
Parallel multiscale simulations of a brain aneurysm

Leopold Grinberga, Dmitry A. Fedosovb, and George Em Karniadakisa,*

aDivision of Applied Mathematics, Brown University, Providence, RI, 02912, USA
bInstitute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich,
Jülich, 52425, Germany

Abstract
Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation
as well as by the local microrheology. Hence, developing computational models for such cases
requires the coupling of disparate spatial and temporal scales often governed by diverse
mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary
differential equations for discrete particles (atomistic). However, interfacing atomistic-based with
continuum-based domain discretizations is a challenging problem that requires both mathematical
and computational advances. We present here a hybrid methodology that enabled us to perform
the first multi-scale simulations of platelet depositions on the wall of a brain aneurysm. The large
scale flow features in the intracranial network are accurately resolved by using the high-order
spectral element Navier-Stokes solver εκ αr. The blood rheology inside the aneurysm is
modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle
dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic
domains overlap with interface conditions provided by effective forces computed adaptively to
ensure continuity of states across the interface boundary. A two-way interaction is allowed with
the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary
method. The corresponding heterogeneous solvers ( εκ αr and LAMMPS) are linked together
by a computational multilevel message passing interface that facilitates modularity and high
parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a
patient-specific arterial tree are presented. We also discuss the computational challenges involved
and present scalability results of our coupled solver on up to 300K computer processors.
Validation of such coupled atomistic-continuum models is a main open issue that has to be
addressed in future work.
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1. Introduction
Cerebral aneurysms occur in up to 5% of the general population, with a relatively high
potential for rupture leading to strokes in about 30,000 Americans each year [1]. There are
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no quantitative tools to predict the rupture of aneurysms and no consensus exists among
medical doctors when exactly to operate on patients with cerebral aneurysms.

The biological processes preceding the aneurysm rupture are not well understood. There are
several theories relating the wall shear stress patterns and pressure distribution within
aneurysm and pathological changes at cellular level occurring at the arterial wall layers.
Realistic simulation of such processes must be based on resolving concurrently the macro-
(centimeter) as well as the micro- (sub-micron) scale flow features, and also the interaction
of blood cells with the endothelial cells forming the inner layer of the arterial wall. Such
complex processes are clearly multiscale in nature necessitating the use of different
mathematical models to resolve each scale.

In the current work, we consider the initial formation of a platelet clot in brain aneurysm as
a representative example. Clots form not only in brain aneurysms but also in aortic
aneuryms [2], coronary arteries [3], veins [4], etc. The main focus of this paper is the
general framework we propose for multi-scale modeling of arterial blood flow, including
modeling of the initial thrombus formation. This multiscale methodology is developed based
on atomistic and continuum descriptions, and can be used to simulate, for instance, clot
formation and growth in aortic aneurysms or in carotid arteries. Some algorithmic and
computational aspects of the coupled atomistic-continuum model can also be used in other
research areas, e.g. in materials modeling and solid mechanics. In the following we review
(a) physiological aspects related to cerebral aneurysms, and (b) recent advances and open
issues in multiscale modeling.

1.1. Cerebral aneurysm: overview
Cerebral aneurysms are pathological, blood-filled permanent dilations of intracranial blood
vessels usually located near bifurcations in the Circle of Willis (CoW) [5, 6, 7, 8], see figure
1. Currently, prospective rupture rates are culled from various studies, but these rates do not
take into account patient-specific anatomic and physiologic factors which may affect rupture
risk. These limitations are more magnified when considering one paradox that prevails when
analyzing rupture rates from the literature: The prospective rate of rupture of anterior
circulation aneurysms less than 7mm in size is extremely low [7], but the majority of
ruptured aneurysms in most series are anterior circulation aneurysms less than 7mm in size
[10]. Analysis of patient-specific anatomic and physiologic data may be used to identify
specific patients who might be at higher risk for rupture.

The processes of initiation, growth and rupture of CAs are not well understood, and several
– often contrasting - hypotheses on the modified hemodynamics have emerged in recent
years, e.g. see the recent reviews in [5, 6, 8, 11] and references therein. While one would
expect that aneurysm rupture be associated with high pressure or high wall shear stress
(WSS) magnitude, this is not the case with CAs as no elevated peak pressure and typically
low WSS values are observed within the aneurysm.

Histological observations have revealed a degeneration of endothelial cells (EC) and
degradation of the intracellular matrix of the arterial walls due to decreasing density of
smooth muscle cells (SMCs) [12, 13]. WSS is related to the endothelial gene expression, and
in laminar flow produces a quiescent phenotype protecting from inflammation or cell
apoptosis. However, flow instabilities and oscillatory WSS can trigger certain genetic traits
that affect the elastic properties of the arterial wall [14, 15]. For example, recent studies
reported that low WSS levels in oscillatory flow can cause irregular EC patterns, potentially
switching from an atheroprotective to an atherogenic phenotype [5, 15, 16, 17]. On the other
hand, low WSS can also be protective as it leads to thickening of arterial walls, which then
becomes more tolerant to mechanical loads. Hence, by simply examining the magnitude of
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WSS we cannot arrive at a consistent theory of aneurysm growth or rupture. To this end,
experimental studies with ECs subjected to impinging flow in [15, 18] have shown the
importance of WSS gradients (WSSG) (rather than the magnitude) on the migration of ECs
downstream of the stagnation region.

Perhaps the most dramatic evidence on the role of ECs and their interaction with blood cells
has been documented in a Japanese clinical study comparing ruptured and unruptured
aneurysms [9]. Ruptured aneurysms exhibited significant endothelial damage and
inflammatory cell invasion compared with unruptured aneurysms; see figure 1(right) for a
typical image. We observe that the EC layer is drastically altered and covered with blood
cells and a fibrin network. Similarly, it was reported in [9] that leukocytes (White Cells,
WCs) in the wall could be associated with subarachnoid hemorrhage (SAH), and endothelial
erosion enhances leukocyte invasion of the wall before rupture.

