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Abstract
Cancer cells exhibit an altered metabolic phenotype, known as the Warburg effect, which is
characterized by high rates of glucose uptake and glycolysis, even under aerobic conditions. The
Warburg effect appears to be an intrinsic component of most cancers and there is evidence linking
cancer progression to mutations, translocations, and alternative splicing of genes that directly code
for or have downstream effects on key metabolic enzymes. Many of the same signaling pathways
are routinely dysregulated in cancer and a number of important oncogenic signaling pathways play
important regulatory roles in central carbon metabolism. Unraveling the complex regulatory
relationship between cancer metabolism and signaling requires the application of systems biology
approaches. Here we discuss computational approaches for modeling protein signal transduction
and metabolism as well as how the regulatory relationship between these two important cellular
processes can be combined into hybrid models.

Background
Cancer Systems Biology

Systems biology is the integration of theoretical and experimental methods to build a
predictive model of a complex biological system. Tumor environments are extremely
complex and encompass a large number of cells interacting with a changing
microenvironment across a variety of spatial and temporal scales. Cancer systems biology,
then, aims to understand the interactions that occur across microscopic and macroscopic
scales in a tumor and, importantly, aims to exploit these interactions in a predictive way.
Ideally, cancer models build using systems biology methods will have translational
significance and can, for example, be used to predict rational therapeutic targets.

Cancer Signaling and Metabolism
Cancer cells exhibit an altered metabolic phenotype characterized by high rates of glucose
uptake and glycolysis, even under aerobic conditions. This altered metabolism, first
described by Otto Warburg [1], is referred to as the Warburg effect and is so pervasive
among cancers that it is routinely leveraged in the clinic with fluorodeoxyglucose-positron
emission tomography (FDG-PET). In general, high tumor glucose uptake observed in FDG-
PET scans correlates with poor prognostic outcome [2–3]. There is evidence to suggest that
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reliance on non-oxidative glycolytic metabolism sustains the biosynthetic requirements of
rapid proliferation [2].

While the Warburg effect appears to be an intrinsic component of most cancer progressions,
a precise etiology remains elusive. Both oncogenic signaling [4–5] and interactions with the
tumor microenvironment [6] play important roles in the induction of the malignant
metabolic phenotype. For example, the activity of the M2 isoform of pyruvate kinase
(PKM2), an important glcyolytic enzyme, has been linked to the induction of the Warburg
Effect via tyrosine kinase signaling [7–8].

Despite the enormous amount of genetic diversity found within a single tumor and across
different cancers, many of the same signaling pathways are routinely dysregulated in cancer
cells [9]. Importantly, many of these pathways have important downstream effects on
metabolic behavior. For example, the phosphatidylinositol 3-kinase AKT pathway is
commonly dysregulated in many human cancers [10]. AKT, a key component of this
pathway, is known to play a critical role in stimulating glycolysis [11–12]. In addition, there
is evidence linking cancer progression to mutations, translocations, and alternative splicing
of genes that directly code for, or have downstream effects on, key metabolic enzymes [13–
14].

It should be noted that there is some debate about whether increased glucose uptake
translates into increased glycolytic flux and net glycolytic ATP gain in cancer cells [15]. It is
possible that a significant amount of the glucose uptake in cancer cells is shunted to
pathways other than glycolysis (e.g., to the pentose phosphate pathway). Metabolic
transformation, however, is increasingly recognized as an important hallmark of cancer
[2,16].

Modeling Intracellular Biochemical Processes
Because it is not practical to create models that are exact replicas of a complex system,
trade-offs must be made between the scope and level of detail included in a model [17].
Complex cellular processes are commonly modeled with systems of continuous ordinary
(ODE) or partial (PDE) differential equations. ODE and PDE models are built from
underlying biophysical principles and, as a consequence, are inherently predictive. The use
of continuous ODE based approximations is justified when the system is assumed to be well
mixed and the number of molecules of a given reactant ranges from 100 to 1000 [18].

