
Living organisms possess an intrinsic circadian time-
keeping system to synchronize their physiology with the 
environment. The retina has a double interest in this respect, 
since on the one hand, light is the most powerful “zeitgeber,” 
acting though intrinsically photosensitive retinal ganglion 
cells (ipRGCs) projecting to the central circadian clock in 
the suprachiasmatic nucleus (SCN) [1], and on the other, the 
retina exhibits numerous rhythmic physiological processes of 
its own, including melatonin synthesis [2], ion channel sensi-
tivity [3,4], visual pigment synthesis [5], and phagocytosis 
of shed photoreceptor (PR) outer segments (OSs) [6]. PRs 
are highly metabolically active cells, undergoing constant 
membrane renewal such that the OSs are replaced entirely 

within 7–10 days [7]. This turnover is composed of several 
sequential, synchronized steps: RNA synthesis of visual 
pigments, protein translation and transport, new membrane 
formation at the apical surface of the OSs, and removal of 
aged damaged membrane from the distal end. This latter 
process is achieved through phagocytosis of shed membrane 
by the apposing retinal pigmented epithelium [8]. Each 
step of this renewal process is tightly regulated, and errors 
in any one of them may lead to PR breakdown and death. 
For example, rhodopsin transcription levels are controlled 
precisely, with under- [9] and overexpression [10] leading 
to PR degeneration. Mutations in the mer receptor tyrosine 
kinase (MERTK) receptor essential for PR phagocytosis lead 
to retinal breakdown in animals [11] and humans [12]. A great 
deal of effort has been made to define the environmental and 
molecular control mechanisms of these different processes. 
Visual pigment synthesis and phagocytosis are both known 
to be controlled by light and/or circadian clocks [5,6,13-15]. 
There is evidence that some of these activities are regulated 
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Purpose: Prolonged periods of constant lighting are known to perturb circadian clock function at the molecular, physi-
ological, and behavioral levels. However, the effects of ambient lighting regimes on clock gene expression and clock 
outputs in retinal photoreceptors—rods, cones and intrinsically photosensitive retinal ganglion cells—are only poorly 
understood.
Methods: Cone-rich diurnal rodents (Muridae: Arvicanthis ansorgei) were maintained under and entrained to a 12 h:12 
h light-dark cycle (LD; light: ~300 lux). Three groups were then examined: control (continued maintenance on LD); 
animals exposed to a 36 h dark period before sampling over an additional 24 h period of darkness (DD); and animals 
exposed to a 36 h light period before sampling over an additional 24 h period of light (~300 lux, LL). Animals were 
killed every 3 or 4 h over 24 h, their retinas dissected, and RNA extracted. Oligonucleotide primers were designed for 
the Arvicanthis clock genes Per1, Per2, Cry1, Cry2, and Bmal1, and for transcripts specific for rods (rhodopsin), cones 
(short- and mid-wavelength sensitive cone opsin, cone arrestin, arylalkylamine N-acetyltransferase) and intrinsically 
photosensitive retinal ganglion cells (melanopsin). Gene expression was analyzed by real-time PCR.
Results: In LD, expression of all genes except cone arrestin was rhythmic and coordinated, with acrophases of most 
genes at or shortly following the time of lights on (defined as zeitgeber time 0). Arylalkylamine N-acetyltransferase 
showed maximal expression at zeitgeber time 20. In DD conditions the respective profiles showed similar phase profiles, 
but were mostly attenuated in amplitude, or in the case of melanopsin, did not retain rhythmic expression. In LL, how-
ever, the expression profiles of all clock genes and most putative output genes were greatly altered, with either abolition 
of daily variation (mid-wavelength cone opsin) or peak expression shifted by 4–10 h.
Conclusions: These data are the first to provide detailed measures of retinal clock gene and putative clock output gene 
expression in a diurnal mammal, and show the highly disruptive effects of inappropriate (nocturnal) lighting on circadian 
and photoreceptor gene regulation.
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by (an) endogenous retinal clock(s), since cultured retinas 
continue to synthesize melatonin in a rhythmic manner [16] 
and optic nerve section does not perturb phagocytosis [17]. 
However, the precise cellular localization of retinal clocks, 
and more importantly, their functional organization at the 
tissue level, are still unknown. In mammals, these phenomena 
have generally been studied in rats and mice, which are both 
naturally nocturnal species. Consequently, there is a lack of 
information on clock activity in the retinas of diurnal species, 
and especially with respect to cone PRs, which are poorly 
represented in mice and rat retinas [18,19].

We used a diurnal rodent, Arvicanthis ansorgei 
(Muridae), which we showed previously contains tenfold more 
cone PRs than mice [14], to investigate cellular and molecular 
rod, cone, and ipRGC responses to varying lighting regimes. 
We observed previously that rhythmic phagocytosis in PRs 
continues unabated when animals are placed in constant dark-
ness (DD), but that maintenance in light (LL) leads to exten-
sive perturbation of phagocytosis and loss of rhythmicity 
[20,21]. The present study was designed to determine whether 
changes in the light environment also altered other aspects of 
PR turnover, notably visual protein messenger RNA (mRNA) 
synthesis, and whether any modifications could be correlated 
with shifts in retinal clock gene expression. The data showed 
that as for phagocytosis, LL conditions greatly perturb the 
rhythmic expression of multiple PR and clock genes.

METHODS

Animal care and handling: All animal experimentation was 
performed according to institutional and national guidelines, 
and adhered to the Association for Research in Vision and 
Ophthalmology Guidelines for Use of Animals, and to the 
European Communities Council Directive of 24 November 
1986 (86/609/EEC) and the Animal Use and Care Committee 
from Strasbourg. The experimental procedures were covered 
by an authorization to perform small animal experimentation 
(Veterinary Section, Ministry of Agriculture, visa 67–132). 
This study was conducted using Sudanian unstriped grass 
rats (Arvicanthis ansorgei), born and reared in our Chro-
nobiotron animal facilities (UMS 3415) from individuals 
captured in southern Mali in 1998 [22]. Adult (4–16 months 
of age) Arvicanthis ansorgei were housed in individual 
cages under standard 12h:12h light-dark cycles (LD; light at 
300 lux), lights on at 7 AM (defined as zeitgeber time [ZT] 
0), lights off at 7 PM, with free access to food (standard rat 
chow) and water. For the different analyses, we made sure 
that each sample contained a mix of young and older retinas.

