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Abstract

Serotonin (5-hydroxytryptamine, 5-HT) is known for its key role in modulating diverse physiological processes and behaviors
by binding various 5-HT receptors. However, a lack of pharmacological knowledge impedes studies on invertebrate 5-HT
receptors. Moreover, pharmacological information is urgently needed in order to establish a reliable classification system for
invertebrate 5-HT receptors. In this study we report on the molecular cloning and pharmacological characterization of a 5-
HT1 receptor from the red flour beetle, Tribolium castaneum (Trica5-HT1). The Trica5-HT1 receptor encoding cDNA shows
considerable sequence similarity with members of the 5-HT1 receptor class. Real time PCR showed high expression in the
brain (without optic lobes) and the optic lobes, consistent with the role of 5-HT as neurotransmitter. Activation of Trica5-HT1

in mammalian cells decreased NKH-477-stimulated cyclic AMP levels in a dose-dependent manner, but did not influence
intracellular Ca2+ signaling. We studied the pharmacological profile of the 5-HT1 receptor and demonstrated that a-
methylserotonin, 5-methoxytryptamine and 5-carboxamidotryptamine acted as agonists. Prazosin, methiothepin and
methysergide were the most potent antagonists and showed competitive inhibition in presence of 5-HT. This study offers
important information on a 5-HT1 receptor from T. castaneum facilitating functional research of 5-HT receptors in insects
and other invertebrates. The pharmacological profiles may contribute to establish a reliable classification scheme for
invertebrate 5-HT receptors.
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Introduction

Biogenic amines play an important role in very diverse

physiological processes and behaviors. In insects, the six major

biogenic amines are serotonin (5-hydroxytryptamine, 5-HT),

dopamine, tyramine, octopamine, acetylcholine and histamine.

5-HT is known to play a crucial role in the regulation of important

processes in most, if not all, animal phyla. Alterations in 5-HT

neurotransmission are associated with several human disorders,

such as migraine, depression, schizophrenia and anxiety [1].

Normal human processes, such as sleep, mood level, appetite,

sexual activity and learning abilities are also modulated by 5-HT.

In insects, 5-HT signaling controls nutrition [2], modulation of

heart rate [3], secretory processes in the salivary gland [4–7],

development [8], circadian rhythms and sleep regulation [9,10],

aggression [11], behavioral gregarization in locusts [12,13],

phototactic behavior in honeybees [14] and learning and memory

in fruit flies [15,16].

To mediate such a variety of processes, 5-HT acts through

multiple 5-HT receptor types. In vertebrates, 5-HT receptors are

divided in seven main classes. Six of these are G protein-coupled

receptors (GPCRs) and the sole exception, 5-HT3, is a ligand-

gated ion channel. GPCRs play a vital role in many essential

signaling pathways in all eukaryote organisms. The vertebrate 5-

HT GPCRs (5-HT1,2,4–7) were classified based on their sequence

similarities, gene organization, downstream signaling pathways

and pharmacological properties [17–20]. 5-HT1 and 5-HT5

receptors couple preferentially to Gi/o proteins and thus inhibit

cyclic AMP (cAMP) synthesis. 5-HT2 receptors couple preferen-

tially to Gq/11 proteins which cause an increase in cytosolic Ca2+

levels. 5-HT4, 5-HT6 and 5-HT7 receptors are all preferentially

linked to Gs proteins and promote cAMP production.

The major classes, 5-HT1, 5-HT2, and 5-HT6, probably

evolved from a primordial 5-HT receptor over 750 million years

ago. The 5-HT5 and 5-HT7 receptor classes diverged from 5-HT1

650 to 700 million years ago [21,22]. Since these events even

predate the estimated divergence of protostomes and deutero-

stomes about 600 to 650 million years ago [23], the invertebrate

and vertebrate serotonergic systems are believed to possess roughly

the same main receptor classes [21,24]. However, evolution

allowed further differentiation in various subtypes within each

main class, and these subtypes are believed to have evolved

independently in vertebrates and invertebrates [21,25]. Thus far,

only four types of 5-HT receptors are characterized in insects,

namely 5-HT1A, 5-HT1B, 5-HT2, and 5-HT7 [8,14,26–29].

Classification of invertebrate 5-HT receptors according to the
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existing vertebrate classes is mainly based on well conserved amino

acid sequences and activated second-messenger systems for 5-HT

receptors across all species. On the other hand, pharmacological

profiles from insect (and other invertebrate) receptors seem to

differ significantly from those of vertebrates [25]. Since only very

few data about pharmacological properties of invertebrate 5-HT

receptors are available, there is no general classification system for

invertebrate 5-HT receptors based on pharmacological properties

yet. This explains the need for detailed pharmacological studies on

insect and other invertebrate 5-HT receptors.

