representative western blot corresponding to the BAG1 (upper
panel) and the BAG3 (lower panel) proteins expressed in MCF10A and MCF?7 cells
in control condition and after 24 h of PI. Note the decreased expression of BAG1 in
MCF10A. (b and ¢) Graphs show BAG1 and BAG3 quantification, respectively. Data
are presented as mean * S.D. of three independent experiments done in parallel.
(d) Graph representing the BAG3/BAG1 ratio in MCF10A and MCF?7 cells in control
condition and 24 h after Pl (1 and 5 M of MG132). *P < 0.05, significant differences
compared with control condition. *P<0.05, significant differences compared with
MCF10A cells

orange for acidic vesicle organelles detection.’® As shown
in Supplementary Figure 1A, the number of acidic vesicles
labeled with acridine orange increased in a dose-dependent
manner in MCF7 but not in MCF10A cells, indicating a higher
biogenesis of lysosomes and/or autophagolysosomes
induced by Pl in tumor cells. Moreover, to determine whether
the accumulation of LC3II induced by PI in MCF7 cells is
caused by stimulation of autophagy or inhibition of autopha-
gic vesicle turnover, we performed both morphological and
biochemical analysis. Ultrastructural analysis performed
following PI (MG 132 1 uM) revealed the presence of features
of autophagy activation such as abundant lysosomes,
concentric double-membrane structures and cytosolic
vacuoles containing digestion products (Supplementary
Figure 1B). Moreover, Pl in MCF7 cells in the absence or
presence of chloroquine 5uM showed a higher LC3lII
accumulation in the presence of chloroquine, supporting
autophagy flux (Supplementary Figure 1C). These results
indicate that restoration of cellular homeostasis occurred in
two different ways in both cell types: MCF7 overactivated
basal autophagy, whereas MCF10A induced the formation of
inclusion bodies.

Pl promotes the accumulation of K63-ubiquitinated
proteins, preferentially in MCF10A. Cellular inclusions
are enriched in K63-ubiquitinated proteins.'®'® Thus, we
investigated the topology of ubiquitin linkages in MCF10A
and MCF7 cells. First, we quantified total poly-ubiquitinated
proteins accumulated, following PI. As shown in Figures 6a
and b, the accumulation of poly-ubiquitinated proteins
was higher in MCF10A than in MCF7 cells. Interestingly,
the linkage ubiquitin topology was little different in both
the cell types. In MCF10A, PI preferentially accumulated
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Figure 5 Molecular and ultrastructural analysis of autophagic markers induced by Pl in MCF10A and MCF7 cells. (A) Representative western blot shown in MCF10A and
MCF7 cells, in control condition and after 24 h of Pl the expression of LC3| and LC3II (upper panel) and p62 (lower panel) proteins, respectively. Note the dose-dependent
expression of LC3Il and p62 in MCF7 cells. (B and C) Graph representation of data from western blots similar as shown in (a). Data are presented as mean + S.D. of four
independent experiments done in parallel. (D) TEM of MCF10A and MCF?7 cells in control condition ((a) and (d), respectively) and 24 h after PI (5 uM of MG132; (b and e)).
Note the presence of inclusion bodies in MCF10A cells (b) and the cytoplasmic vacuolization in MCF7 cells. (e) In (¢) and (f) are shown magnifications of inclusion bodies
(white arrows) and autophagic vacuoles with digestion products inside (black arrows), respectively. m, mitochondria; *P< 0.05, significant differences compared with control
condition; *P<0.05, significant differences compared with MCF10A cells. Scale bar 10 um
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after 24 h of Pl in MCF10A and MCF?7 cells. (b) Graph representation of data from western blots similar as shown in (a). Data are presented as mean + S.D. of four
independent experiments done in parallel. (¢) Ubiquitinated proteins on K48 (upper panel) and K63 (lower panel) in control condition and 24 h after PI (1 and 5 uM of MG132),
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transfected with BAG3 siRNAs. *P < 0.05, significant differences compared with control condition; *P< 0.05, significant differences compared with MCF10A cells
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Figure 7 Akt/GSK-3p response induced by Pl in MCF10A and MCF7 cells. (a) MCF10A and MCF7 cells were treated with MG132 (1 and 5 M) for 24 h, and then the
amount of GSK-33 phosphorylated on Ser9 (upper panel) and on Tyr216 (middle panel) was analyzed. Note the dose-dependent increase of GSK-33 phosphorylated on Ser9
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versus the absence of it in MCF10A cells. *P<0.05, significant differences compared with control condition; *P< 0.05, significant differences compared with MCF10A cells