For LD studies (Figure 1, first line), animals (n=3–6 per 
time point) were taken every 4 h through a complete 24 h 

period, starting at ZT1. They were anesthetized by isoflu-
rane inhalation and decapitated; the cornea of each eye was 
slit with a clean scalpel blade, the lens and vitreous were 
discarded, and the retina was collected and snap frozen 
individually in sterile Eppendorf tubes in liquid nitrogen. 
For constant dark studies (DD) (Figure 1, second line), 
animals previously housed under the standard LD condition 
were placed in total darkness for 36 h before collection of 
samples as above (i.e., animals left for one complete cycle 
of subjective day and night, retinas collected starting on the 
second subjective day under dim red light every 4 h through 
a complete 24 h period, n=6 per time point; first collection 
performed at circadian time [CT] 0). For prolonged light (LL) 
studies (Figure 1, third line), animals were left in permanent 
300 lux white light for 36 h before collection of samples (i.e., 
animals left for one complete cycle of subjective night and 
day, retinas collected starting on the second subjective night 
every 3 h through a complete 24 h period, n=4 per time point; 
first collection performed at CT13). For figures showing 
gene expression profiles under LL, time points are displayed 
according to time of day, starting at CT1.

Real-time quantitative polymerase chain reaction: Total 
RNA was extracted using the Absolutely RNA Miniprep 
kit (Stratagene, La Jolla, CA). Briefly, isolated Arvicanthis 
retinas (snap frozen in liquid nitrogen and stored at −80 °C) 
were homogenized using a 1 ml syringe and a 27 gauge 
needle. Total RNA was eluted with 30 µl elution buffer (10 
mM Tris-HCl pH 7.5, 0.1 mM EDTA). RNA concentration 
and purity (A260/A280 and A260/A230) were measured using a 
NanoDrop ND-1000 V 3.5 Spectrophotometer (NanoDrop 
Technologies, Wilmington, DE). Integrity of the RNA was 
assessed by visualization of the 28S and 18S ribosomal RNA 
bands by agarose gel electrophoresis or by using the 2100 

Figure 1. Schematic diagram showing time schedule of experiments 
and sampling points. The bars show the paradigms used in light and 
dark (LD) conditions (alternating white [light, 300 lux, 12 h] and 
black [dark, 12 h] bars]; DD (alternating right hatched [subjective 
day] and black [subjective night] bars); and LL (alternating white 
[subjective day] and left hatched [subjective night] bars]. Arrows 
indicate time points at which animals were killed and examined.
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Bioanalyzer (Agilent Technologies, Santa Clara, CA; RNA 
integrity numbers were between 6 and 9).

Total RNA (500 ng) was reverse transcribed into first 
strand cDNA in the presence of 200 ng of random hexamer 
primers (Fermentas) using 200 U of RevertAid H Minus 
M-MuLV Reverse Transcriptase (Fermentas, Burlington, 
Canada) at 42 °C for 60 min. All cDNA samples were stored 
at −80 °C. Quantitative PCR primer sequences (Table 1) were 
designed using the Primer Express V 3.0 software (Applied 
Biosystems, Foster City, CA), based on previously published 
sequences from Arvicanthis ansorgei brain and muscle aryl 
hydrocarbon receptor nuclear translocator like (Bmal) 1, 
period (Per) 2, cryptochrome (Cry) 1, and Cry2 genes, from 
Arvicanthis niloticus Per1 and arylalkylamine N-acetyltrans-
ferase (Aanat) genes and on partial cloning and sequencing 
of rhodopsin (Opn2), mid- and short wavelength cone opsins 
(Opn1mws and Opn1sws respectively), cone arrestin (Arr3), 
and melanopsin (Opn4) genes from Arvicanthis ansorgei. For 
the latter, reverse transcription (RT)–PCR was performed 
on RNA extracted from Arvicanthis ansorgei retina with 

degenerate primers based on known mammalian sequences 
from these genes and sequences of cDNA fragments released 
into GenBank. Position of primers for quantitative PCR was 
determined so as to overlap with putative exon/intron bound-
aries, as predicted from mice genomic sequences, and their 
specificity was confirmed by basic local alignment search 
tool (BLAST) searching. The length of the amplicons was 
kept under 200 bp (55–160 bp), and the melting/annealing 
temperature (Tm) of all primers was optimized to 60 °C. The 
designed primers (high performance liquid chromatography 
[HPLC] purified) were synthesized by Invitrogen (Carlsbad, 
CA). Details of the primers and the GenBank Accession 
Numbers are given in Table 1.

Real-time quantitative PCR was performed using the 
7300 Real Time PCR System (Applied Biosystems) and 
fluorescent SYBR Green I chemistry. The PCR conditions 
were: 1 x Power SYBR Green (Applied Biosystems), 900 nM 
forward primer, 900 nM reverse primer (Invitrogen), and 1 
µl of cDNA in a total volume of 20 µl. The PCR program 
was as follows: denaturation at 95 °C for 10 min, followed 

Table 1. Primer sequences.