In the present study, we will discuss the characterization of a 5-

HT1 receptor from the red flour beetle, Tribolium castaneum (Trica5-

HT1). The genome of T. castaneum has been completely sequenced

(Tribolium Genome Sequencing Consortium) [30]. Use of annota-

tion software led to the discovery of twenty Tribolium genes that

code for putative biogenic amine GPCRs. All these proteins have

orthologues in Drosophila melanogaster and Apis mellifera [31]. Four

receptors could be assigned as putative 5-HT receptors based on

sequence similarity to 5-HT receptors of D. melanogaster and A.

mellifera [8,14,26–28,31]. After cloning the Trica5-HT1 cDNA, we

analyzed its tissue distribution by quantitative real-time PCR

(qRT-PCR) and elucidated its downstream signaling pathway. In

cells expressing Trica5-HT1, application of 5-HT inhibited NKH-

477 (a water-soluble forskolin analog) stimulated cAMP synthesis.

The pharmacological profile of the receptor was established after

application of several synthetic 5-HT receptor agonists and

antagonists. These results will facilitate future in vivo studies aiming

to unravel the contribution of individual 5-HT receptors to the

animals’ physiology and behavior.

Materials and Methods

Animal Rearing Conditions
Beetles were reared in a dark incubator at 30uC on wheat flour

and brewer’s yeast in Petri dishes. Adult beetles were sexed based

on the presence of a small patch of short bristles on the inside of

the first pair of legs in males, according to the T. castaneum rearing

protocol (http://bru.gmprc.ksu.edu/proj/tribolium/wrangle.asp)

[32].

Cloning of Trica5-ht1 and Construction of pcTrica5-ht1
Expression Vector

The full length sequence encoding the receptor was amplified

with PCR using whole body T. castaneum cDNA, Taq polymerase

(REDTaqHReadyMixTMPCR Reaction Mix, Sigma-Aldrich), and

10 mM of sense primer 59-ATGGGGACAGTAAA-

TAATCCCTCCTG-39 and antisense primer 59-TTATC-

TAATTTTGCCCGAGCGG-39 (Sigma-Aldrich). Primers were

designed based on sequences available in Beetlebase (Tcas_3.0;

http://www.beetlebase.org/) [33] released by the Human Ge-

nome Sequencing Center. PCR started with initial denaturation

for 2 min at 95uC, followed by 35 cycles of [30 s at 94uC, 30 s at

62uC, 2 min at 68uC], followed by final elongation for 2 min at

68uC. Amplification products were run on a 1.2% agarose gel and

purified with the GenEluteTM Gel extraction Kit (Sigma–Aldrich).

The DNA fragments were cloned into a pcDNA3.1/V5-His-

TOPOHTA expression vector via TA TOPO cloning (Invitrogen)

and transformed into One Shot TOP10 chemically competent

Escherichia coli cells (Invitrogen). Bacteria were grown according to

the protocol recommended by the kit. Plasmids were isolated via

the GenEluteTM HP Plasmid Miniprep kit (Sigma-Aldrich) and

DNA sequences were determined by means of the ABI PRISM

3130 Genetic Analyzer (Applied Biosystems) following the protocol

outlined in the ABI PRISM BigDye Terminator Ready Reaction

Cycle Sequencing Kit (Applied Biosystems). Bacterial cells known

to contain the correct receptor insert were grown at large scale in

100 ml Luria–Bertani broth medium. The expression vectors were

subsequently isolated from these cells using the EndoFree Plasmid

Maxi Kit (Qiagen) according to the protocol recommended by the

kit.

qRT-PCR Study of Transcript Levels
For determination of expression levels of the receptor, tissues

from sexually mature T. castaneum were dissected in phosphate

buffered saline (PBS) (NaCl 137 mM, KCl 2.7 mM, Na2HPO4

10 mM, KH2PO4 1.76 mM; pH 7.2) and snap-frozen in liquid

nitrogen. For all samples, tissues of at least fifteen animals were

pooled. Tissues were homogenized and RNA was extracted using

the RNAqueous Micro Kit (Ambion) according to the protocol

recommended by the kit. The protocol included an additional

DNase treatment to digest remaining DNA. Total RNA was

reverse transcribed into cDNA using SuperScriptIII reverse

transcriptase (Invitrogen) as recommended by the manufacturer,

and diluted ten-fold prior to use. Transcript levels were quantified

using the Fast Sybr Green assay kit (Applied Biosystems) in a

StepOne Plus detection system (ABI Prism, Applied Biosystems).

Primers (sense primer 59-GCCCTCTGGCTGGGCTAT-39 and

antisense primer 59-CGGGTTGAAGATCGTGTAAATGA-39)

(Sigma-Aldrich) were used in final concentrations of 500 nM.

Other conditions were as recommended by the manufacturer.

