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Background: Polo-like kinase1 (Plk1) activation is inhibited in response to DNA damage, and this inhibition contributes to
the activation of the G2/M checkpoint.
Results: ATR phosphorylates Bora, leads to its degradation, and inhibits Plk1 activity after DNA damage.
Conclusion: Degradation of Bora activates the G2/M checkpoint through Plk1.
Significance: Learning how Polo-like kinase1 (Plk1) activation is inhibited in response to DNA damage.

Polo-like kinase1 (Plk1) activation is inhibited in response to
DNA damage, and this inhibition contributes to the activation
of the G2/M checkpoint, although the molecular mechanism by
whichPlk1 is inhibited is not clear.Herewe report that theDNA
damage signaling pathway inhibits Plk1 activity through Bora.
Following UV irradiation, ataxia telangiectasia-mutated- and
Rad3-related protein phosphorylates Bora at Thr-501. The
phosphorylated Thr-501 is subsequently recognized by the E3
ubiquitin ligase SCF-�-TRCP, which targets Bora for degrada-
tion. The degradation of Bora compromises Plk1 activation and
contributes to DNA damage-induced G2 arrest. These findings
shed new light on Plk1 regulation by the DNA damage response
pathway.

Plk1 is amulti-functional protein controllingmany processes
in the cell cycle, including centrosome maturation, bipolar
spindle formation, sister chromatid cohesion, activation of ana-
phase-promoting complex/cyclosome, control of cleavage fur-
row formation, and mitotic entry (1, 2). Plk1 promotes mitotic
entry by inhibitingWee1 (3), activating Cdc25 (4, 5) and induc-
ing cyclin B nuclear import (6), which, in turn, activates cyclin
B/Cdk1. Plk1 itself is activated by phosphorylation in its activa-
tion loop (Thr-210 in mammals) (4, 7–9). The mechanism
responsible for Thr-210 phosphorylation has been elusive until
two recent reports demonstrated that Bora cooperates with
Aurora A to promote Plk1 phosphorylation at Thr-210 and
Plk1 activation (10, 11).

Plk1 has also been shown to be a critical target of the DNA
damage response pathway. In response to DNA damage, Plk1
activity is inhibited in an ataxia telangiectasia-mutated/ATR-
dependent3 manner, and overexpression of constitutively
active Plk1 overrides the DNA damage-induced G2/M check-
point (12–14). These findings suggest that inhibition of Plk1 is
an important mechanism for activation of the G2/M check-
point. Although Plk1 was speculated to be a direct target of
ataxia telangiectasia-mutated /ATR-mediated signaling, the
molecular mechanism of Plk1 inhibition remains unclear. Here
we show that DNA damage leads to the phosphorylation of
Bora by ATR, which is subsequently targeted for proteasome-
mediated degradation. The resulting reduction in Bora protein
levels causes inhibition of Plk1 and G2 arrest.

EXPERIMENTAL PROCEDURES

Plasmids—S/FLAG/streptavidin-binding peptide-tagged
Bora was cloned into pIRES2-EGFP (Clontech). The Bora
T501Amutant and Bora shRNA-resistant constructs were gen-
erated with a PCR-based mutagenesis kit (Stratagene).
Antibody and Chemicals—Bora antibody was raised by

immunizing rabbit with N-terminal (1–210) Bora-GST fusion
protein. pT501 Bora antibody was raised by using the phospho-
peptide CMDSGYNpTQN.
Other antibodies used were anti-Bora (Epitomics), anti-

FLAG (M2) (Sigma), �-actin antibody (Sigma), phospho-
SQ/TQ antibody (Cell Signaling Technology, Inc.), �-TRCP
antibody (Invitrogen), Chk1 antibody (Santa Cruz Biotechnol-
ogy, Inc.), Chk1-pS317 antibody (Cell Signaling Technology,
Inc.), ATR antibody (Genetex), Plk1-pT210 antibody (BD Bio-
sciences), Plk1 antibody (Invitrogen), and phospho-H3 anti-
body (Abcam). The chemicals used were MG132 (Sigma) and
ON01910 (a gift from Dr. Zheng Fu, Virginia Commonwealth
University).
Quantitative Real-time PCR—mRNA was extracted with a