K63-ubiquitinated proteins, whereas MCF7 accumulated
both K48- and K63-ubiquitinated proteins (Figure 6c). In
consequence, the K63/K48 ratio augmented in a dose-
dependent manner in MCF10A, but remained quite similar in
MCF7 cells (Figure 6d). Importantly, ubiquitination profile
was somehow regulated by BAG1 and BAGS3 proteins.
Indeed, Pl in MCF10A cells transfected with BAG1 or BAG3
siRNAs slightly increased or severely decreased the content
of K63-ubiquitinated proteins, respectively (Figure 6e). Thus,
Pl promotes the formation of protein inclusions enriched in
K63-ubiquitinated proteins in MCF10A cells, whereas in
MCF7 induces autophagic activity avoiding the formation of
those inclusions.

GSK-3p is inhibited in MCF7 but fully activated in
MCF10A cells, following Pl. We next tried to identify
additional pathways that could account for the different
response induced by Pl in both cell types. As GSK-3f
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inactivation has been demonstrated to participate in autop-
hagy activation and cell death under stress situation,'® we
focused our attention on the Akt/GSK-3 pathway. As shown
in Figure 7a, Pl increased in a dose-dependent manner GSK-
3/ phosphorylation on Ser9 in MCF7, but not in MCF10A
cells. Thus, GSK-3p was specifically inactivated in the tumor
cells but remained active in MCF10A cells. To test whether
this was related to the tumorigenic origin of cells, we used a
transformed isogenic cell line of the MCF10A cells, named
MCF10A-NeuT, which constitutively expresses an active
form of the oncogene ErbB2/HER-2/NeuT.?° Pl produced
both a higher GSK-38 phosphorylation on Ser9 and
accumulation of LC3Il in MCF10A-NeuT cells. This behavior
was similar to that observed in MCF7 cells (Supplementary
Figure 1D), indicating that differential regulation of GSK-3p
by Pl seems to be related with the tumorigenic origin of these
cells. Moreover, MCF10A but not MCF7 cells augmented
phosphorylation of GSK-3f on Tyr216, leading to a higher
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Figure 8 Cotreatment with LiCl and MG132 increases autophagy activity and rise up the rate of cellular death in MCF10A cells. (a) MCF10A cells were treated with MG132
(1 M), LiCI (30 mM) or both for 24 h, and then different molecular markers were analyzed. Note the higher increase of LC3lI, phosphorylated PKCd and CHOP in cotreated
cells. (b) Upper panel; optical microscope photographs of control, LiCl, MG132 and cotreated MCF10A cells. Note the presence of inclusion bodies in proteasome inhibitor-
treated cells and the presence of cytoplasmic vacuoles in cotreated MCF10A cells; lower panel. Electron microscopic detection of inclusion bodies in proteasome inhibitor-
treated cells (left panel), and autophagic vacuoles in cotreated cells (right panel). (c) Cell viability assay in MCF10A cells. Untreated cells, or cells treated with 30 mM LiCl, 1 uM
MG132 or both for 24 h, were subjected to SRB cell viability assay. Data are presented as mean + S.D. of three independent experiments done in parallel. Scale bar 10 m.
*P<0.05, significant differences compared with control condition; *P< 0.05, significant differences compared with MG132 or LiCl treatments

