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Abstract
In recent years, there have been multiple breakthroughs in our understanding of lung cancer
biology. Despite significant advances in molecular targeted therapies DNA-damaging cytotoxic
therapies will remain the mainstay of lung cancer management for the foreseeable future. Similar
to the concept of personalized targeted therapies there is mounting evidence that perturbations in
DNA repair pathways are common in lung cancers, altering the resistance of the affected tumors
to many chemotherapeutics as well as radiation. Defects in DNA repair may be due to a multitude
of mechanisms including gene mutations, epigenetic events, and alterations in signal transduction
pathways such as EGFR and PI3K/AKT. Functional biomarkers that assess the subcellular
localization of central repair proteins in response to DNA damage may prove useful for
individualization of cytotoxic therapies including PARP inhibitors. A better mechanistic
understanding of cellular sensitivity and resistance to DNA damaging agents should facilitate the
development of novel, individualized treatment approaches. Absolute resistance to radiation
therapy, however, does not exist. To some extent, radiation therapy will always have to remain
unselective and indiscriminant to eradicate persistent, drug-resistant tumor stem cell pools.

Introduction
In this past decade, there have been significant breakthroughs in our knowledge of lung
cancer biology. The identification of driver oncogenes in adenocarcinomas of the lung, and
emerging also in squamous cell carcinomas, has led to a paradigm change in the treatment of
these tumors. Biological agents targeting these genomic alterations have proven to be highly
effective in subsets of lung cancer patients. In light of the success of molecular targeted
therapies, there appears to be a growing conviction in the field that cytotoxic therapies will
become obsolete at some point in the future. However, chemotherapeutics can achieve
substantial therapeutic benefit in individual patients, but what is lacking is a better
understanding of the mechanisms of chemotherapy sensitivity and resistance and associated
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biomarkers. There is a growing body of data suggesting the presence of perturbed DNA
repair in a large number of human cancers including lung cancer. Defects in certain repair
pathways, such as homologous recombination repair, can render the affected tumors highly
sensitive to genotoxic agents, such as cisplatin1–3. There is also substantial radiobiological
data on factors that likely influence the sensitivity of lung tumors to radiation therapy4.
Here, we will review clinically relevant mechanisms affecting resistance and sensitivity of
lung cancer to radiation and chemotherapeutics. We will focus on the promise of research
into perturbations of DNA repair in human tumors, which may yield biomarkers of
sensitivity to specific chemotherapeutics and agents targeting DNA repair pathways such as
PARP inhibitors. This is a large field, and we apologize for being able to only include a
fraction of pertinent research articles.

Clinically Relevant Mechanisms of Radiosensitivity and Radioresistance
Effect of radiation on clonogenic or tumor stem cells

In radiation biology, clonogenic tumor cells have been defined as cells that have the capacity
to produce an expanding family of daughter cells and form colonies following irradiation in
an in-vitro assay or give rise to a recurrent tumor in in-vivo models. Whether clonogenic
cells fully represent tumor stem cells is unclear but more recently the terms have been used
interchangeably5,6. The goal of radiation therapy in curative intent is to eradicate the last
surviving tumor stem cell, as a single stem cell remaining after completion of treatment may
give rise to a local tumor recurrence (reviewed in 4). Radiation-induced cell killing (or
radiobiologically called cell “inactivation”) is random: lethal unrepairable DNA double-
strand breaks (DSB) are generated randomly in a cell population of similar cellular
radiosensitivity, at low doses eradicating some but not all stem cells. Increasing the radiation
dose, for a given number of tumor stem cells, will lead to higher odds that a stem cell gets
hit with at least one lethal event, thereby decreasing the number of surviving cells. Vice
versa, an increasing number of stem cells for a given dose of radiation will reduce the
likelihood of inflicting a lethal event per stem cell, hence increasing the likelihood of local
tumor relapse. Because of this dose-response relationship, it can be inferred that absolute
radiation resistance does not exist. If only an adequately high radiation dose could be
delivered, any number of tumor stem cells would be eradicated. However, the radiation
tolerance of normal organs and tissues surrounding the tumor typically limits the maximum
amount of radiation that can be delivered to the tumor.