PARIS kit (Applied Biosystems). Quantitative real-time PCR
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was carried out with a one-step Brilliant II SYBR Green QRT-
PCRMaster Mix kit (Agilent Technologies). Primers of human
Bora and GAPDH were purchased from Qiagen. Bora mRNA
expression levels were calculated on the basis of the 2��Ct value
normalized to GAPDH.
Cell Culture—293T, H1299, A549, and U2OS were main-

tained in RPMI 1640 medium with 10% fetal bovine serum at
37 °C in 5% CO2. For the cell cycle, cells were fixed with cold
70% (v/v) ethanol, stained with propidium iodide, and then run
on the fluorescence activated cell sorter machine.
Immunoprecipitation andWestern Blot Analysis—Cells were

lysed with NETN buffer (20 mM Tris-HCl (pH 8.0), 100 mM

NaCl, 1 mM EDTA, and 0.5% Nonidet P-40) containing 50 mM

glycerophosphate, 10 mM NaF, and protease inhibitor mixture
on ice for 20 min. The cell lysates were obtained by centrifuga-
tion and then incubated with anti-FLAG beads (M2, Sigma) or
proteinAbeads bound to anti-Bora antibody for 1 h at 4 °C. The
immunocomplexes were then washed with NETN buffer three
times and separated by SDS-PAGE. Immunoblotting was per-
formed following standard procedures. Band intensity was
quantified by ImageJ analysis (National Institutes of Health).
RNA Interference—Bora shRNAs (NM_024808.2), �-TRCP

shRNA (NM_003939.2), and ATR shRNA (NM_001184) were
purchased from Sigma. The Bora shRNA target sequence was
as follows: GCTTAAGAGTTCCTCGCATAT (targeted to the
3� UTR of Bora mRNA). The �-TRCP shRNA target sequence
was as follows: GCGTTTCAATAATGGCATGAT,GCGTTG-
TATTCGATTTGATAA, CCATTAAAGTTGCGGTATTTA,
GCACATAAACTCGTATCTTAA, GCTGAACTTGTGTG-
CAAGGAA. The ATR shRNA target sequence was as follows:
GCCGCTAATCTTCTAACATTA, GCCAAAGTATTTCT-
AGCCTAT, CTGTGGTTGTATCTGTTCAAT. Lentiviruses
of Bora, �-TRCP, and ATR shRNAs were made according to
the protocol of the manufacturer.
Immunofluorescence—Bora knockdown U2OS cells were

plated on glass coverslips and transfected with the indicated
constructs. 48 h after transfection, cells were left untreated or
treated with UV radiation (20 J/m2). After the indicated time,
cells were fixed in 3% paraformaldehyde for 10 min at room
temperature and then stainedwith phospho-H3 antibody using
the standard protocol.
Statistics—Experiments with three replicates were carried

out, and statistical analyses were performed by two-tailed Stu-
dent’s t test. Values of p � 0.05 were considered significant.

RESULTS AND DISCUSSION

Degradation of Bora following DNA Damage—During our
investigation of Bora, we unexpectedly found that Bora protein
levels rapidly decreased after UV treatment (Fig. 1A). The
decrease in Bora levels was both time- and dose-dependent
(Fig. 1, A and B). To examine whether the decrease in Bora
protein levels was a general response to genotoxic stresses, we
used other DNA damage inducers. As shown in Fig. 1C, camp-
tothecin (CPT) induced down-regulation of Bora protein.How-
ever, we did not observe a significance change in Bora level
following ionizing radiation (IR), suggesting that the Bora level
is regulated by replication stress. Our initial findings used
epitope-tagged Bora (Fig. 1, A–C). We further confirmed these

findings by examining the levels of endogenous Bora after DNA
damage.As shown in Fig. 1D, endogenousBora levels decreased
with similar kinetics as those of recombinant Bora.
We next examined the mechanism underlying DNA dam-

age-induced Bora down-regulation. Because Bora levels change
throughout the cell cycle (15, 16), it is possible that the apparent
down-regulation of Bora is due to an indirect effect of cell cycle
populations. However, the down-regulation of Bora occurred
quickly (as early as 1 h) following DNA damage, whereas the
overall cell cycle profile did not change significantly at this time
(Fig. 1E). Therefore, it is unlikely that the change in Bora levels
is due to a change in cell cycle populations. We also found that
Bora mRNA levels did not change significantly following UV
irradiation (Fig. 1F), suggesting that Bora down-regulation is
regulated at the posttranscriptional level. Previous work has
demonstrated that Bora is degraded by the ubiquitin-protea-
some pathway and regulates mitotic exit (15, 16). It is possible
that Bora protein levels are also regulated by the ubiquitin-
proteasome pathway following DNA damage. To test this
hypothesis, we pretreated cells with the proteasome inhibitor
MG132.As shown in Fig. 1G,MG132 inhibited theUV-induced
down-regulation of Bora. Furthermore, we observed increased
Bora ubiquitination following UV irradiation (Fig. 1H). These
results suggest that Bora is degraded through the proteasome-
mediated pathway following DNA damage.
Phosphorylation of Bora at Thr-501 by ATR—To investigate

