
The Development of a Universal In Silico Predictor of
Protein-Protein Interactions
Guilherme T. Valente1*., Marcio L. Acencio2., Cesar Martins1, Ney Lemke2

1 Department of Morphology, UNESP – Univ Estadual Paulista, Botucatu, Sao Paulo, Brazil, 2 Department of Physics and Biophysics, UNESP – Univ Estadual Paulista,

Botucatu, Sao Paulo, Brazil

Abstract

Protein-protein interactions (PPIs) are essential for understanding the function of biological systems and have been
characterized using a vast array of experimental techniques. These techniques detect only a small proportion of all PPIs and
are labor intensive and time consuming. Therefore, the development of computational methods capable of predicting PPIs
accelerates the pace of discovery of new interactions. This paper reports a machine learning-based prediction model, the
Universal In Silico Predictor of Protein-Protein Interactions (UNISPPI), which is a decision tree model that can reliably predict
PPIs for all species (including proteins from parasite-host associations) using only 20 combinations of amino acids
frequencies from interacting and non-interacting proteins as learning features. UNISPPI was able to correctly classify 79.4%
and 72.6% of experimentally supported interactions and non-interacting protein pairs, respectively, from an independent
test set. Moreover, UNISPPI suggests that the frequencies of the amino acids asparagine, cysteine and isoleucine are
important features for distinguishing between interacting and non-interacting protein pairs. We envisage that UNISPPI can
be a useful tool for prioritizing interactions for experimental validation.
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Introduction

Graph or network theory has been used to model complex

systems such as social and biological aspects [1,2], and provides a

good interface between the reductionist and holistic views [3]. In

biological networks, the nodes represent biological elements (e.g.

biomolecules) and links or edges represent physical or functional

interactions among these biological elements [3]. These networks

have shown to be useful for deciphering the behavior of biological

systems and their computational inference can sharply reduce the

costs of experimental identification of novel interactions [1,3] with

a high applicability to drug targets discovery, for example [3].

Usually, the predictions are based on similarity-based algorithms,

maximum likelihood methods or probabilistic methods; the typical

applications of those algorithms are concerning the reconstruction

of networks, evaluation of network evolving mechanism, and

classification of partially labeled networks [1]. In the molecular

networks, the links can be predicted based on the node features

(e.g. protein sequences or domains), by the similarities of edge

neighborhood, by comparisons to an appropriated model, by

network topology, and so on [3].

Proteins are one of the most abundant classes of biomolecules

that can interact with many other biomolecules in cells, such as

DNA, RNA, metabolites and other proteins. The latter interac-

tions – protein-protein interactions (PPIs) – are essential interac-

tions that build functional units responsible for the functioning of

all biological molecular pathways [4]. Consequently, building a list

of all of an organism’s PPIs can be useful for the molecular-level

understanding of the core of complex traits. Therefore, the

collection of all PPIs can be important for understanding the

underlying mechanisms of diseases, facilitating the process of drug

design, elucidating the functions of newly identified proteins,

predicting their subcellular location and gaining insight into the

evolution of some interaction or metabolic pathways, among other

biological aspects of a cell or organism.

Physical PPIs can be identified using experimental methods,

such as the yeast two-hybrid assay, mass spectrometry, protein

microarrays, phage display, X-ray crystallography, fluorescence

resonance energy transfer, surface plasmon resonance, atomic

force microscopy and electron microscopy [5]. However, these

experiments, in addition to being expensive and time demanding,

are not suitable for all proteins and do not report all interactions

that can occur in cells or organisms [5–7]. Therefore, a

computational approach capable of reliably predicting PPIs can

identify the potential interactions to be further interrogated using

experimental approaches.