Gene GenBank Arvicanthis 
species

Forward Reverse bp

b-Actin EU862078 Arvicanthis 
ansorgei

CTGCTGCATCCTCTTCCTCTCT CCACAGGATTCCATACCCAAA 133

Opn2 EU862075 Arvicanthis 
ansorgei

TCGTTGGCTGGTCCAGGTA TGTAGTAGTCAATCCCACAT-
GAACAC

63

Opn1mws EU862074 Arvicanthis 
ansorgei

TGGCAATGTGAGATTTGATGCT CCAGACCCAGGAGAAGACGAT 61

Opn1sws EU862076 Arvicanthis 
ansorgei

AGCGCAGCAGCAAGAGTCA ATGGCTCACCTCCCGTTCAG 55

Arr3 EU862077 Arvicanthis 
ansorgei

CATGCGCAGCTTCTTTCTGTC ATAGCTTCTCCATGGTAATGAAC 84

Opn4 KC150901 Arvicanthis 
ansorgei

CAGGGATGCTGGGCAATCT GTGTCCGCAGGCCTCTGTT 63

Bmal1 AY225378 Arvicanthis 
ansorgei

GACACTGAGAGGTGCCACCAA CCATCTGCTGCCCTGAGAAT 102

Per1 AY817662 Arvicanthis 
niloticus

CCACTGAGAGCAGCAAGAGTACA CTGCTGCAGCCACTGGTAGA 121

Per2 AY225379 Arvicanthis 
ansorgei

TCACCGTAGGAGATCCGGAAT TTTCTGCAACAGGTGCTTCCT 103

Cry1 AY196136 Arvicanthis 
ansorgei

TGAAGGTCTTTGAGGAAT-
TACTGCT

CGCCTAATATAGTCTCCATTGGGA 160

Cry2 AY196137 Arvicanthis 
ansorgei

TGACGAGCTGCTCCTGGAT GCAGGTATCGCCGGATGTA 157

Aanat AF317891 Arvicanthis 
niloticus

AGAGCTGTCACTGGGCTGGTT CGACTCCTGAGTA-
AGTCTCTCCTTGT

91

GenBank accession numbers and anticipated size (bp) of the amplicons for the studied genes. Arvicanthis species from which the primers 
were designed is specified.
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by 40 cycles of denaturation at 95 °C for 15 s and annealing-
elongation at 60 °C for 1 min. The acquisition of fluorescence 
data was performed at the end of the elongation step using the 
7300 System Sequence Detection Software V 1.3.1 (Applied 
Biosystems). A dissociation curve was constructed at the end 
of the PCR run by ramping the temperature of the sample 
from 60 °C to 95 °C while continuously collecting fluo-
rescence data. The melting profiles indicated a single PCR 
product and no accumulation of primer dimers. No-template 
reactions were performed as negative controls for each primer 
pair. The PCR mix contained the internal passive reference 
dye 6-carboxyl-X-rhodamine (ROX) for normalization of the 
eventual non-PCR-related fluorescence fluctuations. Each 
PCR reaction was done in duplicate, and for each experi-
ment, a dilution curve of pooled cDNA samples was used 
to calculate the amplification efficiency for each primer set 
and determine the optimal cDNA dilution according to the 
manufacturer’s instructions. Real-time PCR data was normal-
ized to β-actin and analyzed using the relative quantification 
model with efficiency corrections according to the Pfaffl 
method [23,24]. Transcript levels were calculated relative to 
the sample showing the lowest expression, and which was 
rescaled to one. All experimental runs were performed as 
sample maximization setups on 96 well plates. An interrun 
calibrator was included on each 96 well plate.

Statistics: Results are presented as means ± standard error 
of the mean and the first time point (ZT0 in LD, CT0 in DD, 
CT1 in LL) is double plotted at the end of the 24 h cycle. 
Statistically significant differences among different ZT or 
CT groups were analyzed using the one-way analysis of vari-
ance (ANOVA) and post hoc tests (Bonferroni or Tukey test; 
Statistica 8.0, StatSoft Inc., Tulsa, OK) on the normalized 
data. Gene expression rhythmicity was analyzed using the 
cosinor method (Sigmaplot V 10.0, Systat Software Inc., San 
Jose, CA), by fitting the 24 h data to a cosine curve [25].

RESULTS

Transcription of visual pigment genes is strongly affected 
by lighting conditions: Real-time PCR quantification of 
Opn2 expression levels every 4 h throughout the LD cycle 
revealed a highly statistically significant rhythmic profile, 
with an acrophase centered on the night/day transition point, 
i.e., ZT0 (Figure 2A and Table 2). The peak-to-trough differ-
ence was fourfold. Similar analyses performed during DD 
showed a largely similar profile with a maximum at CT2.5 
and a twofold peak-to-trough difference (Figure 2B and 
Table 2). In contrast, expression analysis under LL conditions 
demonstrated that although Opn2 transcriptional activity was 

still rhythmic, with 1.8-fold peak-to-trough difference, the 
acrophase now occurred at CT19 (Figure 2C and Table 2).

As seen for Opn2, the expression profiles for Opn1mws 
and Opn1sws were rhythmic in LD (Table 2), with their 
maxima occurring shortly after the night-day transition, i.e., 
ZT2 for Opn1mws (Figure 3A) and ZT1 for Opn1sws (Figure 
3B), and peak-to-trough ratios of 3 and 4, respectively. Arr3 
transcriptional activity was not rhythmic by cosinor analysis, 
although there was still a trend to daily variation by ANOVA 
(Figure 3C and Table 2). Rhythmic Opn1mws and Opn1sws 
expression was maintained with similar profiles of maxima 
and minima in DD (Table 2), with a maximum range of twofold 
between peak and trough (Opn1mws, peak CT0: Figure 3D; 
Opn1sws, peak CT1.5: Figure 3E). In DD, Arr3 expression 
reached statistical significance both by ANOVA and cosinor 
analysis (Table 1), with an acrophase at CT1 (Figure 3F). In 