In addition to the number of tumor stem cells present before initiation of radiation therapy,
several other factors are thought to influence the sensitivity of a tumor to radiation (Figure
1). These include the ability of tumor stem cells to increase in number during a several-week
course of radiation via a process termed accelerated repopulation, effects of the tumor
microenvironment such as hypoxia, and variations in the intrinsic sensitivity of cells to
radiation damage to DNA, for example by up- or down-regulation of DNA repair pathways
and modulation of cell survival pathways (reviewed below). Data on differences in
radiosensitivity between putative stem cells and other tumor cells are sparse but generally
suggest a greater intrinsic radioresistance of stem cells6.

Importance of tumor volume for radiation therapy
While relatively little is currently known about the nature of stem cells in lung cancer7, there
is little doubt that increasing primary tumor size or volume (and hence the number of stem
cells) is associated with a lower likelihood of local tumor control8–13. Radiobiological
principles predict that a similar dose-response relationship should apply to the volume of
nodal disease, but there exists little data on this issue10. In addition, whether increasing
primary tumor size, which may also be associated with more aggressive biological behavior
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and poor prognosis, increases radiation resistance through factors other than a mere increase
in stem cell number is not established. Locally advanced non-small cell lung cancer
(NSCLC) at diagnosis (i.e., stage II/III) is typically large in volume. It is therefore not
surprising that standard doses of radiation therapy, i.e., ~ 60 Gy, are associated with local
failure rates of at least 30–50%, even in the presence of concurrent, radiosensitizing
chemotherapy14,15. There have been numerous attempts to increase the radiation dose to >70
Gy, in order to reduce the probability of local relapse. However, recent data from the
randomized phase III RTOG 0617 study suggest that the delivery of 74 Gy may exceed
normal tissue tolerance, at least with the radiation techniques employed in that trial16.

If the maximum amount of radiation that can be given to the chest is restricted, then
radiosensitizing agents need to be employed to increase tumor cell kill for a given physical
dose of radiation, but without increasing radiation toxicity. There is currently great interest
in exploring the utility of novel targeted drugs concurrently with radiation in this regard17,18.
Alternatively, an emerging new paradigm involves the use of targeted agents as induction
therapy in genotype-defined lung cancers. Figure 2 illustrates that the bulk of lung cancer is
often too large for the achievable dose of radiation to obtain satisfactory local tumor control.
Tumors expressing wild-type epidermal growth factor receptor (EGFR) may be treated with
a radiosensitizing EGFR-directed monoclonal antibody or tyrosine kinase inhibitor (TKI),
thereby increasing the amount of cell kill achieved with a given dose of radiation. In a tumor
with mutant EGFR, the use of an induction TKI could take advantage of the high tumor
response rates seen in the setting of EGFR mutant stage IV disease (~70% response) and the
high degree of cell kill observed in pre-clinical models (~99% cell kill)19,20. A substantial
reduction in tumor volume (and number of tumor stem cells) following 2–3 months of TKI
treatment would be predicted to increase local tumor control rates for a standard dose of
radiation.

The problem of accelerated tumor cell repopulation
The time over which the total dose of radiation is delivered becomes important if there is
repopulation of stem cells within the irradiated tumor during a several-week course of
radiation therapy (reviewed in4). Tumor stem cell repopulation is thought to be an adaptive
response to the cytotoxic effects of radiation, and is likely due to several factors including an
increased cell proliferation rate, reduction in asymmetric cell division leading to a larger
number of daughter stem cells, re-entry of quiescent stem cells into the growth fraction, and/
or a reduction of the fraction of cells lost from the tumor. Because repopulation is able to
compensate for radiation-induced cell death during fractionated treatment, it leads to an
increased likelihood of surviving stem cells and local relapse.

Repopulation is accelerated when the doubling time of the proliferative cell pool is shorter
than the doubling time before start of radiation therapy. During treatment, the doubling time
of the tumor stem cell fraction may be as short as 4 to 5 days, compared with an average
doubling time of > 2 months for NSCLC. Lacking reliable stem cell markers, it is currently
not possible to detect the fraction of stem cells undergoing accelerated repopulation in a
tumor during a fractionated course of radiation6. Thus, even though a tumor may initially
respond to radiation, as evident by tumor shrinkage on a computed tomography scan, the
stem cell subpopulation within that tumor may already be rapidly proliferating, thereby
offsetting the delivered radiation dose.