Damaged EC typically initiates a thrombus (blood clot) formation process. One of the most
important building blocks in the clot is a 2 − 3μm in size blood cell called platelet. The role
of platelets has not been fully explored in experimental work, but clinical tests have
documented the existence of spontaneous thrombosis in giant aneurysms [19, 20, 21] due to
platelet deposition. Thrombus formation within the aneurysm is non-uniform due to the
complex flow patterns and the interaction of platelets with the damaged EC layer [22].
Similarly, it was found in endovascular studies that creation of spontaneous thrombosis
occurs after stent placement [23]. In other studies, enhanced platelet aggregability has been
observed in cerebral vasospasm following aneurysmal SAH [24]. B. Furie and B. C. Furie
reviewed two independent pathways to thrombus formation [25]. Platelets activation may
start due to exposure of blood cells to either subendothelial collagen or thrombin generated
by tissue factor derived from the vessel wall. The authors also emphasized that large scale
flow features such as shear and turbulence affect the thrombus formation process.

A key question regarding the process of aneurysm progression is how to correlate the blood
cell dynamics and interactions to the complex flow patterns observed within the aneurysms
[26]. To this end, there are currently two schools of thought: high-flow effects and low-flow
effects [5]. The former suggests that localized elevated WSS cause endothelial injury that
causes an overexpression of NO production, which in turn can lead to apoptosis of SMCs
and subsequent wall weakening. The latter points to the stagnation type flow in the dome of
the aneurysm, which also causes irregular production of NO. This dysfunction of flow-
induced NO leads to the aggregation of red blood cells and the accumulation and adhesion
of platelets and leukocytes along the intimal surface (the first layer of the arterial wall). This,
in turn, may damage the intima, allowing for infiltration of white blood cells (WBC) and
fibrin [27]. We should also note that the response of damaged aneurysm endothelium to
stimuli such as WSS maybe different from the response of healthy endothelial tissue. To this
end, to advance our understanding, we need to investigate scenarios beyond the pure
mechanical point of view. In particular, we need to understand the role of endothelial cells
and their interactions with the blood cells, i.e., platelets, RBCs and WBCs.

1.2. Multi-scale modeling of blood flow
Modeling the blood flow as a multiscale phenomenon, using coupled continuum-atomistic
models is essential to better understand the thrombus formation process. Seamless
integration of heterogeneous computer codes based on continuum models with codes that
implement atomistic-level descriptions is key to the successful realization of parallel
multiscale modeling of realistic physical and biological systems.

Multiscale hybrid approaches [28, 29, 30, 31, 32, 33, 34, 35] can potentially provide an
elegant solution for non-feasible micro-scale simulations performed in very large
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computational domains. The main challenge in developing efficient hybrid methods [36] is
formulating robust interface conditions coupling multiple descriptions (e.g., continuum,
atomistic, mesoscopic) such that the main physical quantities (mass, momentum, and
energy) and their fluxes are conserved at the domain interface. In general, most existing
hybrid methods can be classified into two main categories of coupling approaches [36]: (i)
the state-exchange method [28, 32, 33, 34, 37, 35] and (ii) the flux-exchange method [29,
30, 31] or their combination.

The state-exchange method relies on the state information (e.g., boundary velocity) which is
transferred between various descriptions across the interfaces of (in most cases) overlapping
domains. In the overlapping region all participating descriptions must be valid and the
constrained dynamics is often imposed via a dynamic relaxation technique [34]. The state-
exchange method is closely related to the alternating Schwarz method [38], where the
integration in continuum and atomistic domains is performed in a sequential or simultaneous
fashion with a consecutive coupling strategy between different domains. The main drawback
of the state-exchange method is that the information propagation (e.g., flow development)
through the interface may be unphysical, resulting in a slow convergence to steady-state for
steady-flow problems or in significant restrictions of the method’s applicability to fast
unsteady flows. In general, the state-exchange method can properly handle unsteady flows
which can be considered as quasi-steady.

The flux-exchange method is based on the exchange of relevant fluxes (e.g., mass flux,
momentum flux) between different descriptions. Even though the flux-exchange method
naturally follows the conservation laws, it does not guarantee the continuity of state
variables, which may require an additional treatment [39]. Moreover, the flux-exchange
method appears to be more restrictive with respect to an efficient time decoupling [36] than
the state-exchange method, which is absolutely necessary for a large disparity of timescales
in atomistic and continuum representations. The choice of a particular hybrid method or of
their combination is dictated by the flow problem, i.e., considering the main flow
characteristics, the disparity of length and time scales, and the efficiency of the chosen
algorithm.

Imposing interface conditions at artificial boundaries of atomistic and continuum domains
creates an additional challenge in coupled simulations. Even though boundary conditions
(BC) in continuum approaches can often be properly imposed, the extraction of required
state information from atomistic particle-based solution is a difficult task. The extraction of
the mean field properties (ensemble averages) typically requires spatio-temporal sampling of
characteristics computed by atomistic solver. Hadjiconstantinou et. al. [40] obtained an a
priori estimate for the number of samples required to measure the average of flow properties
in a cell of a selected volume for a fixed error. The number of samples depends on the
significance of deterministic flow properties with respect to the thermal fluctuations
amplitude and can be very large if thermal fluctuations overwhelm deterministic flow
characteristics. There are also approaches which attempt to minimize the drawback of the
presence of thermal fluctuations [39] or to filter them out as we will present in this paper.
Non-periodic BCs in particle methods are associated with particle insertions/deletions [41]
and the application of effective boundary forces [33, 35, 42]. The existing BC algorithms for
Newtonian fluids in particle methods work quite well; however, the corresponding
algorithms for complex fluids (e.g., polymeric and biological suspensions) are still under
active development. Insertion of bonded particles (e.g. polymers, red blood cells, etc.)
demands more sophisticated methods than insertion of non-bonded particles (e.g.,
representing blood plasma). The main challenge here is to minimize non-physical
disturbances in local density and velocity fluctuations.
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In summary, for multiscale modeling of blood flow we need to address all the
aforementioned challenges. The first challenge is in deriving mathematical models
accurately predicting physiological processes. The second challenge is designing robust
interface conditions required to integrate the continuum and atomistic simulations. The third
challenge is in processing non-stationary data from atomistic simulations. Due to relatively
frequent data exchange between the stochastic and deterministic solvers, statistical
averaging should be performed on data calculated within short time intervals. The fourth
challenge is a computational one. In particular, billions of degrees of freedom are required to
accurately resolve the micro-scales and also the interaction between the blood cells and
endothelial cells in a volume as small as 1mm3. Simulating effects of small scales on the
larger scales requires increased local resolution in the discretization of computational
domain with the continuum description. For example, clot formation starts from aggregation
of individual blood cells and the clot must grow to a certain size before affecting the large
scale flow dynamics. However, to accurately capture the clot geometry and its shading off
segments, very high local resolution is required. Moreover, to follow the detached clot
segment an adaptive local hp-type mesh refinement must be used.