activity of this kinase (Figure 7a, middle). The lower activity
of GSK-3p was reflected in the accumulation of S-catenin,
exclusively in MCF7 cells (Figure 7a, lower part). Interest-
ingly, the behavior of GSK-3x was also opposed in both cell
types after Pl (Figure 7a). Next, we analyzed both Akt and
protein kinase C (PKC)d phosphorylation, two kinases that
phosphorylate GSK-38 on Ser9.2! Pl increased phosphor-
ylation of Akt on Ser473 in both cell types, being the ratio of
P-Akt/Akt higher in MCF10A than in MCF7 cells using
MG132 5 uM (Figure 7b upper panel P<0.05). By contrast,
the phosphorylation on Thr308 was exclusively detected in
MCF7 cells in both, basal condition and following PI
(Figure 7b lower panel). Similarly, PI induced phosphoryla-
tion of PKCo in MCF7 but not in MCF10A cells (Figure 7c).
These data indicate that PI induces an inverse regulation of
signaling pathways involving GSK-3p in both cell lines.

Autophagy activation induced by Pl is dependent on
GSK-3p inactivation in MCF10A cells. To investigate
whether GSK-3f inhibition and autophagy activation were
causally related, we inhibited GSK-3f activity using lithium
chloride (LiCl) and induced Pl in MCF10A cells, which neither
activated autophagy nor inhibited GSK-3f. As shown in
Figure 8a, treatment with LiCl sensitized MCF10A cells to Pl
(MG132 1uM; see Figure 5). As expected, LiCl (30 mM)

increased Ser9 phosphorylation in GSK-3f. Furthermore, the
level of LC3II was slightly higher because of the transcrip-
tional activation of the LC3 gene (data not shown). A similar
effect was obtained using the specific GSK-3f inhibitor VII
(Supplementary Figure 1E). Moreover, LiCl augmented the
phosphyorylation of PKC6 (Figure 8a), but not Akt phosphor-
ylation (data not shown). Under this situation, Pl strongly
increased either the level of LC3Il, the phosporylation of
PKC6 as well as CHOP expression. Cotreatment with LiCl
and MG 132 induced morphological changes in the cytoplasm
of MCF10A cells, which were different to that observed in
cells treated with MG132 alone. As previously shown, PI
induced the formation of inclusion bodies without the
evidence of autophagy activation (Figure 8b). However, the
combination of LiCl and MG 132 produced a high cytoplasmic
vacuolization with minimal cytosolic aggregation (Figure 8b).
Electron microscopy revealed the presence of inclusion
bodies in MCF10A cells treated with MG132, but cytosolic
vacuoles in cotreated MCF10A cells (Figure 8b lower panel).
Some of these vacuoles were observed surrounding cyto-
solic aggregates (magnification in Figure 8b), showing
heterogeneous content that may correspond to digestion
products. These data strongly support that GSK-3/ inhibition
is necessary for autophagy activation. As autophagy inhibi-
tion decreased cell death induced by Pl in MCF7 cells
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(Figure 3b), we investigated whether autophagy activation
could increase cell death in MCF10A. As shown in Figure 8c,
Pl in the presence of LiCl significantly increased cell death
compared with Pl alone.