Evidence for the presence of accelerated repopulation in human tumors has been reviewed
elsewhere4,21,22. In lung cancer, some of the best supporting data come from randomized
phase III trials involving two arms of radiation therapy with varying overall treatment time
but same or similar radiation dose23–25. If there is accelerated repopulation during radiation
therapy, a longer overall treatment time will yield inferior results due to the continuous
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increase in the number of stem cells during the course of therapy. For example, in the British
Continuous Hyperfractionated Accelerated Radiotherapy (CHART) trial patients with
inoperable NSCLC were randomized to conventional radiation of 60 Gy in 6 weeks or 54
Gy in 12 days23. The 12-day schedule achieved a higher overall survival rate than the 6-
week schedule, with the benefit most pronounced in the squamous cell carcinoma subset. In
limited-stage small cell lung cancer (SCLC), a 3-week schedule of 45 Gy yielded superior
local tumor control and overall survival compared to a 5-week regimen with the same dose,
both with the same concurrent chemotherapy24. These and other data also suggest that
chemotherapeutic agents are not able to block accelerated tumor cell proliferation26. In fact,
chemotherapy by itself may even trigger accelerated repopulation as can be inferred from
experimental and clinical data27–29.

The tissue, cellular, and molecular mechanisms of accelerated repopulation are the subject
of intense research5,6,30. Interestingly, in head and neck squamous cell carcinoma,
shortening the overall treatment time only benefits patients whose tumors have high EGFR
expression, while experimental data suggest that EGFR blockade may reduce tumor cell
repopulation31,32. Whether a similar relationship between EGFR activity and tumor cell
repopulation exists in lung cancer is not known.

Hypoxia and radioresistance
Cells irradiated in the absence of oxygen are 2- to 3-fold more radioresistant than well-
oxygenated cells (reviewed in4). The mechanism underlying this so called “oxygen effect”
may involve the generation of DNA damage by reaction of molecular oxygen with radiation-
induced DNA radicals. Tumor hypoxia may be caused by multiple factors including chaotic
tumor vasculature, anemia, and smoking33–36. Hypoxic cells in theory limit the sensitivity of
tumors to high single doses of radiation, which preferentially kills well-oxygenated cells,
leaving hypoxic cells behind. If this occurred during a several-week course of radiation
therapy, the fraction of hypoxic cells would slowly increase, thereby increasing the
radioresistance of the irradiated tumor. However, it is thought that a process of
“reoxygenation” returns the high proportion of hypoxic cells, created immediately after each
dose fraction, back toward the level that existed before the delivery of that fraction.
However, direct evidence for this mechanism in human tumors is lacking. The success of
stereotactic body radiation therapy in early-stage lung cancer is noteworthy as it suggests
that either sufficient reoxygenation occurs even after 1–3 large fractions or hypoxia that is
present at time of diagnosis may not be radiobiologically relevant. Molecular imaging
studies may produce predictors of treatment-relevant hypoxia and are the subject of intense
research (reviewed in37).

Mechanisms of Chemoresistance
It is fair to summarize that almost all lung cancers are either initially, or ultimately, resistant
to current anti-cancer drugs. In patients selected for drug treatment based on histopathology,
the best results have been observed using cisplatin-based combinations of cytotoxic
chemotherapy. The best initial response rate using a cisplatin-based, two-drug combination
for stage IV NSCLC is about 30%, with less than 5% of patients living beyond 3 years.38