how Bora is regulated by the DNA damage response pathway,
we first examined whether Bora could be phosphorylated fol-
lowing DNA damage. As shown in supplemental Fig. S1A, Bora
was phosphorylated at the SQ/TQmotifs, which are ataxia tel-
angiectasia-mutated/ATR consensus phosphorylation motifs.
Among the possible SQ/TQ motifs of Bora, the TQ motif at
amino acid 501 of Bora is the only conserved one from human
to Xenopus (supplemental Fig. S2). To confirm that this site is
phosphorylated after DNA damage, we generated a phospho-
specific antibody against Thr-501. As shown in Fig. 2A, WT
Bora was phosphorylated at Thr-501 following DNA damage,
whereas mutation at Thr-501 (T501A) abolished Bora phos-
phorylation. We also confirmed that phosphorylation of
endogenous Bora at Thr-501 was increased after UV irradi-
ation (Fig. 2B). Interestingly, Thr-501 is localized at the
DS497GXXT501motif, which acts as a degron for Bora (16). Both
Ser-497 and Thr-501 have been shown to be phosphorylated by
Plk1 during mitosis, and the phosphorylation of Ser-497/Thr-
501 is important for the binding of �-TRCP to Bora and subse-
quent Bora degradation during mitotic exit (16). However, the
phosphorylation of Thr-501 following DNA damage does not
require Plk1 because the Plk1 inhibitor ON01910 (17) had no
effect on Thr-501 phosphorylation (Fig. 2C). Instead, the phos-
phorylation of Thr-501 following DNA damage required PI3K-
like kinases because the pan-PI3K-like kinase inhibitor caffeine
(18) inhibited Thr-501 phosphorylation of both ectopically
expressed and endogenous Bora (Fig. 2C and supplemental Fig.
S1B). BecauseATR is an upstreamPI3K-like kinase activated by
replication stress, we down-regulated ATR and found that
down-regulation of ATR significantly inhibited endogenous
Bora phosphorylation at Thr-501 (Fig. 2D). These results sug-
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gest that ATR phosphorylates Thr-501 of Bora following UV
radiation.
Phosphorylation of Bora at T501 is Required for �-TRCP

Binding andBoraDegradation—Because phospho-Thr-501 is a
�-TRCP binding site (16), we hypothesized that ATRmediated
phosphorylation at Thr-501 resulted in �-TRCP binding and
Bora degradation. Consistent with our hypothesis, mutating
Thr-501 to Ala prevented DNA damage-induced ubiquitina-
tion and down-regulation of Bora (Fig. 2, E and F). The Bora
T501A mutant was also more stable than WT Bora after DNA
damage (Fig. 2G). These results suggest that Thr-501 is critical
for Bora degradation following DNA damage. To confirm that
phospho-Thr-501 is recognized by �-TRCP following DNA
damage, we performed coimmunoprecipitation experiments.
As shown in Fig. 2H, DNA damage induced the interaction
betweenWTBora and�-TRCP.However, the binding between
the T501A mutant and �-TRCP could not be detected. To fur-
ther confirm that �-TRCP is required for DNA damage-in-
duced degradation of Bora, we used shRNA to knock down
�-TRCP. As shown in Fig. 2I, the degradation of Bora was abol-
ished in cells depleted of �-TRCP. These results suggest that
DNA damage-induced phosphorylation of Bora at Thr-501

is required for �-TRCP binding and subsequent Bora
degradation.
Phosphorylation of Bora at Thr-501 Is Important for G2/M

Checkpoint Activation—Because Bora is important for Plk1
activation during mitotic entry (10, 11), we hypothesized that
Plk1 inhibition after DNA damage is caused by decreased Bora
levels. To test this hypothesis, we transfected cells with shRNA-
resistant WT and T501A Bora, and depleted endogenous Bora
with shRNA. Cells were then UV-irradiated. Consistent with
previous reports (12–14), the phosphorylation of Plk1 Thr-210
was decreased followingDNAdamage, and this correlated with
the lower wild-type Bora protein level. We did not observe a
significant decrease of Plk1 levels. This is different from a pre-
vious report (19) reporting Plk1 degradation induced by DNA
damage. However, our results are consistent with several other
reports (12–14) (Fig. 3). These results suggest that phosphory-
lation and degradation of Bora is important for Plk1 inhibition
following DNA damage.
Plk1 activation is an important trigger for the mitotic entry,