Figure 2. Expression profile of rod-specific rhodopsin transcript 
over a single 24 h period under distinct lighting conditions. A: In 
a 12 h light: 12 h dark cycle (LD) a rhythmic pattern was observed 
with maximal expression close to “dawn” (night/day transition), and 
a nadir 12 h later (n=3–6 per time point). B: Rhodopsin expression 
profile was similar in constant dark (DD; n=6 per time point). C: 
In constant light (LL) there was a large phase shift, such that peak 
values now occurred during the subjective night (CT19; n=4 per 
time point). Illumination conditions are depicted as solid white 
(day) and solid gray (night) areas in LD, right hatched (subjective 
day) and solid gray (subjective night) areas in DD, and solid white 
(subjective day) and left hatched (subjective night) areas in constant 
light LL. Animals were killed every 3 or 4 h over a 24 h period, 
and RNA extracted from retinal tissue. RNA expression levels 
were quantified by real-time PCR. One-way analysis of variance 
(ANOVA) and cosinor levels of significance (PA and Pc respectively) 
are given in the upper right corner of each panel.
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LL conditions, as for Opn2, rhythmic expression of Opn1sws 
was maintained (Table 2), but with a very large (8 h) advance 
in the peak expression value (peak CT16.5: Figure 3H) with 
respect to LD and reduced amplitude. Opn1mws behaved 
rather similarly, with a 9 h advance of the peak phase (peak 
CT16.5: Figure 3G and Table 2), but did not show significant 
variation by ANOVA, even if it proved rhythmic following 
cosinor analysis. Furthermore, Arr3 was rhythmic under LL 
conditions, with an expression peak at CT16 (Figure 3I and 
Table 2) and a peak-to-trough difference of 1.7-fold, which is 
similar to that for opsin transcripts.

Daily profile and lighting effects on melanopsin expression in 
Arvicanthis ansorgei: We employed a standard PCR approach 
to clone the majority of the Arvicanthis ansorgei Opn4 coding 
sequence (GenBank accession number KC150901), based on 
sequence homologies between Opn4 genes in humans, rats, 
and the large isoform encoding cDNA initially characterized 
in mice. Arvicanthis ansorgei Opn4 mRNA sequence shows 
high homology to its ortholog in rodents (between 91 and 
94% identity, the highest exhibited in the mouse sequence), 
and the predicted protein shows the expected features [26] of 

opsins and melanopsin in particular (data not shown). Mela-
nopsin exhibited similar expression patterns and changes in 
transcription to the conventional visual pigments listed above 
(Figures 4A-C and Table 2), but rhythmicity was lost in DD. 
Peak expression was seen at ZT2 in LD conditions and was 
phase advanced to CT15 in LL. Differences between maximal 
and minimal values in LD and DD were approximately 
twofold.

Constant lighting conditions only weakly perturb Arylal-
kylamine N-acetyltransferase expression in Arvicanthis 
ansorgei: We also investigated expression profiles of the 
Aanat gene, which encodes the enzyme AANAT, catalyzing 
the penultimate step of the melatonin synthetic pathway. The 
profile was very different from those of visual pigments and 
phototransduction genes: Although expression in LD was 
again strongly rhythmic (Table 2), it showed a much higher 
peak-to-trough ratio (~17-fold) than seen in the preceding 
genes, and the maximal value occurred during the late night 
at ZT19.5 (Figure 5A). Expression was greatly reduced but 
still rhythmic in DD (Table 2), with tenfold lower amplitude 
and a shift in peak expression to CT16 (Figure 5B). While 

Table 2. Cosinor and one-way ANOVA statistical analysis of the mRNA levels of the visual 
pigment and Aanat genes in Arvicanthis retina in LD, DD and LL conditions. 

Gene
COSINOR ANOVA

acrophase (h) F-value P value F-value P value
LD (n=32)

Opn2 0.19±0.73 F2,29 14.00 <0.0001 F5,26 6.98 0.0003
Opn1mws 1.84±0.80 F2,29 10.03 0.0005 F5,26 6.08 0.0007
Opn1sws 0.84±0.58 F2,29 20.80 <0.0001 F5,26 12.45 <0.0001

Arr3 3.35±2.52 F2,29 0.95 0.3995 F5,26 2.48 0.058
Opn4 1.83±0.70 F2,29 12.72 0.0001 F5,26 8.35 <0.0001
Aanat 19.58±0.39 F2,29 53.00 <0.0001 F5,26 31.85 <0.0001

DD (n=36)
Opn2 2.47±1.44 F2,33 3.51 0.0414 F5,30 4.30 0.005

Opn1mws 0.39±1.32 F2,33 4.20 0.0239 F5,30 3.31 0.017
Opn1sws 1.49±1.06 F2,33 6.52 0.0041 F5,30 7.54 0.0001

Arr3 1.11±1.49 F2,33 3.30 0.0495 F5,30 3.68 0.01
Opn4 3.60±2.17 F2,33 1.55 0.2282 F5,30 1.62 0.1842
Aanat 16.34±1.19 F2,31 5.10 0.0122 F5,28 6.43 0.0004

LL (n=32)
Opn2 19.27±0.82 F2,29 10.79 0.0003 F7,24 3.80 0.0065

Opn1mws 16.53±1.42 F2,29 3.58 0.0407 F7,24 1.09 0.4034
Opn1sws 16.51±0.85 F2,29 10.02 0.0005 F7,24 3.50 0.01

Arr3 16.37±0.72 F2,29 14.04 <0.0001 F7,24 5.00 0.0013
Opn4 15.18±0.82 F2,29 10.80 0.0003 F7,24 4.75 0.0018
Aanat 22.44±1.01 F2,29 7.07 0.0032 F7,24 2.60 0.0377
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still weakly rhythmic in LL (Table 2), in contrast to the other 
genes studied, there was a smaller shift in the peak value of 
Aanat expression, to approximately CT23 (Figure 5C).