For extensive-stage SCLC, initial response rates to cisplatin combination are higher, 50–
80%, but again fewer than 5% long term survivors.39 The toxicity of cisplatin-based
chemotherapy is substantial, and includes nausea, fatigue, cytopenias, nerve damage, kidney
damage, and a 1–3% chance of death. These observations resulted in early nihilism that
chemotherapy was at all worthwhile for patients with stage IV NSCLC. In fact, patients with
stage IV NSCLC were still being randomized to supportive care only as a standard of care as
recently as the last decade.40
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Fortunately, outcomes for patients have improved by small increments over the last 20
years. For all patients with lung cancer, progress has come not from the development of any
one drug, but rather several new drugs with variable mechanisms of action and better
toxicity profiles, but each drug only active in a minority of patients. There are now 17 drugs
invoked in contemporary chemotherapy treatment guidelines for NSCLC, including
platinum analogs, other DNA-damaging agents, nucleoside analogs, anti-metabolites,
topoisomerase inhibitors, vinca alkaloids, taxanes, and drugs targeting specific proto-
oncogenes including EGFR, ALK, and VEGF.41,42 Therefore, the challenge of
chemoresistance in lung cancer has been met to date by finding drugs with variable
mechanisms of action, and by trial and error figuring out which drugs to give to which
patient. Based on this approach, some lung cancer patients are now identified by molecular
pathology as having an activating/sensitizing mutation in EGFR (10% of patients), or
rearrangement in ALK (1% of patients), and offered targeted kinase inhibitors which
provide response rates over 70% and 3 year survival proportions of 20%.43, 44

Still, the low rates of cure observed even in patients treated with appropriate targeted
chemotherapy requires that the challenge of chemoresistance be met one drug at a time. In
this regard, chemoresistance may be defined in two general categories: de novo resistance in
untreated patients, and acquired resistance which develops in patients previously-treated
with a drug. Current models of lung tumor biology recognize molecular heterogeneity as a
substantial problem in lung cancer such that mechanisms of de novo, and acquired
chemoresistance, may be identical and observed early, or late, depending on the frequency
of resistant clones in a given tumor at a given time, and natural selection of resistant clones
by treatment with a given drug.45,46 From there, mechanisms of resistance fall into broad
categories best defined as pre-target, on-target, post-target, and off-target resistance.47 Pre-
target, post-target, and off-target mechanisms of resistance may overlap for a variety of
drugs. For example, multi-drug resistance may be due to high level activity of non-selective
ATP-driven drug efflux pumps in lung cancer cells, such as P-glycoprotein, MDR1 and
MRP.48 The same goes for overexpression of detoxifying enzymes, and glutathione
metabolism, which may provide broad resistance to cytotoxic drugs.49 Since the final
common pathway of lung cancer cell death in response to drug therapy is programmed cell-
death, it is widely believed that cross-resistance to most anti-cancer drugs is a result of a
disconnect between cellular proliferation and apoptosis. Therefore, any observation defining
chemoresistance to a specific drug as related to a post-target defect in cell death may explain
resistance to a wide variety of drugs.

Since cisplatin is considered to be the single most effective drug for all patients with lung
cancer, mechanisms of resistance to cisplatin are the most widely studied. In patients with
earlier stages of NSCLC treated with surgery and chemotherapy, it is interesting to note that
most genes implicated in cisplatin resistance are post-target, and related to the cell cycle
(p27), or cell death (p53, BAX).50–52 Other prominent genes are on-target and directly
inhibit the action of cisplatin by fostering DNA repair, including nucleotide-excision repair
(NER) (ERCC1), or mismatch repair (MSH2).53, 54

DNA Double-Strand Breaks and Damage-Based Therapies
DNA damage induction and response

A common characteristic of ionizing radiation (IR) and many chemotherapeutics is the
induction of various types of DNA damage, directly leading to tumor cell kill (reviewed
in3,55). A critical feature of the eukaryotic cell is its ability to maintain genome stability
across generations, attributed, in part, to the sophisticated and precisely regulated DNA
lesion-specific repair mechanisms. Diminished DNA damage response and repair (DRR)
have been strongly associated with lung cancers.56 The pathways by which cells remove
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DSBs are of particular interest, as one unrepaired DSB can trigger apoptosis,57 which
underlies the efficacy of DNA damage-based therapies involving IR and platinum-based
agents such as cisplatin, as well as etoposide.

In fact, DNA damage induction is the primary mechanism of action of most lung cancer
therapeutics3. Taxanes are cytotoxic due to their stabilization of microtubules, which results
in cell cycle arrest during mitosis.58 Pemetrexed, an antifolate, serves to inhibit nucleotide
synthesis, thus depriving cells of the raw materials necessary to synthesize new copies of the
genome.59 Incorporation of the nucleoside analog gemcitabine must be rectified by the NER
pathway in order to prevent eventual cell death.60 The cumulative failure of the cell to repair
these DNA lesions by their corresponding repair mechanisms may lead to their conversion
to DSBs, eventually triggering cell death.