Discussion

We have characterized the two major cellular pathways
involved in protein degradation in MCF10A and MCF7 cells.
The study was carried out in both, basal and proteasome
stress situations. In basal condition, MCF7 cells showed a
lower proteasome activity that could be due, at least in part, to
the absence of immunoproteasomes. The downregulation of
immunoproteasome could benefit cancer cells by inhibiting
antigen presentation, which in turn, could constitute an
immune evasion strategy for some tumor types. The absence
or reduced expression of immunoproteasomes has been
previously described in other tumor cell lines.??72 Thus, our
results support the idea that immunoproteasome represents a
promising prospect for certain tumors including breast cancer.
The lowering of proteasome activity seems to be compen-
sated by a higher autophagy activity. A growing body of
evidence suggests that basal autophagy has a relevant
homeostatic role in maintaining protein and organelle quality
control, acting in parallel with the UPS to prevent accumula-
tion of poly-ubiquitinated and aggregated proteins.”?” There-
fore, our results are in line with this idea. Although molecular
links between both proteolytic systems are not completely
understood, BAG1 and BAG3 have an important role in
regulating both processes.?®® 1" BAG3 was overexpressed
in MCF?7 cells in basal condition, whereas its expression was
residual in MCF10A cells. Importantly, differences in the
proteolytic systems in basal condition determined the
response to Pl in both cell types. On one hand, cell mortality
was higher in tumor cells than in non-tumor cells, and on the
other hand the homeostatic response was completely
different in both cell types. Biochemical data demonstrated
that MCF7 cells did not modify the expression of BAG1 and
coordinately upregulated, in a dose-dependent manner, the
expression of BAG3, p62/SQSTM1 and LCS3II. By contrast,
MCF10A cells downregulated the expression of BAG1, but
also upregulated BAG3, p62/SQSTM1 and LC3Il, although
with different dynamics and sensitivity to Pl. These molecular
differences were also reflected at the cellular level. Ultra-
stuctural analysis revealed that MCF7 cells showed profuse
autophagy activation with none or minimal cytosolic inclu-
sions, whereas MCF10A cells presented aggresome-like
structures, without evidence of autophagy activation. Seques-
tration of aggregated proteins is classically considered a
cellular response that occurs once the refolding capacity and
degradation of soluble misfolded proteins are overpassed.?®
Thus, our results indicated that tumor cells are more
dependent on the autophagy, whereas non-tumor cells seem
to be more dependent on the proteasome. Sequestration of
misfolded proteins in MCF10A cells has a protective role in
this context.

Autophagy is considered a non-selective degradative
system, but growing evidence support the existence of selec-
tive autophagy that specifically targets protein aggregates for
their clearance.®° In this sense, the ubiquitination pattern of

Cell Death and Disease

proteins  targeted for degradation could deter-
mine whether adapter proteins will bring them to the
autophagosomes or to the proteasome.®'*2'® We demon-
strated that dynamics of ubiquitinated proteins induced by PI
was somehow different in both cell types. The K63/K48 ratio
increased in a dose-dependent manner in MCF10A but not in
MCF7 cells. Ubiquitination on K48 is considered a signal for
proteasome degradation, whereas ubiquitination on K63
preferentially destines proteins to the autophagy—Ilysosomal
pathway.>3' However, it has also been described that
K63-ubiquitinated proteins are more prone to form intracel-
lular inclusions.””'® On the other hand, the role of
p62/SQSTM1 in the biogenesis of intracellular protein
aggregates is well documented. This stress-regulated multi-
adaptor protein binds to both aggregated poly-ubiquitinated
proteins, preferentially on K63 and LC3.3%1416:31.34
Moreover, it is well established that p62/SQSTM1 regulates
inclusion body formation and degradation by autophagy.3®-%¢
Thus, we speculate that electron-dense structures induced by
Pl in MCF10A cells might agglutinate K63-ubiquitinated
proteins, in addition to p62/SQSTM1, BAG3 and LC3.
However, we cannot discard that other proteins showing
different patterns of ubiquitination, or even non-ubiquitinated
proteins, might take part in these intracellular inclusions.
A similar situation could be operating in the tumor cells MCF7.
However, because of the faster autophagy activation,
probably due to the higher basal activity, protein accumulation
and autophagy overactivation are better synchronized,
avoiding protein accumulation. At this point, a relevant
question is to know the molecular mechanisms underlying
the different homeostatic responses in both cell types. We
show strong evidence indicating that it somehow depends on
GSK-3p activity. Indeed, GSK-3f was inversely regulated in
both cell types following Pl (inhibited in a dose-dependent
manner in tumor cells and fully activated in non-tumor cells).
Moreover, dose-dependent inactivation of GSK-3f was
paralleled by dose-dependent activation of autophagy in
MCF7 cells, and most importantly, autophagy activation in
MCF10A cells only occurred when proteasome and GSK-3/
were simultaneously inhibited. Under this situation, most of
the molecular and morphological features induced by PI in
MCF7 cells were reproduced in cotreated MCF10A cells such
as, accumulation of LC3II, increased PKC& phosphorylation,
higher CHOP expression, extensive vacuolization with minor
inclusion bodies and higher cell death. Thus, our results are in
line with the recent data indicating that GSK-3 has a relevant
role in regulating autophagy activity in tumor cells under stress
situations.'®3” Under ER-stress, cells activate a signaling
pathway called UPR that is mediated by the sensor proteins
PERK, IRE1x and ATF6, in order to mitigate the cellular
stress.®® The UPR and autophagy activation are two linked
phenomena.®**° In particular, PERK pathway mediates
transcriptional activation of LC3, Atg5 and Atg12 genes by
the transcription factors ATF4 and CHOP.*'~*2 |n this sense,
we observed strong upregulation of ATF4 and mostly CHOP
in MCF7, but not in MCF10A cells, following PI. However, in
MCF10A subjected to both GSK-3f and PI, CHOP expression
increased even more, similarly as observed in MCF7 cells.
Finally, caspase-8 has also been linked to autophagy
activation**™7 and autophagy activity is necessary for