ODE based systems, which are commonly applied to models of protein signal transduction
and metabolism, are generally based on mass action and Michaelis-Menten (MM) kinetics
[19,17,20–21]. MM kinetics depends on the quasi-steady-state approximation, which
assumes that the formation of the complex occurs on a much faster timescale than that of the
other reactants. It is important, therefore, to recognize when these assumptions are invalid
[22–23].

An alternative to ODE based kinetic models are stoichiometric models where the known
structure of a chemical pathway is used to understand the state of the system under a set of
specific conditions. Stoichiometric models have demonstrated predictive power using data
from prokaryotes. The methods assume an optimization function (e.g., the goal of bacteria is
continual production of biomass). Because these methods do not include any regulatory or
kinetic information in the model formulation [24], they lack predictive power for
multifunctional mammalian cells [25]. In our view, it would be extremely difficult to define
an optimization function that adequately captures the complexity of a mammalian cell.
Kinetic ODE models will, therefore, tend to be more predictive than stoichiometric methods
because they can describe temporal dynamics. Kinetic ODE models require more knowledge
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a priori [24] than stoichiometric models, however, and this information is not always readily
available.

At the other extreme are discrete logic-based Boolean models which provide a good
approximation of the qualitative behavior of a biochemical system [26]. The motivation
behind these models comes from the sigmoidal or hyperbolic dependence between
regulatory molecules and the compounds they affect that can be thought of as having two
states: saturated (“on”) and non-saturated (“off”), approximating a Boolean switch. In their
simplest form, Boolean models are interaction networks where each biochemical species is
represented as a node in one of two possible states: expressed (“on” or 1) or non-expressed
(“off” or 0). Transfer functions between states are derived from biochemical interactions
using logical operators (e.g., AND, OR, and NOT). In the transfer functions, there is no
notion of reaction rate and, hence, no need to estimate kinetic parameters. Despite this
advantage, Boolean models have a major limitation: time is unrelated to physiological time
and can provide only, a qualitative chronology of molecular activations [27]. None the less,
Boolean models can be important predictive tools in the absence of reliable kinetic data.

Modeling Metabolism
Many ODE based models of glucose metabolism exist in the literature [28–31]. In general,
metabolism is considered to be the set of chemical reactions catalyzed by enzymes operating
in a living cell that are involved in catabolism or anabolism [19]. Enzymes regulate
metabolism by catalyzing reactions [32]. Specifically, an enzyme reacts selectively with a
substrate and transforms it into a product. In experimental studies of metabolism, enzyme
concentrations are generally assumed to be constant during the catalyzed transformation of
substrates into products [33–34]. The majority of ODE based metabolic models have
focused on the dynamical behavior of subsets of central carbon metabolism (e.g., glycolysis
or the pentose phosphate pathway). In our view, predictive models (especially in the context
of cancer) should also consider the nature of the control mechanisms that regulate
metabolism.

The most widely used theories of metabolic regulation are biochemical systems theory [35–
37], metabolic control theory [38–40] and flux-oriented theory [41–43]. All three of these
theories are in essence applications of sensitivity analysis applied to biochemical reaction
models. The models consist of coupled ODEs based on the law of mass action. Sensitivity
analysis is used to investigate the effects of parameter value changes on model behavior
[44]. It is not surprising, then, that the primary difference between these theories is the
choice of which parameters to vary when evaluating model sensitivity [45,44].

In biochemical systems theory, the rate constants for the synthesis and degradation of
metabolites are usually the parameters chosen for the sensitivity analysis. The metabolites
are decomposed into dependent (substrate concentrations) and independent (enzyme
concentration) variables where enzyme concentrations generally take constant values [46].
In metabolic control theory, the parameters for the sensitivity analysis are the enzyme
activities. The sensitivity analysis gives rise to control coefficients, which are global
pathway properties quantifying the control of overall metabolic flux by a single enzyme
[45]. Enzyme concentrations are assumed to be constant and reactions rates are treated as
constant parameters. Finally, in flux-oriented theory, sensitivities are calculated as the ratio
of the relative change of the reaction rate (or flux) in response to a small internal or external
stimulus. Enzyme concentrations are generally treated as constants in flux-oriented theory.

