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Bayesian methods for estimating GEBVs of threshold traits

C-L Wang1,2,3, X-D Ding1,3, J-Y Wang1, J-F Liu1, W-X Fu1, Z Zhang1, Z-J Yin1 and Q Zhang1

Estimation of genomic breeding values is the key step in genomic selection (GS). Many methods have been proposed for
continuous traits, but methods for threshold traits are still scarce. Here we introduced threshold model to the framework of GS,
and specifically, we extended the three Bayesian methods BayesA, BayesB and BayesCp on the basis of threshold model for
estimating genomic breeding values of threshold traits, and the extended methods are correspondingly termed BayesTA,
BayesTB and BayesTCp. Computing procedures of the three BayesT methods using Markov Chain Monte Carlo algorithm were
derived. A simulation study was performed to investigate the benefit of the presented methods in accuracy with the genomic
estimated breeding values (GEBVs) for threshold traits. Factors affecting the performance of the three BayesT methods were
addressed. As expected, the three BayesT methods generally performed better than the corresponding normal Bayesian
methods, in particular when the number of phenotypic categories was small. In the standard scenario (number of
categories¼2, incidence¼30%, number of quantitative trait loci¼50, h2¼0.3), the accuracies were improved by 30.4%,
2.4%, and 5.7% points, respectively. In most scenarios, BayesTB and BayesTCp generated similar accuracies and both
performed better than BayesTA. In conclusion, our work proved that threshold model fits well for predicting GEBVs of threshold
traits, and BayesTCp is supposed to be the method of choice for GS of threshold traits.
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BACKGROUND

To overcome the problem with traditional marker-assisted selection
(MAS) that only a limited proportion of the total genetic variance is
captured by the markers, an alternative method termed genomic
selection (GS) was presented by Meuwissen et al. (2001), which traces
all quantitative trait loci (QTL) by tracing all chromosome segments
through highly dense markers covering the whole genome. GS has
become feasible very recently with the availability of high-throughput
genotyping technology.

Estimation of genomic breeding values is the key step in GS, for
which number of approaches have been proposed (Meuwissen et al.,
2001; Zou and Hastie, 2005; Gianola et al., 2006; VanRaden, 2008;
Yi and Xu, 2008; Solberg et al., 2009; Zhang et al., 2010; Habier et al.,
2011). All of these methods focus on continuous traits. However,
many traits of importance in animal production, such as littler size of
large mammals, degree of calving difficulty and resistance to disease,
present a discrete (or categorical) distribution of phenotypes, and are
often termed threshold traits. Obviously, the GS methods proposed
for continuous traits cannot be adequately applied for such kind of
traits. Because outcomes of threshold traits are assigned into several
mutually exclusive and exhaustive ordered categories, if they are
processed as continuous ones by traditional linear model, issues are
involved (Gianola, 1982, 1983), including (1) the relationship between
variables and dependent phenotypes is non-linear; (2) phenotype
observations do not follow normal distribution; (3) the variance is a
function of the expectation. Therefore, threshold model, which relates

a hypothetical underlying continuous scale to the outward phenotype,
has been introduced for threshold traits analyses (Wright, 1934;
Dempster and Lerner, 1950; Gianola, 1982, 1983; Albert and Chib,
1993; Sorensen et al., 1995; Falconer and Mackay, 1996; Sorensen,
2002; Zhang, 2007).

Here we introduce threshold model to the framework of GS and,
specifically, we extend the three Bayesian methods (BayesA, BayesB and
BayesCp) for estimating the marker effects for threshold traits on the
basis of the threshold model. The extended methods are correspond-
ingly termed BayesTA, BayesTB and BayesTCp. Computing procedures
of the three BayesT methods using Markov Chain Monte Carlo
(MCMC) algorithm are derived. A simulation study was performed
to investigate the benefit of the presented methods in terms of accuracy
with the genomic estimated breeding values (GEBVs) of threshold
traits. In addition, we also applied our methods to the common data
set from the fourteenth QTL–MAS workshop (Szydlowski and
Paczyńska, 2011) to further confirm their feasibility. Factors affecting
the three BayesT methods and their features were discussed.