Reactions were run in duplicate and incubated for 2 min at 50uC,

followed by 10 min at 95uC, followed by 40 cycles of [15 s at 95uC
and 1 min at 60uC]. The specificity of the PCR products was

assessed generating a dissociation curve (95uC for 15 s, 60uC for

1 min, and increase in temperature in 0.7uC increments from

60uC to 95uC). Agarose gel electrophoresis of the PCR products

confirmed the presence of a single band of the expected size and

sequencing confirmed their identity. The relative quantity of target

cDNA was quantified using the DDCT-method including normal-

ization to a calibrator on all PCR plates and an endogenous

control. From a list of seven housekeeping genes (Table S1; [34]),

the combination of genes for this endogenous control was

determined using GeNorm [35]. Expression was most stable for

RPs3 (ribosomal protein 3) and RPs18 with respect to sex and

tissue and these transcripts were thus selected for further use as

endogenous controls (results not shown).

Cell Culture and Transfection
General binding studies were performed in Chinese hamster

ovary (CHO) WTA11 cells stably coexpressing apoaequorin and

the promiscuous Ga16. This allowed us to measure the pharma-

cology independent of the downstream signaling. CHO-PAM28

cells stably expressing apoaequorin, but not the promiscuous Ga16,

and human embryonic kidney cells (HEK) 293 cells were used to

measure downstream signaling via Ca2+ and cAMP, respectively.

CHO cell lines were provided by Prof. Marc Parmentier

(University of Brussels, Belgium) and Dr. Michel Detheux

(Euroscreen S.A., Belgium). HEK293 cells were a gift from Prof.

Arnd Baumann (Research Centre Jülich, Germany.

All cells were cultured in Dulbecco’s Modified Eagles Medium

nutrient mixture F12-Ham (DMEM/F12) (Invitrogen) supple-

mented with 1% penicillin/streptomycin (10000 units/ml penicil-

lin and 10 mg/ml streptomycin in 0.9% NaCl) (Invitrogen) to

prevent bacterial contamination of gram-positive and gram-

negative bacteria, respectively. For CHO-WTA11 cells, 250 mg/

ml zeocin (Invitrogen) was added and for CHO-PAM28 cells,

5 mg/ml puromycin dihydrochloride (Invitrogen) was added.

Puromycin and zeocin were initially used to select for cells stably
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expressing apoaequorin (CHO-PAM28) [36], or both apoaequorin

and Ga16 (CHO-WTA11 cells) [37] and are thus still used as

additional antibiotics in the appropriate screens. For CHO cells,

the medium was supplemented with 10% fetal calf serum

(inactivated at 65uC) (Sigma-Aldrich). For HEK293 cells, the

medium was supplemented with 2% Ultroser G serum substitute

(Pall Life Sciences).

Cells were cultured in vitro as monolayers at 37uC, 5% CO2 and

high relative humidity, and subcultivated twice a week. For

transfection of CHO cells, 2.5 ml Opti-MEMHI (Invitrogen), 5 mg

plasmid DNA and 12.5 ml PlusTMreagent (Invitrogen) were mixed,

stored at room temperature for 5 min and next repleted with 30 ml

LipofectamineTMLTX (Invitrogen). After 30 min incubation at

room temperature, this transfection mixture was added dropwise

to the cells together with 5 ml medium. HEK293 cells were

cotransfected with receptor construct (4 mg) and CRE-luciferase

construct (2 mg), consisting of the open reading frame of the

reporter gene, luciferase, downstream of a multimerized cAMP-

response-element (CRE6x) [38,39]. All transfections were per-

formed in T75 flasks with a confluency of about 60 percent. Cells

were grown overnight, after which 15 ml of medium was added

for an additional overnight incubation period.

Aequorin-luminescence Assay
The transfected CHO cells were detached with phosphate

buffered saline (PBS) containing 0.2% EDTA and collected in

DMEM/F-12 (without phenol red, with L-glutamine and 10 mM

HEPES) (Gibco). The amount of viable cells was determined using

the NucleoCounter NC-100+TM (Chemometic). Cells were

pelleted for 4 min at 800 rpm at room temperature and

resuspended in BSA-medium (DMEM/F12 without phenol red,

with L-glutamine and 10 mM HEPES, supplemented with 0.1%

bovine serum albumin) to a concentration of 56106 cells/ml.

Coelenterazine H (Invitrogen) was added to a final concentration

of 5 mM, and cells were gently shaken for 4 h at room temperature

in the dark. After a 10-fold dilution in BSA-medium, cells were

incubated another 30 min. The pharmacological ligands were

dissolved in BSA-medium. For agonists, 50 ml containing the final

ligand concentration was added to appropriate wells of a 96-well

plate. For antagonists, 25 ml of the antagonist solution was

supplemented with 25 ml of a 5-HT solution. Receptor activity

was measured as the light emission after adding 50 ml of the cell

suspension. Light emission was measured for 30 s using a Mithras

LB940 (Berthold Technologies). Subsequently, cells were lysed

with Triton X-100 (0.1% in BSA-medium) and light emission was

recorded for another 8 s. BSA-medium was used as a negative

control. Light emission from each well was calculated relative to

the total response (ligand+Triton X-100) using the output file of

Mikrowin2000 software (Mikrotek). Further analysis was done in

Graphpad Prism 5.