In this paper we address some of the aforementioned difficulties. In section 2 we describe
the numerical methods applied to simulate blood flow and clot formation process at various
scales with sufficiently high resolution. In the same section we describe our approach for
coupling the atomistic and continuum solvers. Specifically, we review the interface
conditions and ways to increase the computational efficiency. In section 3 we present results
of coupled simulations of a blood flow and clot formation in a simplified domain of an
artery and also in a patient-specific brain vasculature with an aneurysm. In section 4 we
summarize our study, discuss the current limitations of our methods, and provide an outlook
for future development.

2. Methods
In this section we describe the numerical methods used to simulate blood flow at both
continuum and atomistic levels. First, a numerical method for solving the Navier-Stokes
equations using a continuum description is reviewed. Specifically, we focus on spatio-
temporal discretization and on the smoothed profile method (SPM) [43, 44] implemented in
our research code εκ αr. Second, we describe a numerical approach for coarse-grained
atomistic simulation using the dissipative particle dynamics (DPD) method [45, 46] and a
projection method of atomistic data to continuum field. Finally, coupling of the continuum
solver εκ αr with the atomistic solver DPD-LAMMPS (based on the open source
LAMMPS code [47]) is described.

2.1. Continuum-based modeling: spectral element method
The large-scale flow dynamics is modeled by the Navier-Stokes equations:

(1)

where u is the velocity vector, p is the pressure, ν is the kinematic viscosity, t is the time,
and f is a force term, which we will discuss in more detail further below. The flow problem
is defined in a rigid domain ΩC of arterial networks. To model large-scale flow dynamics,
we assume blood to be an incompressible Newtonian fluid with constant density and
viscosity.

The three-dimensional (3D) Navier-Stokes equations are solved using the open-source
parallel code εκ αr developed at Brown University. εκ αr employs the spectral/hp
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element spatial discretization (SEM/hp) [48], which provides high spatial resolution and is
suitable for solving unsteady flow problems in geometrically complex domains. The
computational domain is decomposed into polymorphic elements. Within each element the
solution of equation (1) is approximated by hierarchical, mixed order, semi-orthogonal
Jacobi polynomial expansions [48]. Figure 2 shows an illustration of the domain
decomposition and the polynomial basis used in εκ αr. For time integration εκ αr
employs a high-order semi-implicit time-stepping scheme [49].

To simulate moving objects or time-evolving structures within a fixed computational
domain we use the smoothed profile method [43, 44]. SPM belongs to the family of
immersed boundary methods, and hence it has no requirements on the mesh to be conformal
with the boundaries of moving objects or structures. The forcing term f in equation (1) is
computed using SPM such that no-slip boundary conditions (BCs) are weakly imposed at
any (virtual) surface Γv(t, x) ∈ ΩC.

The equations (1) are solved in several steps using the numerical scheme outlined below. In
the following equations the index n in the scheme corresponds to the time step tn = nΔt,
where Δt is the size of a time step; γ0 and αk are coefficients for the backward
differentiation, βk are extrapolation coefficients, and Je is the time discretization order.

The first step in solving equation (1) includes explicit computing of the provisional velocity
field u*:

(2)

In the second step we solve implicitly the Helmholtz equation for each velocity vector
component:

(3)

where the pressure field p is computed from the Poisson equation:

(4)

The Poisson equation for p is derived by applying the divergence operator to equation (3)
and using the condition ∇ · u ≡ 0. In the case of zero force term, the second step completes
the numerical integration of equation (1) and the solution vector at time step t + Δt is
defined to be un+1 = ũ. With a non-zero force term, an additional step is required to obtain
solution at time step t + Δt.

At the third step, the velocity field ũ obtained in the second step is corrected in order to
impose no-slip BCs at moving boundaries Γv(t, x):

(5)

where the pressure field p̃ is calculated from:

(6)
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The Poisson equation for p̃ is derived by applying the divergence operator to equation (5)
and assuming that ∇ · un+1 ≡ 0.

The scalar field φ(t, x) in equation (6) is the so-called indicator function. This function is
zero outside the region(s) bounded by Γv(t, x), while inside this region(s) φ(t, x) = 1. Note
that φ(t, x) is not a step function such that it smoothly varies from zero to one around Γv(t, x)
with φ(t, Γv) = 0.5. The vector up(t, x) specifies required flow velocity with its values being
important only for φ(t, x) > 0. The smoothness of fields φ and up is very important, since
high-order accuracy can only be achieved for smooth fields. In section 2.3 we will further
extend the discussion of Γv, φ, and up, and show the relation of these fields to data provided
by the atomistic solver.

The patient-specific arterial network considered in our study is very large. Moreover, to
accurately represent the wall shear stresses (an important characteristic in biological flows)
high spatial resolution is required. This leads to an extremely large size of computational
problem (in terms of degrees of freedom (DOF)) with O(109) DOF. To efficiently solve such
large problem we employed a multi-patch domain decomposition method [50]. This method
decomposes the full tightly-coupled problem into a number of small tightly-coupled
problems defined in subdomains (patches), where the global continuity (coupling) is
enforced by providing proper interface conditions. Thus, the multi-patch method
significantly improves computational efficiency and essentially removes the limits imposed
due to large problem size. The multi-patch approach is well suited with the functional
decomposition strategy we employ in multiscale simulations such that in each patch a
different numerical model for the flow problem can be applied. For example, the
computational domain of brain arteries shown in figure 1 is decomposed into four patches,
but only one patch has an interface with the atomistic solver, where the SPM method is
employed. The solution of equation (1) with a non-zero force term implies that one more
Poisson equation and three additional projection problems must be solved, which practically
doubles the computational effort. Using the flow solver with the SPM in a single patch leads
to a better management of computational resources.