MATERIALS AND METHODS
Models
Let l¼ {li} (i¼ 1, 2, y, n) be the vector of underlying latent variables or

liabilities of all individuals. For the ith individual, it is postulated that

li¼X0ibþ z0 igþ ei

where b is the vector of location effects, g is the vector of single-nucleotide

polymorphism (SNP) effects, ei is the random residual error with distribution
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of N(0, s2
e ), x

0
i is the incidence row vector of b, z

0
i is the row vector of

genotype indicators (with values 0, 1 or 2 for genotypes 11, 12 and 22,

respectively). It is assumed that, given b and g, l is conditionally independent

and distributed as

ðl j b; g; s2
e Þ � NðXbþZg; Is2

e Þ

As the liabilities are unobservable, the parameterization s2
e ¼ 1 will be

adopted here, in order to achieve identifiability in the likelihood.

Let y¼ {yi} (i¼ 1, 2, y, n) denote the vector of observed categorical data.

Here, each yi represents an assignment into one of k mutually exclusive and

exhaustive categories. These classes result from the hypothetical existence of

kþ 1 thresholds in the latent scale, that is, tminot1ot2o yotk�1otmax

(tmin¼ �N and tmax¼N). However, one of the thresholds must be fixed, so

as to center the distribution. A typical assignment is t1¼ 0. Then, the

conditional probability that yi falls in category j (j¼ 1, 2, y, k), given b, g

and t¼ðtmin; t1; t2; . . . ; tk� 1; tmaxÞ0, is given by

Prðyi¼ j j b; g; tÞ¼ Prðtj� 1 o li o tj j b; g; tÞ
¼Fðtj� x0ib� z0 igÞ�Fðtj� 1� x0 ib� z0igÞ
¼ pðyi j b; g; tÞ

where F(�) is the cumulative distribution function of standard normal

distribution. The data are conditionally independent, given b, g and t.

Therefore, the sampling model can be written as

pðy j b; g; tÞ¼
Yn

i¼ 1

Xk

j¼ 1

Iðyi¼ jÞpðyi j b; g; tÞ

¼
Yn

i¼ 1

Xk

j¼ 1

Iðyi¼ jÞ Fðtj� x0 ib� z0igÞ�Fðtj� 1� x0ib� z0 igÞ
� �

where I (yi¼ j) is an indicator function taking value of 1 if the response falls in

category j and 0 otherwise.

MCMC implementation for BayesTA
Prior distribution and joint posterior density. It is assumed that each SNP has a

different variance, and v¼ s2
gi

n o
(i¼ 1, 2, y, q). In this study, the following

prior distributions are chosen for building a hierarchical model.

b j bmin;bmax � Uðbmin;bmaxÞ

gi j s2
gi
� Nð0;s2

gi
Þ

s2
gi
� w� 2ðvg ; SgÞ

pðtÞ¼ ðk� 1Þ ! 1

tmax� tmin

� �k� 1

Iðt 2 TÞ;

where T¼ ðt1; � � � ; tk� 1Þ j tmin � t1 � � � � � tk� 1 � tmaxf g
The joint posterior distribution has a form of

pðb; g; l; t; v j yÞ / pðy j l; tÞ
Yn

i¼ 1

pðli j b; gÞ
" #

pðbÞpðg j vÞpðvÞpðtÞ;

where pðy j l; tÞ¼
Qn

i¼ 1

Pk
j¼ 1

Iðtj� 1 o li o tjÞIðyi¼ jÞ.

Fully conditional posterior distributions
Liabilities. The fully conditional posterior distribution of liability li is

pðli j ELSEÞ /pðli j b; gÞpðyi j li; tÞ

¼ pðli j b; gÞ
Xk

j¼ 1

Iðtj� 1 o li o tjÞIðyi¼ jÞ

This is a truncated normal distribution, and its density is

pðli j ELSEÞ¼ fðx0ibþ z0 ig; 1Þ
Fðtj� x0 ib� z0igÞ�Fðtj� 1� x0ib� z0 igÞ

ð1Þ

where f (�) is the density function of standard normal distribution.