Luciferase Reporter-gene Assay
Cotransfected HEK293 cells were detached and the amount of

viable cells was determined as described for CHO cells. Cells were

pelleted for 4 min at 800 rpm at room temperature and

resuspended in DMEM/F12 medium (without phenol red, with

L-glutamine and 10 mM HEPES) containing 200 mM 3-isobutyl-

1-methylxanthine (IBMX, Sigma-Aldrich) to a concentration of

106 cells/ml. The pharmacological ligands were dissolved in

DMEM/F12 medium without phenol red containing 200 mM

IBMX. The water-soluble forskolin analog NKH-477 was added

to a concentration of 20 mM to measure Trica5-ht1-mediated

effects on cellular cAMP signaling. In each well of a 96-well plate,

50 ml of ligand suspension and 50 ml of cell suspension were

dispensed. After incubation for 3–4 h in a CO2 incubator at 37uC,

100 ml of SteadyLite Plus (Perkin-Elmer) was added to each well

and the plate was gently shaken for 15 min in the dark. Light

emission was measured for 5 s per well using a Mithras LB940

(Berthold Technologies). Medium containing IBMX was used as a

negative control. Data were analyzed as described for CHO cells.

Drugs
The pharmacological ligands 3-hydroxytyramine (dopamine)

hydrochloride, 5-carboxamidotryptamine maleate (5-CT), 5-HT

hydrochloride (5-HT), 5-methoxytryptamine (5-MT), (6)-8-hy-

droxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT), a-

methylserotonin maleate (am-5-HT), (+)-butaclamol hydrochlo-

ride, ketanserin (+)-tartrate, methiothepin mesylate, methysergide

maleate, mianserin hydrochloride, prazosin hydrochloride, DL-

octopamine hydrochloride, SB-269970 hydrochloride, tyramine

hydrochloride, WAY-100635 maleate (WAY = N-{2-[4-(2-meth-

oxyphenyl)-1-piperazinyl]-ethyl}-N-(2-pyridinyl) cyclohexanecar-

boxamide), and yohimbine hydrochloride were purchased from

Sigma-Aldrich.

Results

Cloning and Sequence Analysis of Trica5-ht1
A cDNA fragment encoding a 5-HT1 receptor from T. castaneum

was amplified by PCR. The open reading frame of Trica5-ht1

contains 1,644 nucleotides (Figure S1) encoding the Trica5-HT1

protein of 547 amino acids (Figure 1) with a calculated molecular

weight of 60.8 kDa. Transmembrane topology prediction revealed

the presence of seven putative transmembrane domains (TM1-7),

characteristic of all GPCRs. Consensus motifs for N-linked

glycosylation (N-x-[S/T]) are found in the extracellular N-

terminus, and consensus sites for phosphorylation by protein

kinase C (PKC) ([S/T-x-[R/K]) are located within the third

intracellular loop (Figure 1). The C7.69 residue (numbering

according to the Ballesteros-Weinstein system [40]) in the

intracellular C-terminus is a putative palmitoylation site. The

large third intracellular loop and the short intracellular C-terminal

region are consistent with other known 5-HT1 and biogenic amine

receptors that couple via Gi. Other typical biogenic amine and 5-

HT receptor characteristics are present as well. The DRY

tripeptide (D3.49R3.50Y3.51) located in the second intracellular loop

is the key to the conformational changes necessary for receptor

activation [41]. The combination of the D3.32 in TM3 with the

conserved W7.40 in TM7 is considered a unique fingerprint for

biogenic amine and trace amine GPCRs. The charged D3.32

residue is thought to interact with the protonated amine moiety of

amine ligands [42,43]. As in other 5-HT receptors, Trica5-HT1

typically has a conserved group of hydrophobic amino acids

(W3.28, F5.47, W6.48, F6.51, F6.52, W7.40, Y7.43) that form the

hydrophobic ligand-binding pocket within the tertiary structure.

This binding pocket may be stabilized by a disulfide bridge formed

between C2.55 in TM2 and C3.25 in extracellular loop 1 [42,44,45].

In addition, the consensus sequence of non-peptide receptors in

TM6, F6.44-x-x-x-W6.48-x-P6.50, is followed by a pair of Phe

residues (F6.51 and F6.52) unique to aminergic receptors. Also the

N7.49P7.50-x-x-Y7.53 motif in TM7 is conserved, which may

participate in agonist mediated receptor sequestration and

resensitization [46].

BLASTx (http://blast.ncbi.nlm.nih.gov/blast/) searches indi-

cate similarities of the receptor to other insect 5-HT1 receptors

(Pea5-HT1, 60% identity; Am5-HT1A, 55% identity; Dm5-HT1A,

46% identity; Dm5-HT1B, 42% identity). When compared to the

computationally predicted sequence in Beetlebase [31], a stretch of
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75 bp is missing in our cloned receptor cDNA sequence. Since this

stretch is flanked by splice sites and not present in cDNA

sequences of other species, it is presumed to be an intron. After

multiple sequencing runs on different cDNA samples, also five

single base mismatches (three silent and two missense mutations)

were found between the amplified and the annotated sequence.