2.2. Atomistic based modeling: dissipative particle dynamics method
To model blood flow dynamics at atomistic/mesoscopic scale we employ a coarse-grained
stochastic molecular dynamics approach [51] using the dissipative particle dynamics (DPD)
method [45, 46]. DPD is a mesoscopic particle method with each particle representing a
molecular cluster rather than an individual molecule. The DPD can be seamlessly applied to
simulate bonded structures (e.g., polymers, blood cells) and non-bonded particles (e.g.,
blood plasma). The DPD system consists of N point particles interacting through
conservative, dissipative, and random forces given respectively by

(7)

where r̂ij = rij/rij, vij = vi − vj, Δt is the time step, and rc is the cutoff radius beyond which all
forces vanish. The coefficients aij, γ, and σ define the strength of conservative, dissipative,

and random forces, respectively. ωD and  with the exponent k are weight
functions, and ξij = ξji is a normally distributed random variable. The random and
dissipative forces form a thermostat and must satisfy the fluctuation-dissipation theorem
[46] leading to the two conditions: ωD(rij) = [ωR(rij)]2 and σ2 = 2γkBT with T being the
equilibrium temperature. The motion of DPD particles is governed by Newton’s law:
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(8)

The atomistic problem is defined in a fixed non-periodic domain ΩA, where the fluid is
represented by a collection of solvent particles with a number of suspended platelets. The
domain boundaries ΓA are discretized into triangular elements , where local BC velocities
are imposed. In general, we impose effective boundary forces Feff on the particles near
boundaries that represent solid walls and inflow/outflow BCs. Such forces impose no-slip
BCs at solid walls and control the flow velocities at inflow/outflow [42]. In addition, at
inflow/outflow we insert/delete particles according to local particle flux [42]. Figure 3
presents a typical discretization of ΓA. In coupled atomistic-continuum simulations the BCs
prescribed at ΓA are based on data received from the continuum solver, which will be
described in the next section.

Coupling of atomistic and continuum solvers requires the calculation of averaged properties
in ΓA such as velocity and density. Accurate computing of the averaged fields through
processing of atomistic data presents several challenges including geometrical complexity of
the atomistic domains, thermal fluctuations, and flow unsteadiness. To compute average
properties we adopt a spatio-temporal binning strategy. The computational domain ΩA is
discretized into tetrahedral elements (bins) Ωb. The time-space average velocity and density
are computed by sampling data over predefined time intervals Δts within each bin:

(9)

where ūb denotes the average velocity in bin b, Np is the number of particles n passing
through Ωb over the time interval Δts = NtsΔt, and  is the velocity of a particle i at time
step n.

The averaging of atom properties over bin’s volume leads to cell centered data, which is
discontinuous at the bin interfaces. As we mentioned above, the spectral convergence in the
spectral element method can be achieved only for smooth fields. To map the cell centered
data to a vertex centered C0 continuous field we apply a projection operator Pcc2vc:

(10)

where v represents a vertex of Ωb, Nb is the number of bins sharing the vertex v, and ωvb are
the normalized integration weights: ∀v Σb ωvb = 1. The weights are inversely proportional
to the distance between the vertex v and the center of bin b. An alternative method to
compute vertex centered flow properties is to sample the atomistic data within a spherical
volume centered at the vertices of elements Ωb. Both methods produce similar results, while
the main difference is in computational complexity. In general, it is computationally more
efficient to determine if a particle is located inside a spherical bin in comparison to that
inside a polymorphic element. Moreover, the number of vertices is typically a fraction of the
number of elements. However, possible overlap between the volumes centered at each
vertex requires that the location of each particle is tested in a number of spherical bins,
which significantly increases the computational burden. In case of hexahedral bins, where
bin faces are properly aligned with the coordinate system, calculation of cell centered data
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and their projection on the vertex centered configuration is the most efficient. However,
such hexahedral bins cannot be used in arbitrary complex geometries.

The accuracy in computing of average properties is controlled by the size of a bin and the
time interval Δts. In steady flows Δts can be chosen very large to minimize the effect of
thermal fluctuations and accurately capture the deterministic component. In non-stationary
flows, for instance blood flow considered in our study, the averaged properties are time
dependent, and it is not always clear how to define the time interval Δts. Thus, data
averaged over a short Δts may be very noisy due to thermal fluctuations, while averaging
over a long Δts will inadequately approximate the time variation of the deterministic
component within the atomistic fields. In order to overcome this difficulty we employ the
window proper orthogonal decomposition (WPOD) [52, 53]. WPOD is a spectral analysis
tool used to transform a field into M orthogonal temporal and spatial modes. The low-order
POD modes contain most of the energy and correspond to the ensemble average field, while
the high-order POD modes reflect thermal fluctuation components. To construct the POD
modes we apply the method of snapshots [54], where each snapshot contains a spatio-
temporal average of atomistic data computed over a relatively short Δts. Figure 4 illustrates
the application of WPOD method for processing of atomistic data. The plots clearly show
that WPOD substantially improves the accuracy in the reconstruction of the time dependent
average flow field and also its derivatives. For this problem, the averaged solution obtained
with the WPOD technique was approximately one order of magnitude more accurate (in L2-
norm) than the solution obtained using standard averaging. Our simulation tests indicate that
in order to achieve a certain accuracy, the WPOD approach allows us to balance the number
of POD modes and the length of time interval Δts for averaging of a single snapshot. Figure
5 shows that for MΔts = const identical accuracy in reconstruction of the deterministic
component of an unsteady flow can be achieved in practice.

2.3. Coupled atomistic-continuum solver
To construct a solver for multiscale simulations we couple the continuum solver εκ αr
with the atomistic solver DPD-LAMMPS. A schematic representation of functional
decomposition implemented in our coupled solver is presented in figure 6 and an example of
a coupled problem is provided in figure 1. Each solver fully preserves its original
capabilities, in particular the multi-patch domain decomposition in εκ αr and multiple
replicas to compute the statistical properties more accurately in DPD-LAMMPS.
Independent tightly-coupled problems are solved within each continuum or atomistic
domain using non-overlapping groups of processors. Additional sub-groups of processors
are derived to handle tasks required to impose BCs at inlets/outlets and also at inter-domain
interfaces.

Coupling of the atomistic and continuum solvers follows the framework described in [35],
where the continuum solver for Navier-Stokes equations is coupled to DPD and also to
molecular dynamics (MD). The flow domain is decomposed into a number of overlapping
regions, which may employ different descriptions such as MD, DPD, or continuum. Each
sub-domain is integrated independently. The coupling between overlapping sub-domains is
performed by exchanging state variables every Δτ in time progression as shown in figure 7.
The time Δτ may correspond to a different number of time steps for distinct descriptions. In
this paper we also extend the method of [35] and apply it to unsteady flow in a complex
geometry.