Constant light leads to phase reversal of retinal clock gene 
expression: To see whether these light-induced alterations 
in PR (rod, cone, and ipRGC) gene transcription could be 

Figure 3. Expression profile of 
cone vision-related genes over a 
single 24 h period under distinct 
lighting conditions. A, D, G: RNA 
expression levels of Opn1mws in a 
12 h light: 12 h dark cycle (LD), in 
constant dark (DD) and in constant 
light (LL). B, E, H: RNA expres-
sion levels of Opn1sws in LD, DD 
and LL. C, F, I: RNA expression 
levels of Arr3 in LD, DD and LL. 
In LD (n=3–6 per time point) both 
Opn1mws and Opn1sws transcripts 
showed rhythmic patterns with 
maximal expression at or closely 
following the night/day transition, 
and a nadir 12 h later (A, B). Arr3 
expression did not fit a cosinor 
function (C). The shapes of the 

curves were mostly similar under DD (D: Opn1mws, E: Opn1sws, F: Arr3; n=6 per time point). However, LL conditions led to large phase 
shifts, with maxima in the early to middle night (G: Opn1mws, H: Opn1sws, I: Arr3; n=4 per time point). Illumination conditions are depicted 
as solid white (day) and solid grey (night) areas in LD, right hatched (subjective day) and solid grey (subjective night) areas in constant dark 
(DD) and solid white (subjective day) and left hatched (subjective night) areas in constant light (LL). Animals were killed every 3 or 4 h 
over a 24 h period, and RNA extracted from retinal tissue. RNA expression levels were quantified by real-time PCR. One-way analysis of 
variance (ANOVA) and cosinor levels of significance (PA and Pc respectively) are given in the upper right corner of each panel.

Figure 4. Expression profile of intrinsically photosensitive retinal 
ganglion cell-specific melanopsin transcript over a single 24 h 
period under distinct lighting conditions. A: In a 12 h light: 12 
h dark cycle (LD) there was a rhythmic pattern with maximal 
expression close to “dawn” (night/day transition), and a nadir 12 h 
later (n=3–6 per time point). B: Melanopsin expression profile was 
attenuated in constant dark (DD) and did not attain significance 
(n=6 per time point). C: However, in constant light (LL) there was 
again a large phase shift, such that peak values now occurred in 
early night (CT15; n=4 per time point). Illumination conditions are 
depicted as solid white (day) and solid grey (night) areas in LD, right 
hatched (subjective day) and solid grey (subjective night) areas in 
constant dark (DD) and solid white (subjective day) and left hatched 
(subjective night) areas in constant light (LL). Animals were killed 
every 3 or 4 h across the 24 h period, and RNA extracted from 
retinal tissue. RNA expression levels were quantified by real time 
PCR. One-way analysis of variance (ANOVA) and cosinor levels 
of significance (PA and Pc respectively) are given in the upper right 
corner of each panel.
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correlated with clock gene expression, we also analyzed the 
Arvicanthis homologs of five core clock genes: Bmal1, Per1, 
Per2, Cry1, and Cry2. All five genes exhibited statistically 
significant rhythmic expression under LD cycles, with acro-
phases around ZT0, 1, 3, 1, and 1.5 respectively (Figure 6A, 
Figure 7A-B, Figure 8A-B and Table 3). Amplitudes of peak-
to-trough variations were from 1.6- to fourfold. Profiles were 
attenuated (maximal difference of 2.5-fold) but still rhythmic 
with similar temporal patterns under DD (Bmal1: CT1; Per1: 
CT1; Per2: CT3; Cry1: CT1; Cry2: CT0; Figure 6B, Figure 
7C-D, Figure 8C-D and Table 3). As seen for visual transduc-
tion–related genes, however, these profiles were all greatly 
altered under LL, with phase advances of 5.5 to 10.5 h (i.e., 
maxima around CT18, 18, 16, 17, and 18 for Bmal1, Per1, 
Per2, Cry1, and Cry2 respectively: Figure 6C, Figure 7E-F, 

Figure 8E-F and Table 3). The maximal variation between 
peak and trough values under LL was twofold.

DISCUSSION

The data presented here are the first to provide daily expres-
sion profiles of the principal visual pigment genes in the 
retina of a diurnal mammal, and further quantify changes 
in temporal expression induced by differing light exposure. 
They are also the first to correlate specific output character-
istics with multiple molecular components of the circadian 
clock. They show that i) under LD conditions, expression 
profiles of the different genes examined (except Aanat) 
appear synchronized to maximal values at or shortly after 
dawn; and ii) roughly similar profiles are maintained under 
DD for many of these genes, indicating that they are driven by 
circadian clock mechanisms; and iii) they are in the majority 
of cases greatly perturbed by LL.

Rhythms in visual pigment gene expression during the 
LD cycle have been described in diurnal species such as 
chicken and zebrafish, with maxima occurring around the 
day to night transition, and were shown to persist under DD, 
indicating they are controlled by a circadian clock [27,28]. In 
contrast, there are very few data on retinal circadian processes 
in diurnal mammals, which represent a closer analogy to 
human visual physiology than nocturnal species such as Mus 
musculus and Rattus norvegicus. Daily variations in visual 
pigment gene expression have been reported in the mouse 
[5,29] and rat [30], with both nocturnal species showing a 
broad maximum for Opn2 mRNA transcription at the day/
night transition, and a similar profile for Opn1sws in mice 
[5]. Conversely, a genome-wide scan of mouse retina also 
revealed weak cyclic behavior for Opn2 and Opn1sws, with a 
morning maximum [31]. The diurnal species examined here 
shows an exclusively dawn synchronization of several PR 
behaviors (rod and cone phagocytosis [14,20], visual pigment 
and phototransduction gene synthesis [present study]), indi-
cating that the daily control of PR turnover is regulated by a 
unique mechanism. In support of this hypothesis, rhythmic 
expression of most visual pigments was maintained in DD 
with peaks at the subjective dawn, as was the rhythm of OS 
phagocytosis in both rods and cones [20].