Furthermore, two consecutive nucleotides were different, resulting

in an amino acid change (Figure S1).

Figure 1. Amino acid sequence alignment of T. castaneum 5-HT1 sequence (Trica5-HT1, GenBank accession no. KC196076). Alignment
against sequences of orthologous receptors from Apis mellifera (Am5-HT1A, no. CBI75449), Drosophila melanogaster (Dm5-HT1A, no. CAA77570 and
Dm5-HT1B, no. CAA77571), and Periplaneta americana (Pea5-HT1, no. CAX65666). Identical residues between the receptors are shown as white
characters against black background. Conservatively substituted residues are shaded. Putative transmembrane domains are indicated by grey bars
(TM1-7). Dots indicate putative phosphorylation sites for PKC, and stars indicate putative N-linked glycosylation sites. Inverted triangles indicate
differences between the current sequence derived from cloned cDNA and the annotated sequence from Beetlebase.
doi:10.1371/journal.pone.0065052.g001
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Transcript Level Study
An initial tissue distribution screen of Trica5-HT1 mRNA in

sexually mature beetles was performed using qRT-PCR

(Figure 2A). Transcripts of the Trica5-ht1 gene were detected in

considerable amounts in the head and the gut, consistent with the

prevalence of 5-HT in central nervous system (CNS) and the

digestive tract of most animal species. However, expression in the

head appeared significantly more abundant. Differences between

males and females were not significant. In the fat body and the

reproductive tract of sexually mature beetles, only very low levels

of receptor transcript were observed. When transcript levels in the

brain (without the optic lobes) and the optic lobes were measured

separately, expression in both tissues seemed significantly higher

than in the gut (Figure 2B). Moreover, expression in the brain

(without the optic lobes) was 3.5 times higher compared to the

optic lobes. Although there are indications for 5-HT receptor

expression in the salivary gland of some insect species, we detected

almost no Trica5-HT1 transcripts in the salivary gland of adult

beetles.

Pharmacological Characterization and Downstream
Signaling Properties of Trica5-HT1

In order to pharmacologically characterize Trica5-HT1, we

used CHO-WTA11 cells stably expressing apoaequorin and the

promiscuous Ga16 subunit. No 5-HT evoked signal was observed

in non-transfected cells or in cells transfected with an empty vector

(results not shown). Significant responses were obtained when cells

expressing Trica5-HT1 were incubated with 100 mM 5-HT or the

5-HT receptor agonists am-5-HT, 5-CT, 5-MT and 8-OH-DPAT

(Figure 3A). The dose-response relationship for 5-HT and these

synthetic agonists was examined at concentrations ranging from

1 pM to 1 mM (Figure 3B). The resulting sigmoidal dose-response

curve of 5-HT shows receptor activation in a dose-dependent and

saturable manner. Half-maximal activation (EC50) was achieved at

5-HT concentrations of 95.15 nM (logEC50 = 27.0160.043,

mean 6 SEM). The maximal response was attained at 5-HT

concentrations of $10 mM. Since the efficacy achieved by any

agonist depends on the number of receptors expressed, we

measured a dose-response curve for 5-HT in every experiment

and normalized all agonist effects to the maximum 5-HT response,

set at 100% (Figure 3B). Surprisingly, the most potent agonist was

the mammalian 5-HT2 receptor agonist, am-5-HT, with an EC50

value of 10.74 mM (logEC50 = 24.9760.18, mean 6 SEM).

However, this is more than 100-fold less potent than 5-HT itself.

Also the 5-HT analog, 5-CT, a selective agonist for mammalian 5-

HT1 and 5-HT7 receptors, and the non-selective 5-HT receptor

agonist, 5-MT, acted as partial agonists in a dose-dependent

manner. 5-CT was more potent but had a lower efficacy than 5-

MT. The EC50 values for all agonists are shown in Table 1. 8-OH-

DPAT, a partial and selective agonist for mammalian 5-HT1 and

5-HT7 receptors evoked responses only at concentrations

$100 mM. The biogenic amines, dopamine, octopamine and

tyramine did not generate any detectable responses at concentra-

tions #100 mM (results not shown).

Potential antagonists were tested by simultaneously applying 5-

HT (100 nM) and a high dose of antagonist (100 mM) to Trica5-

HT1 expressing cells (Figure 4A). In addition, the dose-

dependence of the antagonistic effects were measured with

antagonist concentrations ranging from 10 nM to 1 mM

(Figure 4B). From these experiments, we can conclude that

ketanserin and mianserin, two selective antagonists of mammalian

5-HT2, and butaclamol, a dopamine receptor antagonist,

displayed no detectable inhibition of 5-HT induced responses in

cells expressing Trica5-HT1. Mianserin and butaclamol even

seemed to have some agonistic effects at high concentration

(100 mM). On the other hand prazosin, a selective a1-adrenergic

receptor antagonist in mammals, was shown to be the most potent

antagonist. It decreased the effect of 5-HT on the receptor in a

dose-dependent manner with a half maximal inhibitory concen-

tration (IC50) of 1.39 mM (logIC50 = 25.8660.18, mean 6 SEM).

