
Inherited cone dystrophies (CODs) and cone-rod dystro-
phies (CORDs) are a subgroup of inherited retinal degenera-
tive diseases [1]. Characterized by the degeneration of cones 
with the relative preservation of rod function, CODs cause an 
early loss of visual acuity and color discrimination in the first 
decade of life. In contrast, CORDs are characterized by the 
progressive loss of cone photoreceptor function, followed by 
the progressive loss of rod photoreceptor function [1]. Both 
conditions are genetically heterogeneous and can be inherited 
in autosomal dominant, recessive, or X-linked patterns. To 
date, 10 genes have been identified as being responsible for 
adCOD and adCORD, namely, semaphorin 4A (SEMA4A) 
on chromosome 1q22, prominin 1 (PROM1) on chromosome 
4p15.32, guanylate cyclase activator 1A (GUCA1A) and 
peripherin 2 (PRPH2) on chromosome 6p21.1, regulating 
synaptic membrane exocytosis 1 (RIMS1) on chromosome 
6p13, guanylate cyclase 2D (GUCY2D), arylhydrocarbon 
receptor interacting protein-like 1 (AIPL1), and PITPNM 
family member 3 (PITPNM3) on chromosome 17p13.1–2, 
unc-119 homolog (UNC119) on chromosome 17q11.2, and 

cone-rod homeobox (CRX ) on chromosome 19q13.32 
(RetNet).

The GUCY2D gene, located on chromosome 17p13.1, 
encodes a 1103 amino acid membrane-bound retinal guanylyl 
cyclase-1 protein (RetGC-1), which is expressed in both the 
cone and rod photoreceptors but predominantly in the cone 
outer segment [2-5]. RetGC-1 is one member of a pair of 
membrane-bound guanylate cyclases, RetGC-1 and RetGC-2, 
which synthesize cyclic 3′, 5′-guanosine monophosphate 
(cGMP) from guanosine triphosphate in mammalian photo-
receptor cells. RetGC-1 and its associated activator proteins 
are responsible for the Ca2+-sensitive restoration of cGMP 
levels after light activation of the phototransduction cascade. 
RetGC-1 consists of an extracellular or intradiskal domain, 
a transmembrane segment, a kinase homology domain, a 
dimerization domain, and a catalytic domain [6]. Heterozy-
gous mutations in the GUCY2D gene have been shown to 
cause adCOD and adCORD [2-4]; however, homozygous or 
compound heterozygous mutations cause autosomal reces-
sively inherited Leber Congenital Amaurosis (LCA), the most 
severe form of inherited retinopathy, with total blindness or 
greatly impaired vision recognized at birth or in early infancy 
[7,8].
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Figure 1. Family structure, proband fundus appearance, DNA sequence chromatograms, and co-segregation analysis of the p.T849A muta-
tion with the disease phenotype in a Chinese family with cone dystrophy. A: The pedigree and haplotype analysis of the family with cone 
dystrophy showed segregation with three microsatellite markers on chromosome 17 listed in rising order from the telomere end. Squares 
indicate males; circles indicate females; slashed symbols indicate deceased; solid symbols indicate affected; open symbols indicate unaf-
fected; M indicates mutant; and + indicates wild-type. B: Fundus appearance of the proband shows the subtle mottling of the RPE in the 
macula. C: Heterozygote sequence (sense strand) shows an A/G transition in codon 849 that changed threonine to alanine. D: Allele-specific 
PCR analysis presents the amplified products of the mutation allele (184 bp) co-segregated with patients in this family. The fragments (325 
bp), which are the parts of exon3 of the MYOC gene, were used as the internal control in the allele-specific PCR analysis. E: The sequence 
alignment portion of the dimerization domain spanning the p.T849 of the GUCD2Y of the human with other species.
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In this study, we investigated a Chinese family with cone 
dystrophy. After linkage analysis, we mapped the disease-
causing gene to regions 17p13.1–17p13.2 where the GUCY2D, 
AIPL1, and PITPNM3 genes are located and found a novel 
missense mutation of the GUCY2D gene.

METHODS

Patients and DNA samples collection: This study was 
performed according to the tenets of the Declaration of 
Helsinki for research involving human subjects. This 
study was approved by the Beijing Tongren Hospital Joint 
Committee on Clinical Investigation. After informed consent 
was obtained, all participants underwent full ophthalmic 

Figure 2. Electroretinography of 
the proband and a normal control. 
Electroretinography of the proband 
shows reduced photopic and 30 
Hz responses and normal scotopic 
responses.
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examinations, which included bilateral best-corrected visual 
acuity using E decimal charts, detailed examination of the 
anterior segment by slit-lamp biomicroscopy, fundus exami-
nation with dilated pupils, and a color discrimination test 
using pseudoisochromatic plates. The proband underwent 
visual field testing, an electroretinogram, and optical coher-
ence tomography examination.

Genotyping and haplotyping analysis: Genotyping was 
performed with 24 microsatellite markers from the auto-
somes for the known adCOD and adCORD loci in this 
family (Appendix 1). The fine mapping primer sequences 
were obtained from the Human Genome Database. Pedigree 
and haplotype maps were constructed using Cyrillic v. 2.0 
software.