Thresholds. The density of the fully conditional posterior distribution of the

jth threshold, tj, is

pðtj j ELSEÞ /pðtÞp / pðy j l; tÞpðy j l; tÞ¼
Yn

i¼ 1

Xk

j¼ 1

Iðtj� 1 o li o tjÞIðyi¼ jÞ

¼
Yn

i¼ 1

Iðtj� 1 o li o tjÞIðyi ¼ jÞþ Iðtj o li o tjþ 1ÞIðyi¼ jþ 1Þ
� �

which shows that tj lies in an interval whose upper boundary must be smaller

than or equal to the smallest value of l for which yi¼ jþ 1, and whose lower

boundary is given by the maximum value of l for which yi¼ j. The prior

condition (tAT) is fulfilled automatically. Within these boundaries, the

conditional posterior distribution of threshold tj is the uniform process

tj j ELSE � U maxðl j y¼ jÞ; minðl j y¼ jþ 1Þ½ � ð2Þ

SNP effect variances. The fully conditional posterior distribution of the

variance of the ith SNP effect, s2
gi

, is

pðs2
gi
j �; yÞ / pðs2

gi
Þpðgi j s2

gi
Þ / s2

gi

� �� vg þ 1

2 þ 1ð Þ
exp � g 0i giþ vg Sg

2s2
gi

" #

This is the kernel of the inverted w2 distribution, therefore,

s2
gi
j �; y � w� 2ð~vgi

; ~Sgi
Þ; ð3Þ

where ~vgi
¼ vg þ 1, ~Sgi

¼ðg 0i giþ vg SgÞ/ðvg þ 1Þ.

Location effects and SNP effects. The fully conditional posterior distribution of

[b, g] is

pðb; g j ELSEÞ / pðl j b; gÞpðbÞp g j vð Þ / pðl j b; gÞp g j vð Þ

Then

bi j ELSE � NððX0iXiÞ� 1ðX0il�X0iXb i¼ 0ð Þ �X0iZgÞ; ðX0iXiÞ
� 1Þ ð4Þ

where Xi is the ith column of X; b(i¼ 0) equals b except that the value of bi is

set to zero.

gi j �; y

� N ðZ0 iZiþ 1/s2
gi
Þ� 1ðZ0 il�Z0 iXb�Z0 iZgði¼ oÞÞ; ðZ0 iZiþ 1/s2

gi
Þ� 1

� �
ð5Þ

where Zi is the ith column of Z; g(i¼ 0) equals g except that the value of gi is set

to zero.

The Gibbs sampler
The Gibbs sampler consists of iterating through the following loop:

1. Sample the liabilities from the truncated normal distribution with

density (1).

2. Sample the thresholds from the uniform distribution (2).

3. Sample the SNP effect variance from the scaled inverted w2 process (3).

4. Sample the location effects from the normal distributions (4).

5. Sample the SNP effects from the normal distributions (5).

6. Return to step 1 or terminate when chain length is adequate to meet

convergence diagnostics.

MCMC implementation for BayesTB and BayesTCp
Just as the three Bayesian methods (BayesA, BayesB and BayesCp) for

continuous traits, the differences between the three BayesT methods lay in

the assumptions for the prior distribution of SNP effects. BayesTA assumes

that all SNPs have an effect, but each has a different variance. BayesTB and

BayesTCp assume that each SNP has either an effect of zero or non-zero with

probabilities p and 1-p, respectively, and for those having a non-zero effect, it

is assumed that each SNP has a different variance in BayesTB and a common

variance in BayesTCp. In addition, in BayesTB p is treated as a known

parameter, while in BayesTCp it is treated as an unknown parameter with the

prior distribution of uniform (0, 1). In this study, we set p¼ 0.995 for
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BayesTB. Therefore, the MCMC Bayesian implementation procedure for

BayesTA needs to be properly adjusted for BayesTB and BayesTCp in the

same way as for BayesB and BayesCp (Meuwissen et al., 2001; Habier et al.,

2011).

Simulation study
Data simulation. To evaluate the proposed methods, we simulated data for

different scenarios.