The IC50 values for all antagonists are shown in Table 2.

Methiothepin and methysergide, two non-selective antagonists of

mammalian 5-HT receptors also showed dose-dependent inhibi-

tion. Moderate inhibition was achieved with SB-269970, a

selective antagonist of mammalian 5-HT7. The level of inhibition

induced by WAY-100635 didn’t drop below 50% and was variable

which might be due to complex effects of the compound on the

receptor and/or other targets in the assay. Also yohimbine, known

to behave as both agonist and antagonist on some mammalian 5-

HT-receptors, showed only about 30% of inhibition, even at

Figure 2. Expression profile of transcripts encoding Trica5-HT1 in sexually mature beetles. The data represent mean values of (A) three
independent samples of 306heads, 506guts, 206fat body and 506reproductive system; and (B) three independent samples of 15 beetles each; run
in duplicate 6 SEM, normalized relative to RPs3 (ribosomal protein 3) and RPs18 transcript levels. Statistically significant differences are indicated by
asterisks above the bars (p#0.05) (Kruskal-Wallis, IBM SPSS Statistics 20). Abbreviations: FB, fat body; RS, reproductive system; Brain, brain without the
optic lobes; OL, optic lobes; SalGl, salivary glands.
doi:10.1371/journal.pone.0065052.g002
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concentrations up to 100 mM. The nature of inhibition obtained

with the three most potent antagonists: prazosin, methiothepin

and methysergide was further examined by studying the dose-

response relationship of 5-HT in presence of different concentra-

tions of antagonist (10 nM to 1 mM) (Figure 5). The higher the

concentration of antagonist, the higher was the resulting EC50

value for 5-HT activity. Since their efficacy didn’t change, these

compounds behaved as truly competitive antagonists. We used the

Gaddum/Schild plot to compare the inhibitory potencies of the

antagonists by their pA2 values (i.e. the logarithm of the

concentration of antagonist that doubles the amount of 5-HT

required for obtaining the same effect) [47]. The pA2 values (6

SEM) for prazosin, methiothepin and methysergide were, respec-

tively, 7.18 (60.13), 6.17 (60.11) and 5.96 (60.21), confirming

that prazosin has the highest affinity, followed by methiothepin

and methysergide.

CHO-PAM28 and HEK293 cells were used to determine the

downstream signaling pathway of Trica5-HT1. No effect of 5-HT

was observed in CHO-PAM28 cells transfected with empty vector

or in cells transfected with the receptor. Therefore it can be

concluded that Trica5-HT1 does not couple via Gq to the Ca2+

signaling pathway. In HEK293 cells, effects on the cAMP level

were examined for 5-HT concentrations ranging from 1 pM to

100 mM. Relative high variation in the data can be explained by

assay based variation since cells were not counted when dispensed.

Basal levels of cAMP did not significantly change in cells

transfected with an empty vector. In Trica5-HT1 expressing cells,

a dose-dependent decrease in intracellular, NKH-477 stimulated

cAMP levels was registered (Figure 6). Half maximal reduction of

cAMP was observed at 82.7 nM 5-HT (logIC50 = 27.0860.30),

mean 6 SEM). Trica5-HT1 thus inhibits the cAMP production,

probably via the Gi protein. Maximal attenuation of cAMP

synthesis (640%) was attained with 5-HT concentrations

$10 mM.

Discussion

In the present study, we have characterized Trica5-HT1, a 5-

HT1 receptor of the red flour beetle, T. castaneum. The obtained

sequence has considerable similarity with orthologous receptors

from other invertebrates [14,27,29,48–53] and mammals [20,54].

The sequence contains typical characteristics of 5-HT1 receptors,

such as a large third intracellular loop, a short C-terminal region, a

DRY motif in the second intracellular loop as well as other

conserved consensus sequences. Notably, differences between the

cloned and annotated nucleotide sequences were uncovered.

These included single base mismatches and an intron in the

annotated open reading frame (Figure S1). So far, no introns have

been reported in the coding regions of vertebrate genes encoding

5-HT1 receptors [55]. However, introns were found in the D.

melanogaster genes encoding Dm5-HT1A and Dm5-HT1B [27].