cleavage of caspase-8 induced by P1.#8° Thus, the higher
processing of caspase-8 in MCF7 cells in both, basal- and
proteasome stress situations might represent an additional
factor that contributes to the higher basal autophagy activity in
the tumor cell line MCF7.

Collectively, our findings strongly argue for the induction of
autophagy as the main way to restore cell homeostasis under
proteasome stress situation in the human breast cancer cells,
MCF7. Moreover, we provide solid evidence supporting that
efficient autophagy activation in response to Pl is dependent
on GSK-3p. This finding is in line with a recent work,
demonstrating that GSK-3f inhibition promoted lysosomal
biogenesis and autophagy protein degradation.*® Finally, we
also show that autophagy has an active role on cell death in
the tumor cell line MCF7 subjected to proteasome stress.
However, we cannot discard the possibility that autophagy
activation in response to PI might be initially a prosurvival
process in an attempt to keep cells alive, but with fatal
collateral consequences.

Materials and Methods

Cells and culture conditions. The study was carried out in an
ER+ human epithelial breast cancer cell line, MCF7 and in a human
epithelial-non tumorigenic breast cell line, MCF10A (American Type Culture
Collection). MCF7 cells were cultured in DMEM/Ham’s F12 (1/1) medium (PAA
Laboratories, Piscataway, NJ, USA) supplemented with 10% (v/v) fetal bovine
serum (FBS; Gibco, Alcobendas, Spain), 2mM L-glutamine, 50 «g/ml streptomycin
and 50 U/ml penicillin (Sigma-Aldrich, Madrid, Spain). The human mammary
epithelial cells MCF10A and the transformed cell lines MCF10A-NeuT (oncogen
ErbB2/HER-2/NeuT constitutively expressed) and MCF10A-pBabe (empty
plasmid) were grown in DMEM/Ham’s F12 (1/1) medium (PAA Laboratories)
supplemented with 10% (v/v) horse serum (Gibco), 2mM L-glutamine, 50 ug/ml
streptomycin, 50 U/ml penicillin, 2.5 mg/ml insulin, 150 ug/ml cholera enterotoxin
(Sigma-Aldrich), 2.5 mg/ml hydrocortisone and 50 ug/ml epidermal growth factor
(Calbiochem, Billerica, MA, USA). Both cell lines were maintained at 37 °C in a
humidified atmosphere with 5% CO,. Cells were routinely subcultured and they
were always in exponential growth phase when used for experiments. Each
experiment was independently performed at least in triplicate.

Treatments and drugs. Both cell lines were treated in parallel with the
reversible proteasome inhibitor MG132 (Sigma-Aldrich), at doses indicated in
the figures during 24 h. Cells were also treated with 30mM of LiCl for 24h
(Sigma-Aldrich) or 20 uM of GSK-3f inhibitor VII (Calbiochem) for GSK-3f
inhibition. Treatments were carried out alone or in combination.