and impaired Plk1 activity decreases the population of mitotic
cells, which contributes to the G2/M arrest. To explore the
effect of Bora on G2/M checkpoint activation after DNA dam-
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FIGURE 1. Bora is degraded in a proteasome-dependent manner following DNA damage. A–C, 293T cells were transfected with a construct encoding
FLAG-Bora. Cells were left untreated or treated with UV (20 J/m2), camptothecin (CPT, 1 �M), irradiation (IR, 10 gray). Cells were collected at indicated time (A)
or 1 h (B and C) later and examined by immunoblot analysis. The pChk1s317 blot served as a positive control for UV treatment. DMSO, dimethyl sulfoxide. D,
293T cells were U- irradiated, collected at the indicated time, and then endogenous Bora levels were examined with Bora antibody. E, 293T cells were
UV-irradiated and fixed at the indicated time. Cell cycle distribution was determined by FACS. The results represent the mean values from three independent
experiments. Error bars represent S.E. #, p � 0.05. F, 293T cells were harvested 2 h post-UV radiation, mRNA was extracted, and Bora levels were determined by
quantitative RT-PCR. Error bars represent S.E. of n � 3. #, p � 0.05. G, 293T cells were pretreated with DMSO or 50 �M MG132 for 3 h and then treated with UV
radiation. 2 h later, cells were harvested, and Bora levels were examined by Western blot analysis. H, 293T cells were pretreated with DMSO or 40 �M MG132 for
3 h and then treated with 20 J/m2 of UV radiation. Endogenous Bora ubiquitination (Ub) was then examined by immunoblot analysis. IP, immunoprecipitation.
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age, we examined the G2/M checkpoint activation in cells over-
expressing WT or T501A Bora. We found that DNA damage
resulted in a significant decrease of the mitotic population in
cells expressingWTBora within 1 h of UV irradiation, suggest-
ing that the G2/M checkpoint is intact in these cells. Con-
versely, therewas no significant change inmitotic population in
cells expressing T501A Bora. On the other hand, the mitotic
population in both WT and T501A Bora-expressing cells
decreased with IR treatment. This is consistent with the obser-
vation that Bora levels were not regulated by IR (Fig. 1C). These
results suggest that Thr-501 phosphorylation of Bora is impor-
tant for UV-induced but not IR-inducedG2/M checkpoint acti-
vation (Fig. 3, B and C).

Bora degradation has been shown to be important to mitotic
exit (15, 16). To exclude the possibility that the accumulation of
mitotic cells in cells expressing mutant Bora is due to mitotic

exit defect, we treated cells with UV radiation and then incu-
bated cells in the presence of nocodazole. Consistent with Fig.
3, B and C, in cells expressing WT Bora, fewer cells entered
mitosis after UV treatment. However, mitotic entry was less
affected in cells expressing T501A Bora (Fig. 3D). These results
suggest that UV-induced degradation of Bora is required for
Plk1 inhibition and G2 arrest.
Cell cycle progression is under tight regulation to maintain

the genomic integrity. The G2/M checkpoint stops cells from
undergoing mitosis upon DNA damage until damaged DNA is
repaired. One of the major targets of the G2/M checkpoint is
Plk1, which is inactivated following DNA damage. However,
how the DNA damage response pathway regulates Plk1 activity
is not clear. Here we show that Bora is a direct target of ATR
and that the phosphorylation of Bora by ATR results in Bora
degradation, which is required for Plk1 inhibition and the acti-
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FIGURE 2. Bora is phosphorylated by ATR at Thr-501, which targets Bora to �-TRCP-mediated degradation. A, 293T cells transfected with constructs
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vation of theG2/Mcheckpoint.We propose aworkingmodel in
Fig. 4. During the normal cell cycle, Bora is up-regulated in G2
phase and binds to the Plk1 Polo-box domain and kinase
domain. This changes the conformation of Plk1, making the
Plk1 kinase domain accessible to Aurora A-mediated phospho-
rylation and activation. Activated Plk1 then phosphorylates its
downstream targets and promotes mitotic entry (16). When
cells encounter UV irradiation, ATR kinase is activated and
phosphorylates Bora at Thr-501. This phosphorylation at the

degron is recognized by �-TRCP, resulting in the degradation
of Bora through the proteasome degradation system. Plk1 is
thus kept inactivated, andmitotic entry is delayed. In summary,
our studies reveal a key molecular mechanism by which the
DNA damage signaling pathway regulates Plk1.
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