The assumption of constant enzyme concentration has been questioned for some time,
however [47]. Enzymes are not indefinitely stable; they are metabolites like their substrates
and products [19]. The synthesis of enzymes is an essential part of metabolism and is
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catalyzed by other enzymes. This phenomenon is known as metabolic closure [48]: all
catalysts essential for the survival of an organism must be synthesized internally. While the
theory of metabolism-replacement has presented an abstract model of metabolic closure
[49–51], it has limited practical applicability for the investigation of metabolic regulation
[48] in the biomedical sciences. A theory to investigate metabolic regulation in cancer cells
that takes into account enzyme production and depletion is critically needed in medicine.

Modeling Signal Transduction
A number of ODE based models of signal transduction can be found in the literature
[20,52,21,53–54]. In contrast to central carbon metabolism, however, significant information
about the structure of signal transduction networks is often not known a priori. Alternative
methods for modeling signal transduction include Bayesian network analysis, Markov
models, and Boolean logic based models [55].

As previously mentioned, a number of Boolean network models of gene regulation and
signal transduction have generated experimentally valid predictions [26,56,55,57–58]. In its
simplest form a Boolean model updates all nodes in a network at the same time, forcing all
processes in the network to operate on identical timescales. This assumption results in a
deterministic outcome similar to that of cellular automata. Boolean networks can be
extended to utilize more biologically realistic variable timescales by performing
asynchronous updates where nodes are selected at random and updated instantaneously [26].
Any given Boolean model will have one or more attractors or steady states each associated
with a unique set of initial conditions (called its basin of attraction) that converge into that
attractor [26,57]. It is, therefore, possible to study the qualitative dynamical behavior of
Boolean networks.

We would like to note that it is essential to carefully characterize the interactions included in
any logic based model. This is because the signaling dynamics of a network can be very
different if an OR is used when an AND is needed. A detailed survey of the literature is
required to build a reliable and robust logic based model. For an example of the level of
detail needed to justify each rule in a Boolean model, refer to the appendix in Albert and
Othmer [56].

Linking Metabolic and Signal Transduction Models of Cancer
Metabolism and protein signaling do no operate in isolation. Gene expression and protein
signal transduction have important downstream effects on metabolism, especially on
metabolic enzyme synthesis. It also likely that metabolite levels play a role in the regulation
of gene transcription and protein translation.

How can we investigate and analyze the complex regulatory relationships between
metabolic pathways and protein signaling in cancer? One possibility is to use large ODE
based models of protein signaling and metabolism without any of the simplifying
assumptions made in the standard theories of metabolic regulation discussed above.
Although this is theoretically possible, it would be a task for Laplace’s Demon1 because it
would require a detailed knowledge of every chemical species, every interaction, and all
associated rate constants involved in the reactions included in the model.

1The idea of a Laplace Demon came from a though experiment proposed by Pierre-Simon Laplace of a perfect entity who would
know the precise location of each atom and of all forces in nature at any given moment. This entity (or demon, as it later came to be
called) would have incredible predictive power because it could infer the past and determine the future from any set of initial
conditions.
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In practical terms, if the interactions are known, the law of mass action can be applied to
derive an ODE system describing the pathways under consideration. Biochemical reaction
dynamics are strongly dependent of parameter values. Central carbon metabolism, which is
an essential part of tumor metabolism, has fortunately been well studied and characterized in
mammalian cells. As a result, while experimentally and/or computationally intensive,
methodologies exist for estimating kinetic parameters for metabolic networks [45]. This is
less true of protein signaling networks largely due to their extreme complexity. While a
tremendous amount of experimental work has identified a large number of protein
interactions involved in both normal and malignant protein signaling, the kinetic details of
these interactions are generally not known nor easily obtained. How, then, can we build
predictive models that link cancer metabolism and protein signaling? One possibility is the
use of hybrid models.