As such, efficient and faithful DSB repair is critical to normal cell survival, but is also a
mechanism contributing to tumor cell therapeutic resistance. Therefore, we focus below on
the current understanding of DSB repair regulation, as well as its role in lung cancer's
response to DNA damage based therapy. It has been well established that, in mammalian
cells, DSBs are repaired through at least two distinct pathways: non-homologous end-
joining (NHEJ) and homologous recombination (HR). Both repair mechanisms can impact
tumor response to treatment, as well as potentially serve as novel therapeutic targets in lung
cancer management.

Non-Homologous End-Joining
NHEJ is a major DSB repair pathway in mammalian cells. In contrast to HR, NHEJ repairs a
wide variety of DSBs with distinct break structures and sequences with high efficiency61

and functions predominantly during G1 but also during S/G2.62 However, NHEJ
demonstrates decreased repair fidelity compared to HR, as it repairs DSBs using no or little
homologous template to ensure that the repaired strand reflects the original sequence.63

NHEJ repair follows a basic motif of damaged base digestion, re-polymerization/repair, and
ligation. Its details have been well characterized by others.63 Briefly, following
identification of the DSB in the cell by the MRN complex (MRe11/Rad50/NBS1). DRR
signaling is then initiated through a cascade of DNA damage response kinases, typically
ATM/Chk1, which facilitate Ku70 and Ku80 bind to the exposed breakpoints as a
heterodimer and serve to recruit other necessary proteins.64 DNA-dependent protein kinase
(DNA-PK) is recruited to the site and exposes the DNA ends to recruited nucleases.65,66

DNA-PK also activates the G1 DNA damage checkpoint and arrest the G1-S transition.67 A
wide variety of nucleases digest nucleotides from the DNA on both strands, and strand re-
extension is facilitated by X family DNA polymerases,68 although in a less extensive
fashion than occurs in HR.69 Finally, the DNA ligase IV complex joins the two repaired
DNA ends.70

Homologous Recombination
HR is a critical pathway for accurate repair of DSBs and maintenance of genomic stability
(reviewed in 1). Homology-mediated repair is characterized by deriving of the correct
sequence from a homologous strand of intact DNA. This modeling process allows for high-
fidelity repair of DSBs, much more so than repair via NHEJ.69 It is the primary pathway of
DSB repair during the S and G2 phases of the cell cycle, in part due to the availability of
sister chromatids to be used as repair templates.71

Homology-mediated DSB repair follows a general scheme of nuclease-mediated resection of
damaged DNA ends, polymerization of new DNA, and ligation to restore strand integrity.
Detailed biochemistry of the pathway has been well described by others.72 Rad51 and its
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paralogs such as XRCC3 are critical in homology searching to identify a homologous
sequence on the sister chromatid.73,74 When a homologous sequence is found, there is an
exchange of the damaged strands, such that each strand is now paired with a homologous
template. The damaged strands are then extended and ligated, restoring the original double-
strand.75,76

HR not only occurs at frank DSBs but also at DNA replication forks encountering various
types of DNA damage (Figure 3A) (reviewed in1). The HR pathway is important for the
stabilization and/or recovery of stalled replication forks. Defects in HR, for example due to
mutation or downregulation of BRCA1, BRCA2, or RAD51, cause hypersensitivity to
agents such as cisplatin. Even though the damage spectrum after cisplatin treatment is
dominated by intrastrand adducts, with interstrand crosslinks (ICL) comprising only less
than 10% of the total, it is the ICLs that present a particular impediment to fork progression
and likely underlie the toxicity of cisplatin in HR-defective cells. ERCC1, which has been
explored as a biomarker in lung cancer therapy, does not only act on intrastrand crosslinks
via the NER pathway, but also is as part of the ERCC1-XPF endonuclease complex involved
in ICL unhooking at stalled or collapsed replication forks. In fact, the hypersensitivity of
ERCC1-deficient cells to cisplatin is likely due to an inability to excise ICLs and complete
HR rather than defective NER77.