To set up a multiscale problem with heterogeneous descriptions we have to define length
and time scales. In principle, the choice of spatio-temporal scales may be flexible, but it is
limited by various factors such as method applicability (e.g., stability, flow regime) and
problem constraints (e.g., temporal resolution, microscale phenomena). For example, a unit
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of length (LC) in ΩC corresponds to 1 mm, while a unit of length (LA) in ΩA is about 1 μm.
In addition, fluid properties (e.g., viscosity) in different descriptions may not necessarily be
in the same units in various methods. To properly couple different domains we are required
to consistently non-dimensionalize the time and length scales and to match non-dimensional
numbers which characterize the flow. For example, to match the Reynolds number (Re) in
different domains the velocity in ΩA is scaled as:

(11)

where νC and νA are the kinematic fluid viscosities in the ΩC and ΩA. The time scale in
each sub-domain is defined as t ~ L2/ν and is governed by the choice of fluid viscosity. In
our simulations a single time step in the continuum solver (ΔtNS) corresponds to 20 time
steps in the atomistic solver (ΔtDPD). The data exchange between the two solvers occurs
every Δτ = 10ΔtNS = 200ΔtDPD ~ 0.0344 s.

Figure 8 illustrates the setup for coupled atomistic-continuum simulation of platelet
aggregation. First, the continuum domain ΩC is created. Second, the atomistic domain ΩA is
placed in the area of interest, such that ΩA ∈ ΩC. Third, an additional sub-domain ΩS for
sampling of atomistic data is inserted into ΩA such that ΩS ∈ ΩA. The boundaries of ΩA are
discretized using 2D elements (triangles), while the volume of ΩS is discretized using 3D
elements (bins).

The interface conditions used for atomistic-continuum coupling are based on the
requirements for each solver. The atomistic solver requires a local velocity flux to be
imposed at each element  of ΓA. The coordinates of  centers are provided by the
atomistic solver to the continuum solver at the preprocessing stage, and interpolation
operators projecting the velocity from the continuum filed onto the centers of  are
constructed. During time integration data computed by the continuum solver is interpolated
and transferred to the atomistic solver. The continuum solver also requires the indicator
function φ and the velocity up. The main objective of the simulation shown in figure 8 is to
study the formation of blood clot. The clot is formed by aggregation of the DPD particles
(platelets) on the arterial wall, i.e., the blood clot is simulated by the atomistic solver. The
interaction between the micro and macro scales strongly depends on the effects of the clot
growth on the flow. Specifically, the clot forms an obstacle attached to the wall, and also
some parts of the clot may break up and advect downstream. Since the clot is formed by an
evolving cluster of DPD particles which represent platelets, the local density of these
particles increases in comparison to that in bulk blood flow. To mimic this obstacle
(aggregate) we construct the indicator function φ in such a way that it has a value of one in
the region with high-density of active (sticky) platelets and zero in the region with normal
platelets density as in bulk flow. To this end, the indicator function is defined as:

(12)

where ρp(t, x) is the concentration of active platelets, ρ0 is the predefined threshold (in our
simulations ρ0 is two to three times greater than the bulk platelet density), and Łρ is the
scaling factor which controls the steepness of the indicator function. The values of the
indicator function are computed by the atomistic solver within ΩS at the coordinates which
correspond to the locations of grid points in ΩC. Due to a high-spatial resolution in the
continuum domain the number of grid points can be very large. To compute the indicator
function efficiently the density ρp(t, x) is first computed at the bin centers by spatio-
temporal averaging over time interval Δτ. Then, the projection operator Pcc2vc is applied to
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compute the vertex-centered data. The projection from cell-centered to vertex-centered data
is followed by the interpolation of ρp(t, x) at bin vertices to the grid points of ΩC using local
linear interpolation within each bin. The indicator function is then calculated from the
interpolated density values.

Monitoring the size of the blood clot over time may be a very difficult task. The major
challenge is to define the clot and its boundaries in terms of the active platelets and their
velocity. The description of the blood volume occupied by active platelets by an indicator
function provides a convenient method to measure the volume occupied by the clot. For
example, we may simply integrate the indicator function φ(t, x) over ΩA or ΩC instead of
counting individual active platelets. However, such method will also include the regions
occupied by moving objects composed of aggregated platelets, which are not a part of the
static blood clot near the wall. Thus, to make the estimation of the clot growth more reliable,
it might be necessary to introduce weights for the indicator function which assume a value
of one in the region of very slow flow and decay exponentially fast as the flow velocity
increases.

2.4. Platelet aggregation model
Platelets are modeled by single DPD particles with a larger effective radius [55] than that of
plasma particles and are coupled to the plasma through the DPD dissipative interactions.
The model of platelet aggregation is adopted from [56], where platelets can be in three
different states: passive, triggered, and activated. In the passive state, platelets are non-
adhesive and interact with each other through the repulsive DPD forces, which provide their
excluded volume interactions. Passive platelets may be triggered if they are in close vicinity
of an activated platelet or injured wall. When a platelet is triggered, it still remains non-
adhesive during the so-called activation delay time, which is chosen randomly from a
specified time range. After the selected activation delay time, a triggered platelet becomes
activated and adhesive. Activated platelets interact with other activated particles and
adhesive sites, which are placed at the wall representing an injured wall section, through the
Morse potential as follows

(13)

where r is the separation distance, r0 is the zero force distance, De is the well depth of the
potential, and β characterizes the interaction range. The Morse potential interactions are
implemented between every activated platelet or adhesive site if they are within a defined
potential cutoff radius rd. The Morse interactions consist of a short-range repulsive force
when r < r0 and of a long-range attractive force for r > r0 such that r0 corresponds
approximately to the effective radius of a platelet. Finally, activated platelets may become
passive again, if they did not interact with any activated platelet or adhesive site during a
finite recovery time.

2.5. Accuracy considerations
Validation of the mathematical models used for complex biological systems is extremely
difficult. Ultimately, it would require the possibility to perform experiments on the onset and
subsequent growth of the clot formation in the brain, which is currently not feasible. The
accuracy of the coupled atomistic-continuum solver depends on modeling and discretization
errors. Specifically, modeling errors in the continuum approach can be related to the
assumption of rigid vessel walls, while real vessel walls are deformable, and to uncertainties
in the inflow/outflow boundary conditions as well as in material properties. At the atomistic
level, the platelet aggregation model may also lead to modeling errors. We used the platelet
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aggregation method presented in [56], which produced platelet aggregation rates comparable
with experimentally observed ones in in-vitro experiments [57]. However, the clot formation
process may be very different in the brain, and its biomechanical details have not been
quantified yet. In addition, interactions between red blood cells, white blood cells, and
fibrinogen have to be included, and such interactions are particularly important for
simulating advanced stages of clot formation. Moreover, modeling clot formation at the
initial and intermediate stages may require the use of time-dependent models such that
aggregation interactions are time dependent, for example, to treat the depth of the Morse
potential (De) as a time-varying parameter.