In addition to rod and cone PR, a novel class of intrin-
sically photosensitive retinal ganglion cells (ipRGCs) has 
been documented [32,33]. These ipRGCs are responsible for 
mediating non–image forming visual functions of the retina, 
including photoentrainment [34-36], pupillary constric-
tion [37], and sleep [38]. The visual pigment expressed in 
these specialized RGCs is melanopsin (opsin 4), a distant 
member of the opsin family [39]. In mammals, there is a 

Figure 5. Expression profile of Aanat messenger RNA over a single 
24 h period under distinct lighting conditions. A: In a 12 h light: 
12h dark cycle (LD) there was a strongly rhythmic pattern with 
maximal expression at ZT20, and a nadir 12 h later (n=3-6 per time 
point). B: In constant dark (DD) the profile was attenuated, with a 
peak at CT16 (n=5-6 per time point). C: In constant light (LL) there 
was only a small phase shift, such that peak values were at CT22 
(n=4 per time point). Illumination conditions are depicted as solid 
white (day) and solid grey (night) areas in LD, right hatched (subjec-
tive day) and solid grey (subjective night) areas in constant dark 
(DD) and solid white (subjective day) and left hatched (subjective 
night) areas in constant light (LL). Animals were killed every 3 or 
4 h across the 24 h period, and RNA extracted from retinal tissue. 
RNA expression levels were quantified by real time PCR. One-way 
analysis of variance (ANOVA) and cosinor levels of significance 
(PA and Pc respectively) are given in the upper right corner of each 
panel.
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single melanopsin gene, and the protein is restricted to a 
small subset of RGCs [32]. It has been reported previously 
that lighting conditions and inherited retinal degeneration 
strongly affect melanopsin mRNA and protein levels in the 
rat [40,41]. In rats, melanopsin expression shows rhythmic 
daily variations with maximal values around the day/night 

transition zone, and these fluctuations continue relatively 
unchanged under DD conditions, revealing that melanopsin 
expression is under the control of a circadian clock [40]. Our 
data show a very different situation for Arvicanthis, with 
the highest levels of expression in LD seen shortly after 
dawn, and disappearance of rhythmic changes under DD. A 
previous study [42] reported daily fluctuations in melanopsin 
immunoreactivity in mice, with maximal levels at late night 
(ZT23) and lowest at ZT4, although this was not confirmed 
by quantitative analysis of short and long Opn4 transcripts 
[43]; similar to our data, they saw no fluctuations under DD 
conditions. Taken together, these data indicate that the daily 
regulation of melanopsin is opposite between nocturnal and 
diurnal species, possibly linked to the function of the mela-
nopsinergic system within the contrasting photic niches.

Within the mammalian retina, quantitative analyses of 
retinal clock gene expression as a function of daily hour have 
been performed for Mus musculus and Rattus norvegicus. 
There is considerable variation among published reports with 
respect to the rhythmicity of retinal clock gene expression, 
with some studies indicating cyclic expression of Bmal1 
[30,44,45], Per1 [44,46-49], Cry1 [31,44,48,50], and Cry2 
[30,44,48,50], and others reporting no rhythmic expression 
of the same transcription factors (Bmal1 [31,47,51]; Per1 
[30,31,52]; Cry1 [30,53]; Cry2 [31,53]). Per2 was persistently 
seen as rhythmic in all studies, although some authors [54] 
were unable to demonstrate significant variations for any 
clock gene within the retina, once corrected for expression 
levels (which were high in the retina compared to the heart 
or liver). Our real-time PCR analysis showed significant 
daily variations for all five clock genes examined, again with 
broadly similar profiles exhibiting dawn maxima under LD 
and DD conditions, with a maximal phase delay of 3 h in 
the case of Bmal1 and Per2. These expression profiles are 
quite different from those published for retinas of nocturnal 
rodents: Previous studies using whole or fractionated rat 
retinas have shown clock gene acrophases to occur predomi-
nantly at the day/night transition [44,53]. Still, they have in 
common the demonstration of rather clustered peaks for all 
the clock genes examined. Taken together with the global 
early morning maxima in Arvicanthis retinal output genes, 
the findings suggest differences in retinas from nocturnal 
versus diurnal species, possibly related to visual physiology 
and retinal cellular composition. However, the data are also 
distinct from clock gene profiles seen in Arvicanthis SCN 
[55], in which Per2 displayed late day (CT8) and Cry2 and 
Bmal1 displayed early night (CT12–18) optima, features 
common to SCN from rat/mouse species as well.

Figure 6. Expression profile of core clock gene Bmal1 over a single 
24 h period under distinct lighting conditions. A: In a 12 h light: 12 
h dark cycle (LD) Bmal1 exhibited a rhythmic expression pattern 
with the peak value shortly after light onset (n=3-6 per time point). 
B: Rhythmicity was maintained although dampened in constant 
dark (DD) (n=6 per time point). C: However constant light (LL), as 
with the other genes, led to a large phase shift, with maximal values 
now occurring at CT18 (n=4 per time point). Illumination condi-
tions are depicted as solid white (day) and solid grey (night) areas in 
LD, right hatched (subjective day) and solid grey (subjective night) 
areas in constant dark (DD) and solid white (subjective day) and left 
hatched (subjective night) areas in constant light (LL). Animals were 
killed every 3 or 4 h across the 24 h period, and RNA extracted from 
retinal tissue. RNA expression levels were quantified by real time 
PCR. One-way analysis of variance (ANOVA) and cosinor levels 
of significance (PA and Pc respectively) are given in the upper right 
corner of each panel. 
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It should be borne in mind that these measures reflect 
averaged values from the entire retina, which contains 
multiple cell types that are thought to be under different 
phases depending on the cell type [44,47,53]. The retina 
seems to stand apart compared to other tissues (e.g., liver, 
pancreas, SCN) in displaying low amplitude and largely over-
lapping rhythmic expression of clock genes. Since mecha-
nistic understanding of the circadian clock implies phase 
opposition between Bmal1 and Per/Cry [1], this suggests 
functioning in the retina is distinctly different. This lack 
of phase opposition has been reported in previous analyses 
of the retinal circadian clock [44,53,56]. Since clock gene 
expression was shown to occur in most retinal cell types, the 
absence of phase opposition might be due to the following: 1) 
cell-specific molecular clockwork with distinct phases of core 
clock genes, or 2) cell-specific amplitudes of core clock gene 
oscillations with predominance of those showing strongest 
amplitude. Similar observations were made on human periph-
eral blood mononuclear cells [57], likely also as a result of 
heterogeneity inherent to the cell population under scrutiny. 
A recent report indicates the retina is even more complex, 
since cones were the only retinal cell type showing sustained 
and rhythmic expression of most core clock genes [58]. It is 
apparent that although cones represent a mostly homogeneous 
cell population, the phase relationships between the six clock 