When studying the Trica5-HT1 transcript levels with qRT-

PCR, highest expression was observed in the brain (without optic

lobes), followed by the optic lobes. More detailed localization

studies in other insects also showed receptor expression in the optic

Figure 3. Effect of various agonists on Trica5-HT1 in CHO-WTA11 cells. (A) Receptor activation after stimulation with 100 mM of agonist,
shown as the percentage of activation achieved with 100 mM of 5-HT (set at 100%). (B) Dose-dependent activation of Trica5-HT1 with synthetic 5-HT
receptor agonists, shown as the percentage of activation achieved with 1 mM 5-HT (maximum response = 100%). Cells treated with BSA-medium only
were used to define the basal level of 0%. Data represent the mean 6 SEM of (A) three independent measurements (each performed in duplicate)
and (B) seven independent measurements (each performed in duplicate) for 5-HT, or four independent measurements (three performed in triplicate,
one performed in duplicate) for the synthetic agonists am-5-HT, 5-MT, 5-CT and 8-OH-DPAT.
doi:10.1371/journal.pone.0065052.g003

Table 1. EC50 values of agonists for Trica5-HT1 receptor
activation in CHO-WTA11 cells.

agonist EC50 (mM) logEC50 (mean ± SEM)

5-HT 0.095 27.0160.043

am-5-HT 10.74 24.9760.18

5-CT 24.72 24.6160.17

5-MT 91.84 24.0460.12

8-OH-DPAT 551.0 23.2660.59

doi:10.1371/journal.pone.0065052.t001
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lobes as well as other parts of the brain [9,10,14,27,29]. In D.

melanogaster, Dm5-HT1A and Dm5-HT1B receptors are expressed

in the mushroom bodies [9,10], the region of the brain involved in

learning and memory. Also in the mushroom bodies of A. mellifera,

high levels of Am5-HT1A were found [14]. Additionaly, Am5-

HT1A was found in regions known to be important in visual

information processing, such as the optic lobes. Based on

behavioral tests 5-HT is assumed to reduce the positive phototactic

behavior of honeybees [14]. In P. americana, antibodies directed

against Pea5-HT1, stained some large somata in the pars

intercerebralis [29]. Thus, expression of Trica5-HT1 in beetle brains

may be due to expression in the mushroom bodies and/or cells of

the pars intercerebralis. Receptor expression in the gut may indicate a

role of 5-HT in the regulation of digestion or gut contraction. In

humans, for example, as much as 95% of the total 5-HT content

may reside in the intestine [56,57]. It is probable that a substantial

release of 5-HT in other animal species, such as Tribolium, takes

place in the digestive tract as well. In several insects, 5-HT

immunoreactive nerve fibers have been localized in different parts

of the intestinal tract [58–60]. 5-HT was also shown to modulate

muscle contractions of the gut in several insects [61–66], although

it may also act as a paracrine factor and, for example, provoke the

release of other factors from neuroendocrine cells. Even then, high

5-HT levels in a given release organ do not necessarily co-incide

with the local level of receptor expression, which might explain the

relatively low 5-HT1 transcript levels in the gut compared to the

brain. Although only low transcript levels were observed in the

salivary glands of adult beetles, 5-HT also has been shown to be

important in salivation in several insect species [4–7,67]. In the

cockroach, 5-HT1 receptor expression was shown in the salivary

gland by RT-PCR and Western blotting [29]. Low expression

levels of Trica5-HT1 receptors in the salivary gland suggest that

possible 5-HT effects on salivation are regulated by other 5-HT

receptor subtypes. For example, in the blowfly, Calliphora vicina,

salivary glands express 5-HT2 and 5-HT7 receptors [67].

To examine the downstream signaling pathway of Trica5-HT1,

the receptor was expressed in CHO-PAM28 and HEK293 cells.

Since no Ca2+ response was measured in CHO-PAM28 cells

expressing Trica5-HT1, the receptor does not engage Gq and the

PLC signaling pathway. In HEK293 cells, the receptor was

cotransfected with a CRE-luciferase construct to detect changes in

intracellular cAMP levels. 5-HT was found to decrease NKH-477-

stimulated cAMP synthesis in a dose-dependent manner. In

accordance with other 5-HT1 receptors, Trica5-HT1 couples to

Gi/o proteins that impair adenlylate cyclase activity. However,

when interpolating these experimental data to physiological

processes in Tribolium, one must be aware of possible discrepancies

between effects observed in cultured cell lines and intracellular

processes occurring within the in vivo context of the organism.

CHO-WTA11 cells were used to investigate the pharmacolog-

ical characteristics of Trica5-HT1. Application of 5-HT to these

cells resulted in dose-dependent receptor activities. The EC50

value of 95.15 nM is similar to values reported for 5-HT1

Figure 4. Effect of various antagonists on 5-HT mediated activation of Trica5-HT1 in CHO-WTA11 cells. (A) Effect of antagonists
(100 mM) on 5-HT (100 nM) mediated receptor activation. Receptor activation is shown as the percentage of activation achieved with 100 nM of 5-HT
(, EC50 value) (set at 100%). (B) Dose-dependent effect of 5-HT receptor antagonists on 5-HT (100 nM) mediated receptor activation. Receptor
activation is shown as the percentage of activation achieved with 10 nM of antagonist (set at 100%). Cells treated with BSA-medium only were used
to define the basal level of 0%. Data represent the mean 6 SEM of (A) three independent measurements (each performed in duplicate) and (B) two
(prazosin and methysergide) or three (methiothepin and SB-269970) independent measurements (each performed in triplicate).
doi:10.1371/journal.pone.0065052.g004