The discretization errors are attributed to the usual time-space discretization parameters, i.e.,
Δt, h and p mesh refinement, errors in the DPD solver due to thermal noise, to coupling
errors between continuum and atomistic descriptions, but also to the statistical errors in
computing ensemble averages. The numerical accuracy of different components in our
coupled solver has been verified by performing time and space- discretization refinement in
the continuum solver. We have also performed atomistic simulations using three different
resolutions, with LA/LC ratio equal to 100, 200 and 400. Comparable results have been
obtained with LA/LC = 200 and LA/LC = 400, while the finest resolution has been used in
the simulations presented below. Errors in coupling the continuum and atomistic
descriptions for simulating stationary flows have been explored in [35], where it was shown
that convergence of solution in the continuum and atomistic domains can be achieved. Here,
we consider a non-stationary flow and a different approach for coupling the ΩA to ΩC, while
a similar approach for coupling ΩC to ΩA. Eventhough, we do observe that the main large
scale features of the flow computed in ΩA, i.e., generated secondary flows due to the
obstacle, are present in ΩC, the coupling approach may require additional verification steps
that need to be carefully designed in future studies. Numerical errors in sampling atomistic
data using WPOD have been addressed in section 2.2, and also in [53]. The errors in the
SPM method implemented in our solver have been explored in [44]; in general, the SPM
errors are sensitive to the h discretization and to the steepness of the indicator function.
Verification of accuracy of the SPM method has been performed in separate studies using
exact solutions, e.g. creeping flow (Wannier flow problem) and also simulations of fast
spinning marine propeller at Reynolds number up to 320K. In these simulations the
numerical errors could be kept quite low (1-5%) with a proper choice of the steepness of the
indicator function.

3. Results
In this section we present results of two multiscale simulations using the two-way coupling
approach and show the scalability of our coupled solver. The first test models thrombus
formation in an idealized cylindrical vessel with steady flow conditions at the inlet. The
second test corresponds to modeling thrombus development in an aneurysm using a patient-
specific domain of brain vasculature with unsteady flow conditions imposed at the domain’s
four inlets. In both cases the thrombus is formed next to a small wall section, where we
randomly place a number of adhesive sites, which mimic an injured wall. An atomistic
domain encloses the flow volume around the injured wall section such that five planar
surfaces of the domain are interfaced with the global continuum domain, while the sixth
boundary surface overlaps with the wall, see figures 9 and 10. The size of the atomistic
domain in both tests is chosen to be large enough to properly resolve and capture the
dynamics of thrombus formation (e.g., a unit length in the atomistic domain corresponds to
approximately 1 μm). The velocities in ΩA are scaled according to equation (11) in order to
keep the same Re number in both continuum and atomistic domains, since Re is the main
governing parameter for this flow. DPD particles representing blood plasma and passive
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(inactive) platelets are inserted at ΓA with a constant and uniform density according to local
velocity flux at the boundaries.

The code scalability study was performed using the patient-specific domain of brain
vasculature. A perfect strong scaling of our solver has been observed on up to 72 Racks
(about 300K cores) of BlueGene/P computer at the Jülich Supercomputing Centre and on up
to 190K cores of CRAY XT5 at the National Institute for Computational Sciences and Oak
Ridge National Laboratory.

3.1. Coupled simulations of platelet aggregation
Platelet deposition simulation in idealized vessel geometry was performed using a
continuum domain of a pipe with radius of 235 μm, where a Poiseuille flow (Re = 350) was
imposed at the inlet and zero pressure conditions at the outlet. An atomistic sub-domain of
size 100 × 200 × 100 μm3 was placed close to the pipe wall around the injured wall section
as shown in figure 9. The injured wall section was modeled by placing randomly a number
of adhesive sites within a circular region of the wall with radius of 22 μm and the particle
density 5/μm2. Platelet interactions were modeled with the Morse potential, see equation
(13). The strength of platelet adhesion De = [1000 2000] kBT was set to be sufficiently large
to ensure firm platelet adhesion. The other parameters were chosen to be β = 0.5 μm−1 and
r0 = 0.75 μm. The maximum activation delay time of triggered platelets was set to be
200ΔtDPD corresponding to approximately 0.0344 s. The platelet recovery time was equal to
20000ΔtDPD ≈ 3.44 s. The platelet time constants affect the dynamics of clot formation,
however they have an insignificant effect on the final thrombus structure. Note that our time
constants are smaller than those used in [56], which allows us to accelerate thrombus
formation for the modeling and code testing purpose. The bulk concentration of passive
platelets in blood flow was equal to 0.25 per μm3, which is larger than the normal platelet
concentration in blood and was used to accelerate the clot formation dynamics. The DPD
fluid (blood plasma) parameters are given in table 1. With these parameters, we obtain the
DPD fluid’s dynamic viscosity η = 2.952. The time step in simulations was set to ΔtDPD =
0.007.

Figure 9 presents the velocity field in the streamwise direction (z axis) computed by the
continuum and atomistic solvers. The clot size is shown by an iso-surface which
corresponds to the density level of active platelets 1.75 times larger than the bulk platelet
density in the atomistic domain (left plot). The obstacle shown by an iso-surface in figure 9
(right) corresponds to the indicator function level of φ = 0.5 in the continuum domain. The
velocity field near the platelet deposition gets distorted, since the thrombus serves as an
obstacle to the flow. The platelet aggregate grows dynamically to a certain size. Then, its
growth stops due to fluid flow stresses and thrombus instability as it becomes large. At this
point we observe the detachment of some parts of the clot and consequent minor re-growth.
It is clear that the attractive interactions with a finite strength between activated platelets and
adhesive sites can only sustain a finite shear stress, which increases with the thrombus
growth. The stability of a realistic blood clot is enforced by fibrinogen proteins, which form
a cross-linked network within the clot in order to maintain the integrity of a thrombus even
at high blood flow shear-stresses. Our model of platelet aggregation is not taking into
account the presence of such a protein network, and therefore the thrombus becomes
unstable above a certain size. As a conclusion, our platelet aggregation model is able to
capture only the initial clot growth, where fibrinogen does not play a significant role. To
capture thrombus formation beyond the initial growth, the current model has to include
fibrinogen network interactions within a thrombus, which we will pursue in the future.