genes are distinctly clustered. Taken together with previous 
data showing the presence of a circadian clock within the 
inner retina [59] or in PR layers [47], this result strongly 
suggests that organization of the retinal clock is exceptional 
in comparison to other tissues.

We also chose to examine the gene coding for the 
enzyme AANAT, involved in melatonin synthesis [60], as 
a retinal clock output and positive control. This enzyme is 
present at high levels in the pineal gland and retina [61]. In 
the latter, in situ hybridization data suggest that it is local-
ized especially to cones in both rodents ([62]; manuscript in 
preparation) and chickens [63]. However, AANAT is also 
expressed by other retinal cells within the inner nuclear and 
ganglion cell layers [64]. There are some indications that 
retinal Aanat is controlled by molecular mechanisms distinct 
from the pineal gland, and may serve different purposes in 
the two tissues [65]. Aanat is a clock-controlled gene with 
an E-box in the promoter sequence, driven by BMAL1/
CLOCK transcriptional activation [66]. As is also seen in the 
pineal gland, Aanat levels are highest during the night in rat 
retina [67], and this was also the case in Arvicanthis in LD 
as well as in DD, although with reduced amplitude in the 
latter. Reduced rhythmic expression under DD seems at odds 
with the observed continued cyclic synthesis of melatonin 

Figure 7. Expression profile of the 
negative feedback loop Per tran-
scripts over a single 24 h period 
under distinct lighting conditions. 
A, C, E: RNA expression levels of 
Per1 in a 12h light: 12 h dark cycle 
(LD), in constant dark (DD) and in 
constant light (LL). B, D, F: RNA 
expression levels of Per2 in LD, 
DD, and LL. Each gene showed a 
rhythmic pattern with maximal 
expression at or closely following 
night/day transition in LD (n=3-6 
per time point) and DD (n=6 per 
time point; A, C: Per1, B, D: Per2). 
LL conditions led to large phase 
shifts, with maxima in the early to 
middle night (E: Per1, F: Per2; n=4 
per time point). Illumination condi-
tions are depicted as solid white 

(day) and solid grey (night) areas in LD, right hatched (subjective day) and solid grey (subjective night) areas in constant dark (DD) and 
solid white (subjective day) and left hatched (subjective night) areas in constant light (LL). Animals were killed every 3 or 4 h across the 24 
h period, and RNA extracted from retinal tissue. RNA expression levels were quantified by real time PCR. One-way analysis of variance 
(ANOVA) and cosinor levels of significance (PA and Pc respectively) are given in the upper right corner of each panel.
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under the same constant conditions (e.g., [16]), but this has 
been seen in several previous studies [44,53,65,68]. It should 
be further noted that the Aanat profile does not cluster to 
the same phase as the other PR outputs, suggesting that it is 
regulated by distinct, clock-derived mechanisms.

The principal finding of this study was that visual protein 
and clock gene expression retained rhythmicity, but was 
greatly perturbed under prolonged light. For the vision-related 
genes, this represented phase advances of about 4 h for a rod-
specific gene (Opn2), 9 h for cone-specific genes (Opn1mws 
and Opn1sws), and 10 h for an ipRGC-specific gene (Opn4). 
The relatively larger shifts in cone genes may indicate that 
prolonged lighting is more disruptive in this population, 
possibly in relationship with their photosensitive properties, 
but confirmation of this requires further experimentation 
using additional rod- and cone-specific genes. On the other 
hand, LL did not greatly affect the expression maximum for 
Aanat, which indicates that the profile shifts are specific and 
not an artifact of sampling or amplification methodology. 
They also confirm that clock pathways regulating Aanat 
expression are different, as in LD and DD, and possibly that 
opsins can be submitted to additional, light-driven controls. 
For clock genes, the advances varied from around 6 h for 
Bmal1, 8 h for Per1, Cry1, and Cry2, and an almost complete 

phase reversal for Per2. It is difficult to make a strict correla-
tion between the two sets of profiles for two reasons. First, 
as previously mentioned, clock gene data are average values 
for the entire retina, and may be biased by expression levels 
and rhythms in non-PR populations. For example, Per genes 
appear to be more strongly expressed in the inner than the 
outer retina (Per1 [49], Per2 [46], or both [44]). Second, the 
putative output genes (except Aanat) do not constitute known 
clock-controlled genes, since they do not possess the E-box 
motif within their promoters [69]. Hence, they are presumably 
driven by intermediate transcription factors which remain to 
be elucidated. Nevertheless, it is clear that the Arvicanthis 
retina behaves differently from the rat retina regarding expo-
sure to prolonged light. Although studies performed under 
similar conditions to those reported here (a single 24 h cycle 
of LL) are relatively few, clock gene expression was shown 
to be dampened [48], as was that of Aanat and Opn4 [70]. 
This could indicate a global desynchronization of individual 
oscillators as reported for the SCN. In contrast, in Arvican-
this, the rhythmic expression of most genes examined was 
still sustained, with amplitudes similar to those found in DD, 
suggesting that extended lighting affects the constitutive 
oscillators of the retina in a different way, presumably related 
to retinal adaptation to its photic niche.