Mutation screening of the GUCY2D, AIPL1, and PITPNM3 
genes: Mutation screening was performed in the family 

using direct DNA sequence analysis. All coding regions of 
the GUCY2D, AIPL1, and PITPNM3 genes were amplified by 
PCR from the genomic DNA. Primers for all coding exons 
and exon-intron boundaries of the three genes (18 exons for 
the GUCY2D, 5 exons for the AIPL1, and 20 exons for the 
PITPNM3) were designed by the Primer3 program (Appendix 
2). For direct sequencing, the PCR products were purified 
(Shenneng Bocai PCR purification kit; Shenneng, Shanghai, 
China). The purified PCR products were sequenced using an 
automatic fluorescence DNA sequencer (ABI, Prism 373A; 
Perkin Elmer, Foster City, CA) according to the manufac-
turer’s instructions. All PCR products were sequenced in both 
forward and reverse directions, and the nucleotide sequences 
were compared with the published DNA sequences of the 
GUCY2D, AIPL1, and PITPNM3 genes (GenBank acces-
sion number NM_000180, NM_014336, and NM_031220, 
respectively) using DNAssit version 1.0. For the three genes, 

Figure 3. Macular optical coherence tomography images from a visually normal subject and the proband of this family with cone dystrophy. 
A: The macular optical coherence tomography images of the right eye from a normal individual show organization of retinal microstructures 
with a well defined photoreceptor inner/outer segment layer and normal thickness (214 μm). B and C: The macular optical coherence 
tomography images of both eyes from the proband exhibit loss of inner/outer segment layer and thinning of the retina in the macular area 
(151 μm of the right eye, 153 μm of the left eye).
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cDNA numbering +1 corresponded to A in the ATG trans-
lation initiation codon of GUCY2D, AIPL1, and PITPNM3, 
respectively.

Allele-specific PCR analysis: To confirm the variation found 
in the sequencing, allele-specific PCR analysis (AS-PCR) was 
performed in the available family members and in 100 normal 
controls [9]. An allele-specific forward primer in Exon 13 of 
the GUCY2D gene was designed: 5′-GGA GCT GGA AAA 
GCA GAA GG-3′, where C is the mutation-specific nucleo-
tide. The AS-PCR fragment was amplified with the forward 
allele specific primer and the normal reverse primer of the 
exon13 of the GUCY2D gene.

Bioinformatics analysis: Garnier-Osguthorpe-Robson soft-
ware was used to predict the effect of the mutation on the 
secondary structure of GUCY2D (Biotools) [10]. This method 
infers the secondary structure of a sequence by calculating 
the probability for each of the four structure classes (helix, 
sheet, turn, and loop) based on the central residue and its 
neighbors from the calculated matrices [10]. The PolyPhen2 

(Polymorphism Phenotyping 2) program was used to predict 
the potential functional impact of an amino acid change [11].

RESULTS

Clinical findings: We identified a three-generation family 
consisting of four patients diagnosed with cone dystrophy 
(Figure 1A). All patients had experienced bilateral visual 
acuity impairment and marked photophobia in their early 
childhood. No patients, including the two patients aged over 
50 years, had peripheral field loss or a nyctalopia complaint. 
Slit-lamp examination showed the anterior segments were 
normal with the exception of mild cataracts in both eyes 
of one patient (II-1). Fundus examinations revealed subtle 
RPE granular abnormalities in the macular area and normal 
appearance of the peripheral retina. A pseudoisochromatic 
plates test showed red-green color weakness. The proband 
was examined in 2008 at age 24 years and again in 2011 at 
age 27 years. His best-corrected visual acuity was 0.5 in both 
eyes, and there was no significant deterioration during the 
three following years. Fundus examination showed almost 

Table 1. Clinical features of the patients of this family with adCOD

Patient Age Best 
corrected 

visual 
acuity 
(R/L)

Onset age of 
photophobia

Night 
blindess

Refraction (diopters) Fundus 
appearance

Color 
vision

ERG

II-1 56 0.1/0.2 EC NO −2.75–1.0X180, 
−2.25–0.75X180

RPE granular 
abnormalities at 

the fovea

red-
green 
defect

N/A

II-4 53 0.1/01 EC NO −5.0–1.25X175,-
4.5–1.50X180

RPE granular 
abnormalities at 

the fovea

red-
green 
defect

N/A

III-6 28 0.5/0.5 EC NO −0.5X180,-0.5X175 RPE granular 
abnormalities at 

the fovea

red-
green 
defect

reduction 
in cone 

responses 
and 

normal rod 
responses

Abbreviations: R, right eye; L, left eye; EC, early childhood, N/A, data not available.