Several computational methods for predicting physical or

functional protein interactions based on the information from

several experimental and computational approaches, such as

phylogenetic profile analysis, gene co-expression profiles, sequence

co-evolution, synthetic lethality data, in silico two-hybrid systems,

gene cluster and gene neighbor analysis, protein domain

information [7,8], protein interface analysis, protein docking

methods [9,10], and orthology and ontology information [11],
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among others, have been published. Moreover, several data

sources can be used as examples for training several machine

learning (ML) algorithms in methods of classification [8,12–16].

Additionally, it is possible to combine more than one approach

and dataset to predict PPIs [8,17–20]. However, some of the

aforementioned methods use datasets that are not available for all

species or all proteins. For instance, some methods use information

from complete genome sequencing, gene-expression data or

protein information that is not available for all sequences.

Moreover, some methods have flaws: gene expression can not

determine physical PPIs; molecular evolutionary events can

disturb the prediction of PPIs in phylogenetic profile methods;

functional relationships based on genomic organization are only

suitable for prokaryotes; some methods are based on sequence

homology, which is more difficult to determine than finding genes;

and other computational and biological aspects may render the

prediction very difficult or do not provide resolute results. Some of

these points are argued in some papers [7,21,22].

The primary protein structure, does not considering domains,

motifs, ontology, phylogenetic trees and orthology, has sufficient

information to estimate the propensity for PPIs [3,23]. Moreover,

amino acid (aa) sequences are the most universal protein feature

and thus appear to be ideal traits for use in building methods of

predicting PPIs that are applicable to all proteins [24]. In fact,

many interesting and useful bioinformatics methods using primary

sequences have been developed, and many methods include

machine learning approaches [12,15,16,24–36]. However, some of

the methods based on ML and primary sequences have

weaknesses, such as the building of negative datasets, the small

number of examples and the large number of attributes (vectors)

that code protein pairs.

To overcome these limitations, we present in this paper the

Universal In Silico Predictor of Protein-Protein Interactions

(UNISPPI), an ML-based approach that use features associated

with amino acid sequences for building models for predicting PPIs.

UNISSPI is a probabilistic model and presents the following

advantages over previously mentioned methods: (1) the negative

training examples - the non-interacting protein pairs (hereafter

named no-PPIs) - used to construct the training datasets are all

experimentally supported no-PPIs; (2) the amount and diversity of

PPIs and no-PPIs used as training examples are much higher than

some of those used by other methods; (3) its computational cost is

markedly reduced in comparison to other methods because of the

small amount of learning features used to generate the models

(only 20 features); and (4) the generated models are decision trees

that can be easily analyzed and the most important features

capable of distinguishing PPIs from no-PPIs can be promptly

identified. By only considering 20 attributes associated with amino

acid sequences as learning features, UNISPPI can correctly classify

79.4% and 72.6% of known PPIs and no-PPIs, respectively,

including protein pairs from eukaryotes, prokaryotes, viruses, and

parasite-host associations. Because of these characteristics, we

consider UNISPPI a truly universal predictor that is appropriate

for large-scale prediction and thus can become a useful tool for

indicating the most relevant interactions, which can be further

validated experimentally.

Results

Predictive performance of generated models
The predictive performance of prediction models – in this case,

decision tree models – generated from the Normal and Random

training datasets are reported in the Figure 1 and Figure S1,

respectively. The predictive performances of the decision tree

models generated from different groups of the Normal training

datasets appear to be slightly different from each other (Figure 1),

but it is evident that from their performance that models generated

from the C or C9 datasets resulted in the lowest predictive values.

Interestingly, the Mann-Whitney U statistical test showed that the

performance measures are significantly different for almost all of

the performed comparisons (Table 1). For these cases, we assumed

that the best set of features that were able to discriminate the PPI

and no-PPI classes were those that produced decision tree models

with the highest median predictive values. Regarding the models

with no significant differences, we assumed that both datasets used

to generate the models had the same predictive performance.