The simulation started with a base population of 100 individuals, followed

by 2000 non-overlapping historical generations with the same population size,

denoted as generation �1999 to generation 0. In the base population and each

historical generation, 50 males mated randomly with 50 females, and each

mating produced two offspring (one male and one female). After the 2000

historical generations, six additional generations, numbered 1–6, were simu-

lated. In generation 1, the population size was expanded from 100–1000 by

randomly mating 50 males with 50 females in generation 0, and each mating

produced 20 progenies (10 males and 10 females). From generation 1–5, 50

males were randomly selected from the 500 male individuals to be the sires of

the next generation, and all 500 females were used as dams without selection.

The population size of 1000 for generation 2–6 was obtained by randomly

mating each male with 10 females and each female produced two offspring

(one male and one female).

The simulated genome consisted of five chromosomes with a total length of

5 Morgan (1 Morgan per chromosome). On each chromosome, 2000 marker

loci were randomly located and each segment between two markers was

considered to harbor a potential QTL, giving 10 000 markers and 9995

potential QTL in total. For each true QTL, the allele substitution effect was

drawn from the gamma distribution (1.66, 0.4). On the basis of the distance

between two adjacent loci, Haldane’s mapping function was used to calculate

the probability of having a recombination between adjacent loci.

Genotypes and true breeding values were simulated for all individuals from

generation 1–6, but phenotypic records of a discrete trait were only assigned to

the 1000 individuals in generation 1 (training population).

In standard scenario, the following parameters were assigned: number of

categories: 2 (binary trait with values 0 and 1), incidence: 30% (that is, 30%

individuals having phenotypic value of 1), heritability of liability: 0.3, number

of QTL: 50 (randomly selected from the 9995 putative QTL).

To investigate the effect of number of QTL, heritability, incidence and

number of categories for the discrete trait, four groups of alternative scenarios

were simulated in addition to the standard scenario described above. In the

first group, three different levels of heritability were simulated: 0.05, 0.1 and

0.5. In the second group, different numbers of QTL were simulated: 20, 200

and 500. In the third group, different incidences of a binary trait were

simulated: 5, 15 and 50%. In the fourth group, different numbers of trait

categories were simulated: 3 (proportion of individuals in the three categories

were 50%, 30%, 20%, respectively), 4 (proportion of individuals in the four

categories were 30%, 40%, 20%, 10%, respectively), and 8 (proportion of

individuals in the eight categories were 5%, 10%, 20%, 27%, 20%, 10%, 5%,

3%, respectively). For all these alternatives, only the relevant parameter was

altered from the standard scenario. For all scenarios, 10 replicates were

simulated.

Data from the fourteenth QTL–MAS workshop. The common data set of the

fourteenth QTL–MAS workshop (Szydlowski and Paczyńska, 2011) consists of

3226 individuals from five consecutive generations (F0–F4). All individuals

have genotypic records, while only 2326 individuals in generations F0–F3 have

phenotypic records on two traits: a quantitative trait Q and a binary trait B. In

this study, we only dealt with trait B. Individuals with phenotypic records

(F0–F3) and without phenotypic records (F4) were treated as training and

validation population, respectively. A genome consisting of 10 031 biallelic

SNPs on five chromosomes with the length of 100 million bps each was

simulated without any missing data and genotyping error.

Estimation of SNP effects
The three BayesT methods were used to estimate SNP effects in the training

population. For comparison, BayesA, BayesB and BayesCp were run on the

same data, for which the discrete phenotypic values of threshold traits were

treated as continuous ones. For all of the six Bayesian methods, the Markov

chains were run for 20 000 cycles of Gibbs sampling (for BayesB and BayesTB,

100 additional cycles of Metropolis–Hastings sampling were performed for the

SNP effect variance in each Gibbs sampling cycle), and the first 10 000 cycles

were discarded as burn-in. All the samples of SNP effects after burn-in were

averaged to obtain the SNP effect estimate.

For binary trait, Friedman et al. (2010) developed a computing program

called GLMNET to estimate SNP effects, which fits a traditional logistic

regression model with a lasso or elastic net regularization path by maximizing

the appropriate penalized log-likelihood. Here, we compared the proposed

Bayesian methods with GLMNET for the binary trait from both our

simulation and the fourteenth QTL–MAS workshop. The tuning parameters

for GLMNET were chosen by tenfold crossvalidation.

Calculation of GEBVs
GEBVs for individuals with genotypes, but no phenotypes, were calculated as

the sum of all marker effects, according to their marker genotypes.