Table 2. IC50 values of antagonists for Trica5-HT1 receptor
inhibition in CHO-WTA11 cells.

antagonist IC50 (mM) logIC50 (mean ± SEM)

prazosin 1.39 25.8960.18

methiothepin 16.38 24.7960.13

methysergide 33.97 24.4760.094

WAY-100635 no clear dose-dependence of inhibition

butaclamol 204.1 23.6960.20

SB-269970 205.4 23.6960.25

ketanserin no inhibition

yohimbin no inhibition

mianserin no inhibition

doi:10.1371/journal.pone.0065052.t002
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receptors from other arthropods [14,27,29,52,53]. Besides 5-HT,

three additional ligands caused dose-dependent activation of

Trica5-HT1, i.e. am-5-HT, 5-CT and 5-MT. The synthetic

agonists were more than a 100-fold less potent than 5-HT and

seemed to have a lower efficacy. However it is possible that the

agonists did not reach their maximum response although high

concentrations (1 mM) were already tested. Similar properties

have been reported for other insect 5-HT1 receptors [14,29]. Only

a very poor response was observed with 8-OH-DPAT, an agonist

for mammalian 5-HT1 and 5-HT7 receptors. Also on A. mellifera

and P. americana 5-HT1 receptors, 8-OH-DPAT acted as a poor

agonist [14,29]. For the antagonists, no inhibition was measured

upon application of butaclamol, ketanserin and mianserin.

Although WAY-100635 is known as a potent and selective

antagonist of mammalian 5-HT1A receptors, no clear dose-

dependent effect was observed. In A. mellifera, however, WAY-

100635 acted as a partial antagonist of Am5-HT1 [14] and an

effective inhibition of agonist stimulated Pea5-HT1 was observed

[29]. A more effective inhibition was measured for the mammalian

5-HT7 receptor antagonist, SB-269970, but no information

regarding the possible effects of this antagonist is known from

other arthropods. An effective dose-dependent inhibition was

measured for prazosin, methiothepin and methysergide, although

their IC50 values were in the micromolar range. All three are

known to be non-selective antagonists for mammalian 5-HT

receptors, including 5-HT1 receptors. At high concentrations

($1 mM), they completely inhibited activation of Trica5-HT1 by

100 nM of 5-HT. When comparing dose-response curves of 5-HT

in the presence of different concentrations of antagonist, all three

antagonists behaved as competitive antagonists. Both the IC50 and

the pA2 values indicated that prazosin was the most potent

antagonist, followed by methiothepin and methysergide.

In conclusion, our data support previous findings that primary

structures and signaling properties are well conserved between

vertebrate and invertebrate receptors, yet pharmacological prop-

erties can differ significantly between both phyla, and even

between different invertebrate species. The differences in phar-

macological profiles of vertebrate and invertebrate receptors may

be due to their large evolutionary distance. Selection during

evolution most likely was based on receptor properties such as

ligand binding and G protein coupling, but not on conservation of

recognition sites for man-made, synthetic ligands. Furthermore

Figure 5. Effect of 5-HT on Trica5-HT1 in presence of different concentrations of antagonist. Dose-dependent activation of Trica5-HT1

was measured in CHO-WTA11 cells with 1 nM –1 mM 5-HT in presence of 10 nM –1 mM antagonist: (A) prazosin, (B) methysergide and (C)
methiothepin. Receptor activity is shown as the percentage of activation achieved with 1 mM of 5-HT (set at 100%). Cells treated with BSA-medium
only were used to define the basal level of 0%. Data represent the mean 6 SEM of three independent measurements (each performed in duplicate)
for prazosin and methiothepin and two independent measurements (each performed in duplicate) for methysergide. NA, no antagonist.
doi:10.1371/journal.pone.0065052.g005
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receptor subtypes with specific pharmacological properties have

evolved within the main classes of vertebrate receptors.

During the last decades, knowledge about 5-HT (and other

biogenic amine) receptors has increased. However, comprehensive

data on the pharmacology of insect or other invertebrate 5-HT

receptors is still missing. Unequivocal identification and extensive

characterization of all members constituting the invertebrate 5-HT

receptor family are needed to establish a reliable classification

scheme. Detailed pharmacological information for each 5-HT

receptor subtype will also aid in functional in vivo studies and can

be very useful for insect pest control.

Supporting Information

Figure S1 Nucleotide sequence of the T. castaneum 5-
HT1 receptor sequence (Trica5-HT1, accession no.
KC196076). Inverted triangles indicate differences resulting in

another amino acid between the current sequence derived from

cloned cDNA and the annotated sequence from Beetlebase.

Diamonds indicate silent mutations. The arrow indicates the splice

site where a stretch of 75 residues is present in the Beetlebase

sequence.
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Table S1 Nucleotide sequences of primers for T. castaneum

housekeeping genes.
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