Thus, as seen in Table 1, the models generated from F and F+C

are the most predictive models, followed by those generated from

F9 and F9+C9. Moreover, the performance measures for models

generated from these four training datasets vary by up to 1.4%

(AUC), and the lowest variation is 0.6% (precision values for no-

PPIs). Furthermore, the decision tree models created from

Random datasets showed performance measures of approximately

0.5, confirming the hypothesis that the Normal datasets are able to

extract relevant information about PPIs and no-PPIs (Figure S1).

Analysis of decision tree models
Beyond their prediction capability, decision tree models can be

used for knowledge acquisition to describe patterns in datasets.

Decision trees are decision support tools inferred from the training

data that use a graph of conditions and their possible

consequences. The structure of a decision tree consists of a root

node representing the most important condition for discriminating

classes and internal nodes representing additional conditions for

class discrimination under the main condition [37].

Of the 124 decision tree models generated by training the J48

algorithm on the F, F9, F+C and F9+C9 Normal training datasets

(31 models for each dataset) (see ‘‘Materials and Methods’’ for

details), we analyzed 24 decision trees (six for each dataset). The

decision trees show that the combination frequencies of asparagine

in the proteins from a protein pair (Asn-Asn) is the root node of the

decision trees generated from all four datasets. Thus, this attribute

can be considered the most important feature for discriminating

the PPIs and no-PPIs of a dataset. Interestingly, some frequencies

of Asn are not able to discriminate PPIs from no-PPIs (22 from all

analyzed trees); in these cases, the combination frequencies of

cysteines (Cys-Cys) or asparagine with cysteine (Asn-Cys) or

asparagine with isoleucine (Asn-Ile) or isoleucines (Ile-Ile) in the

proteins from a protein pair are relevant features for classifying the

instances (Figure 2; Table S1). Cysteine comprises 54.4% of the

amino acids in the second level of the analyzed trees, whereas Ile

and Asn comprise 26.5% and 19.1%, respectively, at the same

level in all analyzed trees.

Classification of unlabeled instances
The combined models generated from the F and F9 Normal

datasets (see ‘‘Materials and Methods’’ for details) were used

independently to classify the test set (Figure 3). In general, both the

F and F9 Normal combined model are able to correctly classify

,79.5% and ,73% of PPIs and no-PPIs, respectively (Table 2). A

more detailed analysis of the test set classified by the F9 Normal

combined model revealed that this set of features was able to

classify species-specific PPIs and no-PPIs for prokaryotes, eukary-

otes and viruses and PPIs and no-PPIs among different species

(also including proteins from eukaryotes, prokaryotes and viruses).

Some PPIs and no-PPIs from parasite-host associations were also

correctly predicted (for instance, protein interactions between

Plasmodium falciparum and humans; between proteins of the human
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immunodeficiency virus, Epstein-Barr virus, influenza A virus,

human cytomegalovirus, simian virus, chimpanzee hepatitis and

human hosts; between the Sendai virus and mouse hosts; and

between an enterobacteria phage and Escherichia coli host).

Moreover, some no-PPIs among virus proteins and a non-host

species were also correctly classified (Figure 4; Table S2).

Moreover, the F and F9 Normal training sets were described as

unlabeled instances and were also classified using the F and F9

Normal combined models, respectively. The results indicated that

in general the instances were classified correctly (Figure S2).

Moreover, the F and F9 Random combined models were applied

to classify both the test set and the training set (in this case,

described as unlabeled instances) separately, and the models were

not able to classify those unlabeled instances (Figure S3).

Discussion

In this paper, we presented a new method called Universal In

Silico Predictor of Protein-Protein Interactions (UNISPPI), based

on primary sequence information and a small set of features, for

classifying protein pairs as interacting or non-interacting proteins.

To build the final UNISPPI, a large number of tests were

conducted, and several protein physicochemical features were

examined. The following discussion will show how and why we

chose the core set of features for this method.