Figure 8. Expression profile of the 
negative feedback loop Cry tran-
scripts over a single 24 h period 
under distinct lighting conditions. 
A, C, E: RNA expression levels of 
Cry1 in a 12 h light: 12 h dark cycle 
(LD), in constant dark (DD) and in 
constant light (LL). B, D, F: RNA 
expression levels of Cry2 in LD, 
DD, and LL. Each gene showed a 
rhythmic pattern with maximal 
expression at or closely following 
night/day transition in LD (n=3-6 
per time point) and DD (n=6 per 
time point; A, C: Cry1, B, D: Cry2). 
LL conditions led to large phase 
shifts, with maxima in the early to 
middle night (E: Cry1, F: Cry2; n=4 
per time point). Illumination condi-
tions are depicted as solid white 

(day) and solid grey (night) areas in LD, right hatched (subjective day) and solid grey (subjective night) areas in constant dark (DD) and 
solid white (subjective day) and left hatched (subjective night) areas in constant light (LL). Animals were killed every 3 or 4 h across the 24 
h period, and RNA extracted from retinal tissue. RNA expression levels were quantified by real time PCR. One-way analysis of variance 
(ANOVA) and cosinor levels of significance (PA and Pc respectively) are given in the upper right corner of each panel.
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We speculate that the interplay between lighting regimes 
and clock gene expression may underlie the rhythmic profiles 
of rod and cone turnover. In LD and DD, striking synchrony 
exists between the acrophases of clock and phototransduc-
tion-related gene expression, and the peak of rod and cone 
shedding [14,20]. This suggests that the retinal circadian 
clock controls the daily coordination of synthesis and degra-
dation of OSs. Since these processes likely constitute the 
highest energy expenditure during the 24 h cycle, it can be 
hypothesized that their temporal association represents a net 
energy gain compared to if they were spread across the 24 h 
period. Interestingly, both rod and cone phagocytosis display 
a second smaller peak around CT19 in DD [20], which cannot 
be directly correlated with clock gene expression patterns. 
This secondary phagocytosis burst may be controlled indi-
rectly by the clock, through as-yet uncharacterized factors 
acting downstream. Alternatively, it may represent the 
equivalent of an unmasking phenomenon, in which normal 
cyclic light exposure would lead to suppression of this surge, 
analogous to melatonin suppression by light. The situation 
appears quite different in LL, where we observed sizeable 
phase shifts, but persistent rhythmicity, in clock and phot-
opigment gene expression profiles, as well as scrambled rod 
and cone phagocytosis with a loss in rhythmicity [20,21]. We 

propose that the clock somehow becomes uncoupled from 
the phagocytic control pathway, possibly through inappro-
priate timing of signaling events. Under such conditions, 
the capacity of light to directly activate phagocytosis [20], 
together with increased turnover (at least for cones) triggers 
phagocytosis across the 24 h period. In short, it is likely that 
complex dynamic processes such as OS recycling require 
input from both clock-driven signals and ambient light levels.

In conclusion, examination of the daily transcription 
profiles of several circadian clock genes, visual pigment, and 
selected PR genes shows they are under circadian control in 
a diurnal mammal, tightly synchronized among one another 
(morning maxima, except Aanat). A single 24 h cycle of 
constant light is sufficient to greatly modify these profiles. 
The results thus demonstrate strong circadian regulation of 
both circadian clock genes and several putative outputs, and 
underscore the dramatic consequences of altered lighting 
regimes. The latter implies that similar processes may occur 
in humans during nightshift work, in which nonappropriate 
(in terms of retinal physiology and circadian regulation) 
lighting may interfere with normal PR function which could 
have repercussions for cognitive processes [71]. In this 
respect, it has been shown recently that nocturnal lighting in 

Table 3. Cosinor and one-way ANOVA statistical analysis of the mRNA levels of the 
core clock genes in Arvicanthis retina in LD, DD and LL conditions. 

Gene
COSINOR ANOVA

acrophase (h) F-value P value F-value P value
LD (n=32)

Bmal1 0.16±0.70 F2,29 15.02 <0.0001 F5,26 12.50 <0.0001
Per1 1.21±0.51 F2,29 25.94 <0.0001 F5,26 15.54 <0.0001
Per2 3.23±0.65 F2,29 14.07 <0.0001 F5,26 9.60 <0.0001
Cry1 1.16±0.63 F2,29 16.94 <0.0001 F5,26 14.05 <0.0001
Cry2 1.64±0.68 F2,29 14.13 <0.0001 F5,26 6.72 0.0004

DD (n=36)
Bmal1 1.00±0.89 F2,33 9.03 0.0007 F5,30 9.76 0.0001
Per1 1.36±0.82 F2,33 10.88 0.0002 F5,30 26.18 <0.0001
Per2 3.10±0.86 F2,33 9.75 0.0005 F5,30 10.54 0.0001
Cry1 1.35±0.86 F2,33 9.65 0.0005 F5,30 11.00 0.0002
Cry2 0.16±1.14 F2,33 5.56 0.0083 F5,30 3.34 0.016

LL (n=32)
Bmal1 17.91±0.67 F2,29 16.32 0.0001 F7,24 5.47 0.0008
Per1 17.86±0.83 F2,29 10.58 0.0004 F7,24 2.83 0.0269
Per2 16.22±0.94 F2,29 8.22 0.0015 F7,24 3.60 0.0086
Cry1 16.99±0.85 F2,29 9.98 0.0005 F7,24 3.94 0.0053
Cry2 18.14±0.83 F2,29 10.63 0.0003 F7,24 3.28 0.0137
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a closely related diurnal species, Arvicanthis niloticus, leads 
to appearance of depressive-like behaviors [72].
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