Table 2. Presumed nonpathogenic variants found in this study

Gene Exon Nucleotide change Codon SNP
AIPL1 Exon3 c.276–10 A>C rs12453262

c.300A>G p. L100L rs8075035
PITPNM3 Exon4 IVS3+56G>T rs11656015

Exon6 c.477C>T p.S159S rs145362623
GUCY2D Exon3 c.741C>T p.H243H rs3829789

Exon10 c.2100C>T p.P700P rs34598902
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normal fundus appearance with the exception of subtle 
mottling of the RPE in the macular area (Figure 1B). Elec-
troretinographic testing revealed a significant reduction in 
cone responses and normal rod responses (Figure 2). Optical 
coherence tomography showed thinning of the retina and loss 
of the photoreceptor inner segment (IS) and photoreceptor 
outer segment (OS) in the macular area (Figure 3). The 
detailed clinical features are summarized in Table 1.

Genotyping results: This family was genotyped with 24 
polymorphic markers around known adCOD and adCORD 
loci. The mapping results excluded the other known adCOD 
and adCORD loci with the exception of a locus, 17p13.1–2, 
where the GUCY2D, AIPL1, and PITPNM3 genes are found.

Mutation analysis: Sequencing of the three genes (GUCY2D, 
AIPL1, and PITPNM3) revealed one novel heterozygous 
mutation c.2545 A> G (p.T849A) in the GUCY2D gene. 
Using AS-PCR analysis, this mutation co-segregated with the 
adCOD phenotype in this family and was not detected in the 
unaffected members or 100 normal controls (Figure 1C,D).

In addition to the pathogenic mutation detected in the 
GUCY2D gene, six nonpathogenic sequence variants were 
also identified in this study. Table 2 summarizes these vari-
ants based on their nature.

Bioinformatics analysis: Using the Garnier-Osguthorpe-
Robson method, the results of the secondary structure predic-
tion suggested that the mutant GUCY2D 849A replaced one 
helix, “H,” with one β sheet, “E,” at position 852. Through 
PolyPhen-2 program analysis, p.T849A was predicted to be 
potentially damaging.

DISCUSSION

In this study, we identified one novel missense mutation, 
p.T849A, in the GUCY2D gene in a small family with adCOD. 
The mutation co-segregated with the disease phenotype but 
was absent in the unaffected family members and 100 normal 
controls.

RetGC-1 is essential for the recovery of the dark state 
after the excitation process of the photoreceptor cells by 
light stimulation [6]. To date, more than 120 mutations of 
the GUCY2D gene have been identified as being respon-
sible for retinal degeneration [2-5,7,8,12-23]. Most of them 
were found in the autosomal recessively inherited LCA 
[7,8]. The mutations found in COD and CORD were mainly 
clustered in codon 838 or the two adjacent codons, 837 and 
839 [2-5,12-15]. Codon 838 is a mutational hot spot with 
five disease-causing sequence variations (R → C/G/H/P/S) 
[2-5,12-15,20]. The most frequent mutations, p.R838C and 
p.R838H, have been identified in different ethnicities, such 

as the Caucasian, Spanish, Japanese, and Chinese populations 
[2-5,12-15,18,22,23]. Unlike the mutations detected in LCA, 
which are mainly located in the catalytic and kinase-like 
domains of the RetGC-1 [7,8], most of the mutations identi-
fied in COD or CORD are located in the putative dimerization 
domain, which extends from amino acid 817 to 857 [2-5,12-
15,17,18,22,23]. The Thr849 residue located in the dimer-
ization domain is fully conserved in the different species 
(Figure 1E). The complex missense mutations, p.Q847L and 
p.K848Q, which were identified in a Japanese family with 
COD, are just adjacent to the novel mutation p.T849A [17]. 
Our results further confirm that the dimerization zone of 
RetGC-1 is the mutational hot region for COD or CORD, and 
a heterozygous mutation of GUCY2D not involving codon 838 
can also be linked to COD and CORD.

In the clinical phenotype of the affected members of 
the family with the mutation p.T849A, the visual acuity of 
the proband was 0.5 with almost normal fundus. The male 
subject’s electroretinograms demonstrated reduced cone 
function and nearly normal rod function. Two elder patients 
(over 50 years old) had preserved peripheral visual fields and 
no complaints of night blindness. These findings are similar 
to the previous descriptions of the phenotypes associated with 
the mutations p.R838C and p.R838H [2-5]. Since the mutation 
p.R838C has been identified, the detailed clinical phenotypes 
with similar or different mutations have been reported by 
several studies [2-5,14,16,17,21,22]. Usually, patients with the 
mutations p.R838C and p.R838H have relatively similar clin-
ical features of COD, which include the marked dysfunction 
of the cones from a young age while rod dysfunction appears 
later or does not present until a later stage [2-5,15,17,18,22,23].

In conclusion, we identified a novel mutation, p.T849A, 
in a Chinese family with COD. Our results further suggest 
that the dimerization zone of RetGC-1 is the mutational hot 
region for COD or CORD.

APPENDIX 1.

Markers used in known autosomal dominant cone dystrophy 
and autosomal dominant rod dystrophy genotyping. To access 
the data, click or select the words “Appendix 1.”

APPENDIX 2.

Primer information for the AIPL1, PITPNM2, and GUCY2D 
gene sequence. To access the data, click or select the words 
“Appendix 2.”
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