Selecting the best physiochemical features to form the
UNISPPI and evaluating the universality of this method

Using an ML method, the ability of ‘‘frequency’’ and

‘‘composition’’ physicochemical features in predicting PPI and

no-PPI was assessed. The performance measures of decision tree

models constructed from six Normal datasets (F, F9, C, C9, F+C

and F9+C9) showed that ‘‘composition’’ features do not provide the

most relevant information for discriminating PPIs and no-PPIs in a

dataset. However, the ‘‘frequency’’ features appear to have the

most relevant information for predicting PPIs and no-PPIs. We are

not arguing that the ‘‘composition’’ features are not important to

PPIs; however, these features do not provide the most relevant

information for discriminating a PPI based on our method.

Regardless, the statistical analysis indicated that the F and F+C

datasets generated the models with the best predictive perfor-

mances, followed by F9 and F9+C9. However, the variation of the

predictive values observed for these Normal datasets, in practical

terms, do not differ expressively.

The use of decision trees was very helpful not just to extract

information from the datasets but also to generate trees that

yielded interesting results. The trees revealed that the combination

of the frequencies of Asn, Cys and Ile were the most important

feature for classifying the PPIs and no-PPIs. The frequency of Asn

in symmetrical attributes (the frequency of Asn on both proteins)

was the most important feature, even when the ‘‘composition’’

features were present. The Cys, Ile and Asn frequencies were

present at the second level of the tree, in which symmetrical

attributes containing Cys (the frequency of Cys on both proteins)

were commonly reported. In conclusion, these trees lead us to

conclude that the composition does not appear to convey relevant

information for predicting PPIs and no-PPIs according to all

analyzed trees, corroborating the conclusions obtained from

analyzing ML predictive performances.

For the biological role of those three amino acids in PPIs, we

considered several reports that showed the relationship between

their frequency and PPIs. Analyzing the preference index of inter-

chain contacts showed that the interactions between two Asn (Asn-

Asn), two Cys (Cys-Cys), between Cys with other residues

(including Ile), two Ile (Ile-Ile), and between Ile with other

residues, have high preference index values (Cys-Cys presents the

highest values) [38].

Regarding the interface features, there are interesting studies

showing the participation of Asn, Cys and Ile in protein interfaces.

Asn is one of the aa residues identified as having an affinity for

interfaces [39,40] and is present in the binding sites of antibody

complementarity-determining regions [41,42], for example. More-

over, Asn can play a role in stabilizing the protein structure of

solvent-accessible regions of ubiquitin-associated domains, which

might represent a binding surface [43]. Ile and other hydrophobic

and charged residues constitute 25% of the overall number of

residues at protein-protein interfaces [38]. Finally, Cys bridges are

present in interfaces more frequently than expected [44].

Interestingly, Cys residues are able to make disulfide bonds, and

these bonds are common between two Cys residues and are

important in cofactor binding, inter-subunit interactions, DNA

binding inhibition, membrane binding, subcellular localizations,

stabilizing interactions and protein structures [45].

Concerning the test of the models generated by ML training, we

used the F and F9 Normal combined models for classifying

unlabeled instances of the F and F9 test sets. These models were

selected based on the differences in the predictive performances

between F and F+C and between F9 and F9+C9, which were not

statistically significant. Moreover, the ‘‘composition’’ features do

not provide the most relevant information for predicting the

interactions. Both models were equally able to classify the

unlabeled instances with good predictive performance. These

results were very exciting because these models were built using

only eukaryotic examples, whereas the test set included a large

number of prokaryote, eukaryote and virus examples. Addition-

ally, the results showed that those models are in fact universal.

Moreover, the ML training using Random datasets and the

classification of the test set using the Random model provided

support for all analyses and conclusions for this topic.

Finally, we concluded that using only the frequencies of amino

acids in a protein pair was sufficient to classify PPIs and no-PPIs.

According to the aforementioned facts, we decided that the best set

of features for forming the UNISPPI is the F9 Normal dataset.