Platelet deposition simulation in patient-specific brain vasculature with an aneurysm was
performed using the domain of Circle of Willis and its branches reconstructed from MRI
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images, see figures 1 and 10a. Patient-specific flow BCs at the four inlets and RC [58] BCs
for the pressure at all outlets of ΩC were imposed. The unsteady blood flow is characterized
by two non-dimensional flow parameters: Reynolds number Re = 394 and Womersley
number Ws = 3.7.

Three atomistic sub-domains with the volume of about 4 mm3 each were placed inside the
aneurysm as depicted in figure 1. The clot formation is modeled in the two sub-domains ΩA1
and ΩA2 attached to the wall. The approximate size of each sub-domain was 1.25×1.25×2.5
mm3. The injured wall section in the two sub-domains attached to the aneurysm wall was
modeled by a circular region of approximately 0.5 mm radius with the density 5/μm2 of
adhesive sites. The platelet interaction parameters, bulk density, and the characteristic
activation/deactivation times were set the same as those used for the platelet deposition
simulation in a pipe flow described above. The DPD fluid parameters are given in table 1.
The atomistic domain boundaries ΓA are discretized with more than 2000 triangular
elements, at which fluid particles and platelets either leave ΩAi or are inserted according to
the local velocity flux.

Figure 10 shows the velocity fields computed in ΩA1 and ΩC, where we find the solution to
be continuous across the continuum-atomistic interface. The atomistic data has been co-
processed using the WPOD which adaptively selects the number of POD modes for
reconstructing the ensemble average solution [53]. In this simulation between one and three
POD modes were required. The plot also illustrates that the coupled solver properly captures
blood flow profile within the atomistic sub-domains. Figure 11 presents the deposition of
active platelets at the injured wall section and illustrates shedding and advection of active
platelet clusters along the flow. In the left plot one can see the onset of thrombus formation,
where yellow particles depict activated platelets or adhesive sites at the aneurysm wall,
while red particles correspond to passive platelets in bulk flow. The right plot of figure 11
shows a snapshot later in time, where we observe platelet deposition and shedding of platelet
clusters. Significant advection of platelet aggregates along the flow appears to be due to
relatively fast platelet aggregation dynamics, which we assumed in order to accelerate the
clot formation, and due to a high bulk density of platelets. To further illustrate the initial clot
development within the aneurysm, figure 12 shows the clot size at two time instances.
Similarly to the first test of platelet deposition in pipe flow we observe a thrombus
instability as it grows beyond a certain size. One can also see that its development appears to
be non-steady and spatially non-uniform with a non-smooth structure. Several effects may
contribute to the irregular clot development including unsteady flow and varying local shear
rates and stresses both in time and space. In addition, our simulation times are rather short
O(1s), while realistic clot formation occurs on the timescale of at least several minutes.

3.2. Parallel performance of coupled solver
Table 2 presents results for strong scaling of our coupled solver in simulations of platelet
aggregation in patient-specific brain vasculature with an aneurysm. The number of DPD
particles employed is 823,079,981 which corresponds to more than 8 billion molecules
assuming a coarse-graining factor 10 : 1 in the DPD method. We note that we also employ
non-periodic BCs and have to update the particle neighbor lists (function neigh_modify in
LAMMPS) every time step. The atomistic solver obtains data from the Navier-Stokes solver
every 200 steps, while the continuum solver obtains data from the atomistic solver every 20
time steps. The CPU-time presented in table 2 also includes the time required to save on the
disk averaged velocity and density fields by DPD-LAMMPS every 500 timesteps. In the
coupled multiscale simulations we observe a super-linear scaling, which can be attributed to
two factors: i) a better utilization of cache memory; and ii) a reduction in computational load
per single CPU required to impose interface conditions by the atomistic solver. In general,
the computational cost in DPD-LAMMPS is linear, i.e. ∝ C N, where C can be considered
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to be nearly constant for a fixed simulation system, since it depends on the number of
particle neighbors, the choice of inter-particle interactions, and on the number of triangular
elements in boundary discretization, while N is the number of particles in each partition.
However, the dependence of C on BCs and specifically on the number of faces  for each
partition might be significant. Thus, for normal scaling, i.e. without BCs, N decreases as the
number of cores increases, while C remains constant. The use of non-periodic BCs,
however, causes C to also decrease resulting in the super-linear scaling.

4. Summary and Outlook
In this paper we have presented some advances towards the development of a new
methodology for multiscale simulations of blood flow with focus on brain aneurysms.
Specifically, we have applied this methodology to simulate platelet deposition in a patient-
specific domain of cerebro-vasculature with an aneurysm. The simulations have been
performed using a hybrid continuum-atomistic solver which couples the high-order spectral
element code εκ αr with the atomistic code DPD-LAMMPS. A two-way coupling
between the atomistic and continuum fields has been implemented. The continuum solver
feeds the atomistic solver with data at the boundaries of the atomistic domain (interface
conditions). The atomistic solver provides to the continuum solver volume data required to
prescribe the location and the speed of an obstacle (clot) within the continuum description
by means of an immersed boundary method. The hierarchical task decomposition and
multilevel communicating interface designed to couple heterogeneous solvers and to
perform an efficient data exchange are key features to scaling on hundreds of thousands
computer cores.

While the coupled solver incorporates several numerical techniques, additional modeling
and algorithmic issues should be addressed. The future modeling issues include:

• developing a model for interaction of blood cells and endothelial cells to simulate
more advanced stages of clot growth.

• modeling of fibrinogen in clot formation.

• modeling the stability of the clot and, specifically, simulation of thrombus break up
and its advection through the vascular network.

• model validation by comparing simulation results to experiments - a rather difficult
task.

The algorithmic issues include:

• capturing the interface with plasma more accurately by adaptive hp-refinement,
where the clot is formed.

• simulating clot disaggregation and its advection through the arterial network
beyond the area bounded by the atomistic sub-domain. To this end, we will need to
develop an atomistic domain moving with the clot, or, otherwise, simulating the
detached part of the thrombus using a continuum approach through fluid-structure
interaction.

• simulation of moving clot will also need to integrate the solution of a contact
problem in order to model the interaction between the blood flow, vessel walls and
the thrombus.