Targeting HR and Functional Biomarkers
Because of its importance during the S and G2 phase of the cell cycle (Figure 3A), the HR
pathway is heavily favored by rapidly dividing tissues, including neoplasms. This reliance
on HR underlies the cytotoxicity of cisplatin, which binds guanine, resulting in inter-strand
DNA crosslinking.78 In addition to DNA damage-based therapeutics like cisplatin recent
evidence shows that molecularly targeted agents may also act via the HR pathway. The TKI
erlotinib has been previously shown to disrupt the nuclear function of BRCA1 and attenuate
Rad51 and overall HR activity, therefore sensitizing cancer cells, including lung cancer cell
lines, to IR.79,80 Recent studies have also demonstrated that direct inhibition of HR proteins
by a variety of known proteasome inhibitors also results in cisplatin sensitization.81

Experiments conducted in our laboratory (XF) have demonstrated a similar HR attenuation
in breast cancer and glioma cell models via (1) siRNA-mediated BRCA1 knockdown, (2)
IR-mediated export of BRCA1 to the cytosol, and (3) erlotinib-induced BRCA1 nuclear
depletion. siRNA-mediated BRCA1 knockdown results in suppression of HR repair in
several cancer and non-cancer cell model systems. BRCA1 is also a nuclear-cytosolic
shuttling protein, and its function is regulated by its subcellular location. When in the
nucleus, BRCA1 participates in HR repair of DSBs. When in the cytosol, it enhances
apoptosis. We have recently found that IR induces nuclear export of BRCA1 in response to
DNA damage via the CRM1/exportin-dependent pathway. Additionally, inhibition of EGFR
by erlotinib results in DNA damage and BRCA1 nuclear export.79 We believe that biology-
based combined use of cisplatin and erlotinib in defined sequential fashion may
synergistically enhance tumor killing and further sensitize lung tumors to other DNA
damage-based therapeutic agents.

Additionally, recent preclinical and clinical studies of poly(ADP-ribose) polymerase 1
(PARP1) inhibition have been promising. PARP1 plays a key role in the repair of single-
strand breaks (SSB)82. Inhibitors of this enzyme, including olaparib, target cancers that are
deficient in the repair of HR-mediated DSBs, exhibit up to 1,000-fold selectivity in killing
HR-deficient mutant BRCA1/2 cells, and provide an overall survival and progression-free
survival benefit with minimal toxicity in breast cancers.83–87 intriguingly, we have been able
to induce HR deficiency not only via BRCA1 knockdown, but also by erlotinib- or IR-
induced BRCA1 nuclear export. When coupled with PARP inhibition therapy, we were able
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to demonstrate decreased HR-mediated DSB repair, and increased tumor cytotoxicity
response.79 Therefore, cytosolic sequestration of BRCA1 and HR attenuation by IR and/or
EGFR inhibitors provide a new strategy for converting HR-competent lung cancers into
ones that are susceptible to PARP1 inhibition. Further studies toward development of similar
therapeutic schemes that combine induced HR deficiency with known DNA damage-based
agents, such as cisplatin or PARP inhibitors88, may provide potential therapeutic gain via
selective cytotoxicity to proliferating lung cancer cells.