RESULTS

Simulated data
Estimates of SNP effects in the standard scenario. Figure 1 shows the
simulated QTL effects (Figure 1Q) and the SNP effects estimated by
BayesA (Figure 1A), BayesB (Figure 1B), BayesCp (Figure 1C), BayesTA
(Figure 1TA), BayesTB (Figure 1TB), BayesTCp (Figure 1tc) and
GLMNET (Figure 1GLMNET) from a randomly selected replicate in
the standard scenario (number of categories¼ 2, incidence¼ 30%,
number of QTL¼ 50, h2¼ 0.3). While the simulated absolute QTL
effects ranged from 0–0.61, the estimated absolute SNP effects ranged
from 0–0.29 for BayesA and GLMNET, 0–0.13 for BayesB, BayesTA and
BayesTB and 0–0.08 for BayesCp and BayesTCp. These estimated SNP
effects, which were obviously not evenly distributed, reflected the
underlying architecture of the trait. The estimated values of p were
0.998 and 0.994 for BayesCp and BayesTCp, respectively. Most segments
containing big QTL were mapped by all methods.

Accuracies of GEBVs in the standard scenario. Table 1 shows the
accuracies of GEBVs in terms of correlations between GEBVs and
simulated true breeding values in generation 2–6 in the standard
scenario (number of categories¼ 2, incidence¼ 30%, number of
QTL¼ 50, h2¼ 0.3). For all methods, the accuracies declined over
generations with almost the same rate. Generally, the three BayesT
methods (BayesTA, BayesTB and BayesTCp) performed better than
the corresponding normal Bayesian methods (BayesA, BayesB and
BayesCp) consistently in all generations. BayesA gave the lowest
accuracies and BayesTA improved it dramatically. BayesTB and
BayesTCp yielded almost the same accuracies and their advantages
over BayesB and BayesCp were relatively small. In all generations,
GLMNET generated accuracies lower than BayesTB and BayesTCp,
but higher than BayesTA.

In generation 2 in the standard scenario (number of categories¼ 2,
incidence¼ 30%, number of QTL¼ 50, h2¼ 0.3), the average regres-
sion coefficients of true breeding values on GEBVs (measuring the
biases of GEBVs) were 0.363, 4.110, 4.515, 0.347, 1.466, 1.671, 1.115
for BayesA, BayesB, BayesCp, BayesTA, BayesTB, BayesTCp and
GLMNET, respectively.

Effect of heritability. Figure 2 shows the accuracies of GEBVs for
different methods in generation 2 under different heritabilities. By
decreasing the heritability from 0.5–0.05, the accuracies of all methods
decreased as expected. In all cases, the three BayesT methods
(BayesTA, BayesTB and BayesTCp) performed better than the
corresponding normal Bayesian methods (BayesA, BayesB and

Genomic selection of threshold traits
C-L Wang et al

215

Heredity



Figure 1 Simulated QTL effects and estimated SNP effects from a randomly selected replicate in the standard scenario (number of

categories¼2, incidence¼30%, number of QTL¼50, h2¼0.3). Panel Q shows the absolute values of the simulated true QTL effects. Panels A, B, C, TA,

TB, TC, and GLMNET show the absolute values of the SNP effects estimated by BayesA, BayesB, BayesCp, BayesTA, BayesTB, BayesTCp and

GLMNET, respectively.

Table 1 Accuracies of GEBVs obtained with the seven methods in generation 2–6 in the standard scenario (number of categories¼2,

incidence¼30%, number of QTL¼50, h2¼0.3)