Proteasome activity assay. Chymotrypsin-like activity was determined
using 50 uM of Suc-Leu-Leu-Val-Tyr-aminomethylcoumarin (AMC; Sigma-Aldrich)
as substrate, as previously described.*® Assay mixtures containing 10 ug of
protein, substrate and 50mM HEPES-KOH, pH 7.5, was made up in a final
volume of 100 ul. Measures were performed at 37 °C, by monitoring fluorescence
emission (excitation wavelength 380 nm, emission wavelength 460nm) on a
Thermo Scientific Varioskan Flash Spectral Scanning Multimode Reader (software
Scanlt, version 2.4.1, Alcobendas, Spain). The fluorescence emission was first
determined 2 min after substrate incubation and then every 15 min during a total
incubation period of 75 min. The product formation was linear during this time.
Triplicate assays were performed for MCF10A and MCF7 cells, and determina-
tions were always performed in parallel. Activity was calculated by comparing the
slopes of the line obtained by plotting fluorescence versus the time of incubation.
Background activity was determined by addition of the proteasome inhibitor
MG132 (Sigma-Aldrich), at a final concentration of 10 xM.

Sulforhodamine B assay. To assay cell viability, cells in exponential
growth phase were harvested using trypsin-EDTA (Gibco), and resuspended in
their respective media. Cells were seeded at a density of 5 x 10° cells/100 1l in a
96-well microtiter plate (Nunc, Roskilde, Denmark) and then allowed for 24 h to
attach and grow. Then, they were incubated further for 24 h in the presence of
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proteasome inhibitor MG132. The concentration range tested (200 nM-50 pM)
was prepared in a culture medium from a stock solution in DMSO (Sigma-Aldrich).
Following the recommendations of the National Cancer Institute (Bethesda, MD,
USA), the analysis of cytotoxic effects induced by MG132 was determined using a
cell growth assay, the SRB (Sigma-Aldrich) assay, as previously described.®"%2
Briefly, 50 ul per well of cold 50% trichloroacetic acid (TCA; final concentration
10%) was added to the culture and incubated at 4 °C for 1h, to precipitate the
proteins and fix the cells. The supernatant was then discarded, and the plates
were washed five times with distilled water and air-dried. The cells were then
stained with 100 ! per well of 0.4% SRB dissolved in 1% acetic acid for 30 min at
room temperature. Unbound SRB was removed by washing five times with 1%
acetic acid, and then plates were air-dried. The stained protein was solubilized in
100 ul per well of 10mM Tris Base, pH = 8.7 by shaking. The optical density was
read at 515nm using a microtiter plate reader (ELISA).

Acridine orange staining. As a marker of autophagy the cellular
acidic compartments can be visualized by acridine orange staining. Cells
were seeded on coverslips in the absence or in the presence of MG132
(1 or 5 uM, for 24 h). Then cells were washed with PBS and incubated for 10 min
with medium containing 0.1 «g/ml acridine orange (Molecular Probes, Alcobendas,
Spain). The acridine orange was removed by washing coverslips with PBS (for
5 min three times). Fluorescent images were taken using a fluorescent microscope
(Olympus BX61, Barcelona, Spain).

Western blotting. Immunoblots were done as previously described.*® Briefly,
proteins were loaded on a 12 or 14% polyacrylamide gel for electrophoresis
(SDS-PAGE; Bio-Rad, Alcobendas, Spain) and then transferred to a nitrocellulose
membrane (Hybond-C Extra; Amersham, Barcelona, Spain). After blocking,
membranes were incubated overnight at 4°C, with the following primary
antibodies: (i) rabbit polyclonal antibodies against: Akt, phospho-Akt(S473),
phospho-Akt(T308), Atg5, Atg7, Beclin-1, Caspase-9, Cleaved Caspase-8, LC3B,
phospho-GSK-3/3(S9) and SQSTM1/p62 (Cell Signaling, Danvers, MA, USA);
BAG1 (c-16), Proteasome 20S alpha2 subunit (H-120; Santa Cruz Biotech,
Heidelberg, Germany). P-GSK-3u(Y279)//(Y216; Invitrogen, Alcobendas, Spain);
Ubiquitin (Dako, Glostrup, Denmark); Proteasome 20S alpha -+ beta, Proteasome
20S f5i/LMP7 and Proteasome 20S f$1i/LMP2 (Abcam, Cambridge, UK); K48-
linkage Specific poly-ubiquitin Antibody (Cell Signaling) and K63-linkage Specific
poly-ubiquitin (D7A11; Cell Signaling); (i) mouse monoclonal antibodies against:
f-actin (Sigma-Aldrich); CHOP (Cell Signaling); GSK 3-clone 4G-1E (Millipore,
Madrid, Spain); ATF4 (Abcam) and (jii) goat polyclonal antibody against BAG3 (P-
17) (Santa Cruz Biotech). Then, membranes were incubated with the appropriate
secondary antibody (Dako) horseradish peroxidase-conjugated, at a dilution of 1/
10000 and developed using the ECL-plus detection method (Amersham) and the
ImageQuant LAS 4000 MINI GOLD (GE Healthcare Life Sciences, Barcelona,
Spain). For quantification, the optical density of individual bands was analyzed
using PCBAS 2.08 software (Raytest Inc, Berlin, Germany), and the optical density
of each band was normalized relative to the optical density of f-actin.