As an alternative strategy, there is increasing evidence that a significant fraction of NSCLCs
harbor genetic or epigenetic defects in the HR pathway2,89–91. In addition, perturbations of
the PI3K-AKT pathways, which are frequent in lung cancer, have been shown to affect HR
activity92,93. HR may also be downregulated in hypoxic tumor regions94,95. Pre-existing
defects in HR should not only predict an increased likelihood of hypersensitivity to cisplatin
but also PARP inhibitors2. The identification of HR-deficient cancers in the clinic is a major
challenge especially when taking into account the complexity of the HR pathway with many
yet to be identified pathway components1. Additionally, assessing the expression of
individual pathway components, such as BRCA1 or ERCC1, is unlikely to reveal the overall
incidence of defects that can occur anywhere in pathway. Lastly, it is not established
whether reduced gene expression translates into functional repair defects. Recent efforts
have been aimed at assessing the ability of repair proteins to concentrate in subnuclear foci
as a surrogate of HR activity1. Subnuclear foci are multiprotein complexes that are
organized into centers surrounding damaged DNA and can be visualized as “dots” using
immunofluorescence microscopy or immunohistochemistry. These complexes are highly
dynamic structures involved in DNA repair and checkpoint responses. Defective formation
of BRCA1, FANCD2, or RAD51 foci in cancer tissues following in-vivo or ex-vivo
treatment with cytotoxic therapies may be indicative of an HR defect, while a concurrent
increase in gamma-H2AX foci may signal persistent, unrepaired DNA damage2,96,97 (Figure
3B). The advantage of using foci as functional biomarkers is that they can detect repair
defects due to several mechanisms such as mutations, epigenetic alterations, or perturbations
in signal transduction pathways. Moreover, they provide a global measurement of HR
proficiency without needing to know the identities of all the pathway components, many of
which remain unknown. One can envision developing mechanism-based “HR foci
signatures” that reflect nodal points in the HR pathway or network of associated DDR
proteins.

Genomic Biomarkers of Radiosensitivity
There has been a plethora of studies trying to establish predictive biomarkers of
radioresistance, and a discussion of these is beyond the scope of this review. As radiation
causes complex damages in cells and tissues, which can differ between individual tumors, it
is perhaps doubtful whether universal, single biomarkers can ever be identified. However,
our increasing knowledge of lung cancer genotypes, coupled with preclinical data on gene
function, may ultimately produce genomic biomarkers that correlate with tumor
radiosensitivity or radioresistance. In this regard, it is worth emphasizing that DSB produced
by IR are particularly genotoxic and are repaired mostly by NHEJ (and less so by HR)
(reviewed in 55). It follows that genomic alterations that disturb this repair process would be
likely to alter the radiosensitivity of an affected tumor. For example, experimental data
indicate that mutations in EGFR impair NHEJ and increase cellular radiosensitivity, and
clinical observations are consistent with improved local tumor control for EGFR mutant
NSCLC treated with radiation44,98. Conversely, it has been suggested that mutant KRAS
promotes cellular radioresistance by promoting NHEJ, though whether KRAS mutant
NSCLC are more radioresistant than KRAS wild-type cancers remains to be
established99,100. Mutations in the ATM kinase, which controls aspects of NHEJ, occurs in

Willers et al. Page 8

Cancer J. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



~7% of lung adenocarcinoma51,101. Thus, one would predict that the affected tumors may
display increased radiosensitivity. However, there are no recurrent ATM mutations reported,
thus limiting the ability of PCR-based clinical tests to capture these alterations45.
Furthermore, it needs to be kept in mind that a particular mutation in ATM may not
necessarily be functionally relevant, let alone influence the protein's role in NHEJ.

Conclusion
In the future, therapeutic gain will be maximized by individualized therapies that are based
on phenotypic and genotypic profiling of lung cancers patients. For example, predicting
which tumors respond to radiation with accelerated tumor cell repopulation will allow us to
add drugs that can inhibit repopulation such as EGFR-directed agents. The combination of
radiation therapy with molecularly targeted agents will be a highly individualized treatment
approach. In addition, the identification of HR defects in lung cancers, or the conversion of
HR-proficient to - deficient cancers, should facilitate rational combinations with
radiosensitizing chemotherapeutics and targeted agents. However, to some degree, radiation
therapy will always have to remain unselective and indiscriminant to eradicate the last
surviving dormant and probably drug-resistant tumor stem cell4.
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Figure 1.
Known and putative factors influencing radiosensitivity and radioresistance of lung cancers.
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Figure 2.
Incorporation of EGFR-directed agents with radiation in the treatment of locally advanced
NSCLC. RT, radiation therapy; mAb, monoclonal antibody; TKI, tyrosine kinase inhibitor;
wt, wild-type; mut, mutant
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Figure 3.
Importance of homologous recombination (HR) in the response to lung cancer therapies. (A)
Cell cycle dependence of HR mechanisms, acting on stalled replication forks in S-phase and
mediating sister chromatid mediated repair of two-ended DNA double-strand breaks in late
S/G2. (B) Illustration of an ex-vivo foci biomarker assay for the detection of HR defects in
lung cancers.
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