Method Generation 2 Generation 3 Generation 4 Generation 5 Generation 6

BayesA 0.262±0.019 0.211±0.022 0.187±0.020 0.170±0.016 0.170±0.016

BayesB 0.671±0.029 0.624±0.031 0.597±0.035 0.570±0.039 0.570±0.038

BayesCp 0.635±0.041 0.604±0.042 0.578±0.044 0.559±0.045 0.557±0.043

BayesTA 0.566±0.021 0.499±0.024 0.477±0.027 0.447±0.024 0.437±0.026

BayesTB 0.695±0.027 0.652±0.029 0.626±0.032 0.603±0.034 0.598±0.033

BayesTCp 0.692±0.029 0.650±0.031 0.625±0.033 0.603±0.036 0.597±0.033

GLMNET 0.639±0.037 0.594±0.039 0.566±0.041 0.544±0.043 0.538±0.042

Abbreviations: GEBVs, genomic estimated breeding values; QTL, quantitative trait loci.
Values in the table are means and s.e.’s from 10 replicates.
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BayesCp), and GLMNET yielded accuracies lower than BayesTB and
BayesTCp, but higher than BayesTA. However, when the heritability
was low (0.05), the differences among BayesTB, BayesTCp and
GLMNET became bigger.

Effect of number of QTL. As shown in Figure 3, BayesTB, BayesTCp,
BayesB, BayesCp and GLMNET were sensitive to the number of QTL,
and their accuracies decreased rapidly when the number of simulated
QTL increased from 20–500. On the contrary, BayesTA and BayesA
were not sensitive to the number of QTL, and their accuracies did not
change with the number of simulated QTL.

The three BayesT methods performed better than the correspond-
ing normal Bayesian methods in all cases except in the case of 20
QTL, where BayesB, BayesCp, BayesTB and BayesTCp gave almost the
same accuracies. BayesTB and BayesTCp almost obtained the same
accuracies and their advantages over BayesB and BayesCp increased
along with the increase of the number of QTL. The advantages of
BayesTA over BayesA were nearly stable in all cases. GLMNET
generated lower accuracies than BayesTB and BayesTCp in all cases
except in the case of 20 QTL, where they performed almost equally
well. The advantages of BayesTB, BayesTCp and GLMNET over
BayesTA declined rapidly with the increase of the number of
simulated QTL, and in the case of 500 QTL, GLMNET lost its
advantage over BayesTA.

Effect of incidence. Figure 4 shows the accuracies of GEBVs for
different incidence of the binary trait. With the incidence decreasing
from 50–5%, the accuracies of GEBVs declined consistently for all
methods, but the three BayesT methods performed better than the
corresponding normal Bayesian methods in all cases. BayesTB and
BayesTCp almost obtained the same accuracies, and their advantages
over BayesB, BayesCp and GLMNET increased with the decrease of
the incidence.

Effect of number of phenotypic categories. As shown in Figure 5, with
the increase of the number of phenotypic categories, the accuracies of
GEBVs ascended for all the Bayesian methods, but the advantages of

the three BayesT methods over the corresponding normal Bayesian
methods decreased along with the increase of the number of
categories. When the number of categories reached 8, the three
BayesT methods completely lost their advantages. BayesTA was not
sensitive to the number of categories, whereas BayesA was most
sensitive among all methods.

Common data set of the fourteenth QTL–MAS workshop
Using the seven methods, we analyzed the binary trait in the common
data set of the fourteenth QTL–MAS workshop, for which 22
underlying QTL were simulated, and the incidence was 30% and

Figure 2 Accuracies of GEBVs for different heritabilities (number of

categories¼2, incidence¼30%, number of QTL¼50). The graph shows

the Pearson correlations between true breeding values (TBVs) and GEBVs

estimated by BayesA, BayesB, BayesCp, BayesTA, BayesTB, BayesTCp and

GLMNET in generation 2, while changing the heritability from 0.5–0.05.

Figure 3 Accuracies of GEBVs for different number of QTL (number of

categories¼2, incidence¼30%, h2¼0.3). The graph shows the Pearson

correlations between true breeding values (TBVs) and GEBVs estimated by

BayesA, BayesB, BayesCp, BayesTA, BayesTB, BayesTCp and GLMNET in

generation 2, while the number of simulated QTL increasing from 20–500.

Figure 4 Accuracies of GEBVs for different incidence (number of

categories¼2, number of QTL¼50, h2¼0.3). The graph shows the

Pearson correlations between true breeding values (TBVs) and GEBVs

estimated by BayesA, BayesB, BayesCp, BayesTA, BayesTB, BayesTCp and

GLMNET in generation 2, while the incidence decreasing from 50–5%.
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heritability was 0.48 (Szydlowski and Paczyńska, 2011). For each
Bayesian method, the analysis was repeated 10 times using different
random seeds. The average estimated values of p were 0.997 for
BayesCp and 0.990 for BayesTCp.