RNA extraction and reverse transcription. For PCR analysis, total
RNA was extracted using the Tripure Isolation Reagent (Roche, Mannheim,
Germany), according to the instructions of the manufacturer. The recovery of RNA
was similar between MCF10A and MCF7 cells. Reverse transcription was
performed using random hexamers primers exactly as previously described.®®

Real-time reverse transcriptase-PCR. cDNAs were diluted in sterile
water and used as template for the amplification by the PCR. Optimization and
amplification of each specific gene product was performed using the ABI Prism
7000 sequence detector (Applied Biosystems, Barcelona, Spain) and TagMan
probes designed by Applied Biosystems, as previously described.*® The cDNA
levels of the different cell types were determined using two different housekeepers
(glyceraldehyde-3-phosphate  dehydrogenase (GAPDH) and p-actin). The
amplification of the housekeepers was done in parallel with the gene to be
analyzed. Similar results were obtained using both housekeepers. Thus, the
results were normalized using both f-actin and GAPDH expression. Threshold
cycle (Ct) values were calculated using the software supplied by Applied
Biosystems.

Small interfering RNA. MCF10A and MCF7 cells were transfected during
48h with 100nM of siRNA using Dharma-FECT 1 siRNA transfection reagent
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(Dharmacon, Madrid, Spain). MCF10A cells were transfected with BAG1 siRNA
FlexiTube GeneSolution (GS573) or BAG3 siRNA FlexiTube GeneSolution
(GS9531). MCF7 cells were transfected with Atg5 siRNA FlexiTube GeneSolution
(GS9474). Control cells were transfected with AllStars Negative Control siRNA. All
siRNA were purchased from Qiagen, Las Matas, Spain.

Transmission electron microscopy. Cell monolayers were fixed in 2.5%
(v/v) glutaraldehyde in 0.1 M sodium cacodylate-HCI buffer pH=7.4 for 1h at
4°C. Cells were rinsed in cacodylate buffer twice and incubated for 1h at 4°C in
1% (viv) 0sO4/1% (w/v) K4Fe(CN)g in cacodylate buffer pH=7.4. Cells were
rinsed again in cacodylate buffer and finally in distilled water. Then, cells were
stained with 1% (w/v) aqueous uranyl acetate for 2h at 4 °C. After washing with
distilled water, they were dehydrated through increased graded ethanol series and
embedded in Epon resin 812 (Sigma-Aldrich, Tres Cantos, Spain). Ultrathin
sections were stained with lead citrate for 5min. Toluidine blue-stained 0.5 um
semithin sections were used as control. All reagents were purchased from Sigma-
Aldrich.

Statistical analysis. Data were expressed as mean £ S.D. All our data fit
significantly to a normal distribution according to a standardized Kurtosis test. The
differences between groups were measured using a one-way ANOVA, followed by
Tukey test. The significance was set at 95% confidence intervals. Significant
differences are referenced as P<0.05 in the text. Statistical analysis was done
using the statgraphics plus (v 3.1) program, Warrenton, VA, USA.
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