• modeling blood vessel wall deformations, which presents a substantial challenge on
its own and will add additional complexity.
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The aforementioned issues refer to the hemodynamic aspects of the problem. However,
addressing the issue of rupture of the aneurysm, as discussed in the Introduction, will require
coupling of our solvers to an advanced solid mechanics code that will account for the
anisotropic structure of the formed thrombus and its interaction with the tissue [59]. This
complex multiscale/multiphysics problem remains untackled so far.
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Figure 1.
Blood flow in the brain is a multiscale problem. Left: the macrodomain where the large-
scale flow dynamics is modeled by the Navier-Stokes equations; different colors correspond
to different computational patches (Courtesy of Prof. J.R. Madsen, Harvard Medical
School). Shown in the inset are the microdomains where dissipative particle dynamics is
applied to model the micro-scale features. Right: Scanning electron microscope image of the
inside layer of a ruptured MCA aneurysm showing the disrupted pattern of endothelial cells
and blood cells adhered to the inter-endothelial cell gaps [9].
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Figure 2.
A schematic of the unstructured surface grid and the polynomial basis employed in εκ 
αr. The computational domain is decomposed into non-overlapping elements. Within each
element the solution is approximated by mixed order, semi-orthogonal Jacobi polynomial
expansions. The shape functions associated with the vertex, edge and face modes for a
fourth-order polynomial expansion defined on triangular and quadrilateral elements are
shown in color.
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Figure 3.
(in color) Atomistic domain ΩA with a triangulation of the domain boundaries ΓA. Colors
represent the y–component of the velocity imposed at ΓA.
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Figure 4.
(in color) Processing of data from the DPD simulation of unsteady flow in a pipe: (a) -
averaged solution (streamwise velocity component, aligned with the x axis) computed with a
standard averaging with Nts = 50; (b) - averaged solution processed with the WPOD; here
the data is reconstructed using the first two POD modes. (c) -exact solution. (d–f) - gradients
of the streamwise component of the velocity filed.
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Figure 5.
(in color) Processing of data from the DPD simulation of unsteady flow in a pipe: accuracy.
The streamwise velocity is computed from atomistic data using the WPOD method. The
time window over which the data is processed is kept constant. Black solid curve - each
snapshot is computed over 100 time steps, number of POD modes is 40. Red dot-dash curve
- each snapshot is computed over 200 time steps, number of POD modes is 20.
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Figure 6.
A schematic representation of task parallelism in our coupled solver. The continuum domain
is partitioned into N overlapping patches ΩCi, and the patches exchange data via inter-patch
communicators. Each ΩCi has multiple inlets and outlets, and each patch may be connected
to 0D or 1D arterial network model in order to model BCs for inlets/outlets. Two atomistic
domains ΩAi are placed inside ΩC1. Each ΩAi can be replicated several times to reduce
statistical error. Each ΩAi is linked to a ΩC1via two interfaces: A 2D interface which
considers the boundaries of ΩAi and uses data computed in ΩCi as BCs. A 3D interface,
which is tailored to the immersed boundary method; ΩC1 uses an external force field
computed in ΩAi.
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Figure 7.
A schematic representation of the time progression in different sub-domains. The time step
ratio employed in our study is ΔtNS/ΔtDPD = 20, and Δτ = 10ΔtNS = 0.0344s.
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Figure 8.
(in color) A coupled atomistic-continuum simulation: illustration of computational domains
and inter-domain data exchange. An atomistic domain ΩA fully embedded into the
continuum domain ΩC in the region where platelet (yellow dots) deposition is simulated.
Interface velocity conditions are imposed at the boundaries ΓA of ΩA. Virtual boundary
conditions for velocity are imposed inside ΩC using the smoothed profile method, which
requires the indicator function Φ(t, x) and the particle velocity up(t, x).The fields Φ(t, x) and
up(t, x) are sampled within the sub-domain ΩS placed inside ΩA. Right – computational
domain of an aneurysm ΩA ∈ ΩC is placed at the wall of ΩC, where the contact surface is
colored in purple.
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Figure 9.
Pipe flow: coupled continuum-atomistic simulation with Re = 350. A clot is formed by
platelet aggregation at the wall of a pipe. Left - atomistic modeling. Streamlines show the
flow direction; colors show the stream-wise velocity component magnitude; iso-surface
corresponds to the active platelet density 1.75 times larger than the bulk normal density.
Right - continuum modeling. Streamlines show the flow direction; colors show the stream-
wise velocity component magnitude; obstacle is shown by plotting an iso-surface of
indicator function φ = 0.5.
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Figure 10.
Brain vasculature: coupled continuum-atomistic simulation. Continuity in the velocity fields
computed by the continuum and atomistic solvers. Streamlines and vectors depict
instantaneous flow direction.
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Figure 11.
Brain vasculature: coupled continuum-atomistic simulation of platelet aggregation at the
wall of an aneurysm with Re = 394 and Ws = 3.75. Yellow dots correspond to active
platelets and red dots to inactive platelets. Streamlines depict instantaneous velocity field. (i)
Onset of clot formation; (ii) Clot formation as it progresses in time and space, and
detachment of small platelet clusters due to shear-flow.
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Figure 12.
Brain vasculature: coupled continuum-atomistic simulation of platelet deposition at the wall
of an aneurysm with Re = 394 and Ws = 3.75. Left - side view; right - bottom view. Yellow
dots - active platelets; streamlines with arrows depict the flow direction; colors correspond
to the velocity magnitude. (a) - onset and (b) advanced stage of clot growth.
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Table 2

Coupled εκ αr-DPD-LAMMPS solver: strong scaling in coupled blood flow simulation in the domain of
figure 1. Ncore is the number of cores and CPU-time is the time required for 4,000 DPD-LAMMPS timesteps.
The total number of DPD particles is 823,079,981. Efficiency is computed as a gain in CPU-time divided by
the expected gain due to increase in Ncore with respect to a simulation with lower core-count. Simulations
were performed on IBM Blue-Gene/P computer at Jülich Supercomputing Centre in Forschungszentrum Jülich
(FZJ) and on CRAY XT5 computer at the National Institute for Computational Sciences and Oak Ridge
National Laboratory.

Ncore CPU-time [s] efficiency

Blue Gene/P (4 cores/node)

32,768 3580.34 –

131,072 861.11 1.04

262,144 403.92 1.07

294,912 389.85 0.92

Cray XT5 (12 cores/node)

21,396 2194 –

30,036 1177 1.24

38,676 806 1.10

97,428 280 1.07

190,740 206 .68
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