The accuracies and biases of GEBVs in the validation population
are shown in Table 2. For this data set, the three BayesT methods
gave better accuracies than the three corresponding normal Bayesian
methods, respectively. The advantage was greater for BayesTA over
BayesA, but smaller for BayesTB over BayesB, and BayesTCp over
BayesCp. BayesTB and BayesTCp yielded similar accuracies and were
obviously better than GLMNET and BayesTA. All methods generated
serious biases. However, in terms of the extent of biases, the three
BayesT methods performed better than the three corresponding
normal Bayesian methods, respectively.

DISCUSSION

GS has revolutionized dairy cattle breeding by greatly increasing the
accuracies of estimates of genetic merit for young animals and could
double the rate of genetic progress by shortening the generation
interval. To our knowledge, GS so far has focused on continuous
traits. However, many threshold traits significantly affect profitability
and are difficult to be selected. Therefore, GS for threshold traits is
important in animal breeding.

As mentioned before, the estimation of genomic breeding values is
the crucial step in GS. However, method for estimating genomic
breeding values of threshold traits is scarce. Among many existing
approaches for estimating genomic breeding values of quantitative
traits, the three normal Bayesian methods (BayesA, BayesB and
BayesCp) are commonly used. But they are not suitable for threshold
traits, because they are based on linear models.

Broadly speaking, the ideas of the three Bayesian methods (BayesA,
BayesB and BayesCp) were proposed long before the paper of
Meuwissen et al., 2001. BayesA employs basically the same idea as
the ridge-regression method (Hoerl and Kennard, 1970), because they
shrink estimates with the L2 penalty. The difference between them is
that the ridge regression assumes that all marker effects have a

common variance, while BayesA allows each marker effect to have its
own variance, and uses MCMC to generate the posterior sample of
the parameters. This method has been used to map QTL under the
random model by Xu (2003) and Wang et al. (2005), and many other
people. They called it the Bayesian shrinkage method. BayesB is
equivalent to the stochastic search variable selection method, which
was originally developed by George and McCulloch (1993) and has
been applied to QTL mapping by Yi et al. (2003) and Wang et al.
(2005). BayesCp is still the stochastic search variable selection method
with variable p and has been used by Ishwaran and Rao (2005) (who
named it the spike and slab variable selection) and Xu (2007). From
these points of view, the three ‘BayesT’ methods (BayesTA, BayesTB
and BayesTCp) proposed herein may also be regarded as threshold-
model-versions of the Bayesian shrinkage method and the stochastic
search variable selection method. Concurrent and independent work
of threshold versions of BayesA and BayesB were reported very
recently (González-Recio and Forni, 2011; Villanueva et al., 2011).
However, no computing procedures were described therein. In our
study, the MCMC computing procedures of the three BayesT methods
were derived in detail and all fully conditional posterior distributions
needed for running Gibbs sampling were given in closed forms, which
will be helpful for later relevant studies. In addition, the factors
(heritability, number of QTL, incidence, number of phenotype
categories) affecting the performances of the three BayesT methods
were systematically addressed. As expected, the three BayesT methods
generally performed better than the corresponding normal Bayesian
methods, particularly when the number of phenotypic categories
was small. In the standard scenario (number of categories¼ 2,
incidence¼ 30%, number of QTL¼ 50, h2¼ 0.3), the accuracies in
generation 2 were improved by 30.4%, 2.4%, 5.7% points for
BayesTA, BayesTB and BayesTCp, respectively (Table 1).

In most cases, BayesTB and BayesTCp generated similar accuracies
of GEBVs despite their different assumptions on the prior distribution
of marker effects, and performed much better than GLMNET and
BayesTA, and GLMNET was better than BayesTA. From Figure 1, we
can see BayesTB, BayesTCp and GLMNET shrink the estimated effects
of most SNPs toward zero via variable selection, whereas BayesTA
gave non-zero estimates to all SNPs; so the higher accuracies resulted
from reducing the noises. BayesB and BayesCp performed fairly well
for threshold trait, probably because they can apply variable selection
to decrease the noises. In the standard scenario (number of
categories¼ 2, incidence¼ 30%, number of QTL¼ 50, h2¼ 0.3) in
generation 2, the accuracies of BayesTB and BayesTCp were 5.6%,
5.3% points higher than that of GLMNET, respectively (Table 1).