Hybrid Models
Hybrid models link discrete and continuous models across timescales and are widely used in
the engineering and computational sciences. In models of tumor growth, cells can be
modeled as discrete entities that respond to intracellular and extracellular signals which are
modeled continuously [59–63]. For example, Ribba et al. [61] developed a multiscale model
that linked a set of discrete models with continuous models of colorectal cancer growth. The
model accounted for the cellular, genetic, and environmental factors regulating tumor
growth. Key oncogenes involved in colorectal cancer evolution were integrated into a
Boolean gene network regulated by a discrete cell cycle model. The response to signals from
the intracellular gene network determined whether each cell proliferated or died and,
therefore, directly influenced the cellular and the extracellular tissue scales. The spatial
distribution of cells was computed using a continuous macroscopic tissue model based on
Darcy’s law. Finally, the number and spatial configuration of cells were used to activate
antigrowth signals, which in turn were input into the Boolean model. This combination of
discrete and continuous modeling was used to predict the qualitative effect of therapeutic
protocols on colorectal cancer and demonstrated that the efficacy of irradiation protocols
depends on the type of anti-growth signals to which tumors are exposed. Thus, a primary
conclusion of this work was that the efficacy of irradiation therapy could be improved
(without increasing radiation doses) by devising therapeutic schedules that take into account
features of tumor growth through cell cycle regulation.

In a recent paper by Singhania et al. [64], a continuous model of the cell cycle was linked to
a Boolean gene network model that regulated critical substrates involved in the progression
of the cell cycle. By combining a continuous ODE model with a discrete Boolean model, the
authors effectively obtained a piecewise ODE model system. In the model, each state was
composed of a set of ODEs where specific species or parameters were null (or effectively
“off”) based on node values in the Boolean network.

In a similar manner, we propose that it is possible to combine ODE based models of
metabolism with discrete signaling models. While discrete and continuous hybrid models
have been used in cancer research for more than 10 years, we are not aware of any that have
directly linked metabolism and signal transduction. To successfully implement a hybrid
model of this type, timescale separation will need to be carefully considered.

Comparing average protein half-life with average turnover in the number of enzyme
molecules can provide insight into the separation of timescales needed in such a model. An
assay of 100 proteins in living human cancer cells showed protein half-life range between 45
minutes to 22.5 hours [65]. The turnover numbers of most enzymes with their physiological
substrates range from 1 to 105 substrate molecules converted into product molecules per
second [66]. Using these numbers, we estimate that enzymes convert between 3.9×103 to
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1.1×1010 substrate molecules into product molecules during their mean lifetime. Thus, due
to the large difference in timescales, metabolic enzyme catalyzed reactions can be assumed
to effectively operate under a steady-state kinetics. If an enzyme concentration decreases,
the steady state kinetics will change from a state of high enzyme steady-state kinetics to a
low enzyme steady-state kinetics. Changes between these kinetic states will be driven by
signal transduction pathways approximated in the discrete Boolean model.

Conclusion
Over the last 30 years much of cancer research has shifted to focus on molecular features of
cancer and away from cancer metabolism and the Warburg effect. As a result, a wealth of
experimental data now exists related to the role of gene and protein expression in cancer.
Glucose uptake and metabolism are essential features of cancer that, in our view, should be
included in system level models of intracellular regulation (and dysregulation) in cancer.
Developing theories that integrate this wealth of molecular information with experimental
evidence related to cancer metabolism is the domain of cancer systems biology.

Of course, it is not practical to create models that exactly replicate the complexity of a tumor
cell. Trade-offs, therefore, must be made between the scope and level of detail included in
any model of cancer. Continuous ODE models are useful when kinetic information is
available. When kinetic information is not available, logic based Boolean models can be
used to understand regulatory dynamics of known interactions from any set of initial
conditions. A large number of regulatory interactions have been characterized in human
cancers but the kinetic parameters governing the interactions are typically not known. As a
result, Boolean models are useful tools for understanding the dynamics of these regulatory
networks.

A theory to investigate the regulation of the malignant metabolic phenotype is critically
needed. We suggest that hybrid models can be leveraged to integrate discrete Boolean
signaling models with continuous metabolic models of cancer. The ultimate goal of such
models will be to predict rational therapeutic targets that can be further experimentally
validated.
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