Figure 5 Accuracies of GEBVs for different number of phenotypic categories

(number of QTL¼50, h2¼0.3). The graph shows the Pearson correlations

between true breeding values (TBVs) and GEBVs estimated by BayesA,

BayesB, BayesCp, BayesTA, BayesTB and BayesTCp in generation 2, while
the number of phenotypic categories increasing from 2–8.

Table 2 Accuracies and biases of GEBVs in the validation population

of the common data set from the fourteenth QTL–MAS workshop

Method Pearson’s correlation Regression coefficient

BayesA 0.442±0.001 4.082±0.008

BayesB 0.816±0.007 17.790±0.184

BayesCp 0.824±0.003 18.300±0.202

BayesTA 0.729±0.001 2.061±0.003

BayesTB 0.823±0.004 5.096±0.036

BayesTCp 0.829±0.002 5.232±0.011

GLMNET 0.807 3.229

Abbreviations: GEBVs, genomic estimated breeding values; MAS, marker-assisted selection;
QTL, quantitative trait loci.
Values for the Bayesian methods are means and s.e.’s from 10 runs with different random
seeds.
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Genetic architecture underlying the trait has significant effect on
the performance of the methods. As shown in Figures 2 and 3, the
accuracies of all methods declined with the decrease of the heritability
or the increase of the number of QTL. Our results confirmed the
observations for BayesB by Daetwyler et al. (2010). BayesTB,
BayesTCp, BayesB, BayesCp and GLMNET are more sensitive to the
variation of the number of QTL than BayesTA and BayesA. The
advantages of BayesTB and BayesTCp over BayesB and BayesCp,
respectively, declined rapidly with the decrease of the number of QTL,
while the advantage of BayesTA over BayesA was nearly stable. When
the number of QTL is very small (such as 20), BayesTB, BayesTCp,
BayesB, BayesCp and GLMNET generate similar accuracies. That is
partially confirmed by the results from the common data set of the
fourteenth QTL–MAS workshop with only simulated 22 QTL for the
binary trait (Szydlowski and Paczyńska, 2011). However, in real data,
many quantitative traits and threshold traits are affected by large
number of QTL with different effects (Goddard and Hayes, 2009), so
the advantages of’ using the BayesT methods for threshold traits
should be considerable.

Phenotypic architecture of the trait also influences the performance
of the methods. Figure 4 shows that with the incidence of a binary
trait decreasing from 50–5%, the accuracies of GEBVs declined
consistently for all methods. In particular, the decline was accelerated
when the incidence was dropped from 15–5%. Even for BayesTB and
BayesTCp, which gave the highest accuracies in all incidences, the
accuracy was only about 0.50 when the incidence was only 5%.
Gilmour et al. (1985) suggested that if the overall incidence in the
data is o30% or 470%, such data may not be informative for
the estimation of variance components. For binary traits with low
incidence (for example, o15%), very large training population is
needed to achieve sufficient accuracies of GEBVs. As shown in
Figure 5, for polychotomous traits, the advantages of the three
BayesT methods over the corresponding normal Bayesian methods
declined with the increase of the number of phenotypic categories.
When the number of phenotypic categories reached 8, the three
BayesT methods thoroughly lost their advantages. This again confirms
that we can deal with the threshold traits with large number of
phenotypic categories as continuous traits, but not for those with
small number of phenotypic categories.

CONCLUSIONS

Our work proved that threshold model fits well for predicting GEBVs
of threshold traits. In most scenarios, BayesTB and BayesTCp
generated similar accuracies and both performed better than
GLMNET and BayesTA. However, it is not easy for BayesTB to
choose a proper prior probability p that a SNP has a zero effect in real
data. BayesTCp addresses the drawback of BayesTA and BayesTB
regarding the impact of prior hyperparameters and treats p as an
unknown parameter to be estimated together with other parameters.
Therefore, BayesTCp is proposed as the method of choice for GS of
threshold traits.
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