Although the F Normal dataset is slightly more predictive than the

F9 Normal dataset, both models have a similar ability to classify

unlabeled protein pairs. Furthermore, the F9 Normal dataset was

chosen instead of the F9+C9 Normal dataset because the

differences between the predictive performances were not signif-

icant and because the decision trees showed that the ‘‘composi-

tion’’ information may be irrelevant. Moreover, the dataset chosen

(F9) to build the final UNISPPI contains only 20 attributes, which

is more desirable than 841, 400 or 41 attributes. In large-scale

projects, millions or billions of unlabeled protein pairs must be

classified, and, in those cases, the F9 dataset is obviously more

useful than all other sets of features. These results support our

Figure 1. Predictive performance of the machine learning using the Normal training datasets. The letters F, C and F+C indicate that the
Normal training datasets originated from the feature descriptors ‘‘frequency’’, ‘‘composition’’ and ‘‘frequency’’ plus ‘‘composition’’, respectively. The
prime symbol indicates the Normal training datasets formed using the symmetrical attributes of the previously mentioned datasets (details in the
‘‘Material and Methods’’ section). The numbers at the bottom of the boxes are the medians for each dataset.
doi:10.1371/journal.pone.0065587.g001
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conclusion that the primary sequence alone can be used to classify

a PPI and showed that the predictive performance using only

symmetrical attributes was sufficient.

The innovations of UNISPPI
To show the advantages of UNISPPI over other similar

computational methods, we built a chart that showed the features

of several similar computational methods (see method descriptions

and citations in Table S3). Despite their usefulness, these methods

show some limitations that we attempted to overcome through the

development of UNISPPI. These limitations mainly encompass

the construction of the negative example dataset and the number

of instances and attributes in both training and test sets.

For the negative dataset in all other methods, the negative

instances were obtained from predictions. These procedures are

questionable because, it is easy to introduce bias into the dataset

(for training and cross-validation procedures), which may be

caused by the over-representation of negative examples and/or by

intrinsic aspects of the negative dataset prediction procedure

[36,46]. Moreover, the predictive performances differ according to

the negative dataset prediction method used [25,28,31,34]. Some

methods rely on in silico artificial proteins from the PPI dataset to

build the negative examples, and this procedure overestimates the

results according to the level of randomness used during the

artificial protein building. Moreover, it is intrinsically more

difficult to distinguish real protein sequences than artificial ones

because artificial sequences can lack specific protein patterns, such

as motifs, domains or other signatures. Thus, the models generated

using real protein sequences are more reliable and give better

results for classifying real protein-protein interactions [28]. In

addition, some methods predict that if two proteins are not present

as an interacting protein pair within the PPI dataset, those proteins

can be included as a non-interacting protein pair to build the

negative dataset. This statement does not make sense because it is

not known whether these proteins do interact in an organism

under some biological circumstances, such as pathogen attack,

environmental influences, developmental stages and tissue-specific

interactomes, among others (see method descriptions and citations

in Table S3).

Some methods are based on a low number of examples or are

relevant to just one or few species. Thus, these methods can not be

considered universal predictors because of their basis on a small

universe of proteins (low diversity). In all methods with well-

reported attribute constructions, the number of attributes is usually

very high, which renders the methods unfeasible for large-scale

prediction procedures. Moreover, some methods were not applied

to classify instances that were not in the training set; thus, the true

performance of these methods was not tested (see method

descriptions and citation in Table S3).

Direct comparisons among the predictive performance of the

methods are not possible because of the differences in their

features, interactions or methods for developing the negative

dataset. Regardless, the UNISPPI has predictive values that are

usually higher or comparable to those of the other methods (Table

S3).

Finally, UNISPPI is based on primary sequence information

that is coded in 20 symmetrical attributes (F9 construction), which

is feasible for use in large-scale projects (approximately millions or

billions of interactions). Moreover, because the UNISPPI model is

based only on experimentally validated examples from diverse

species and can be applied to predict PPIs or no-PPIs in a large

number of species, the UNISPPI model is truly a universal

predictor. This method can easily classify instances of a complete

proteome (it builds an interactome) or proteins from parasite-host

Table 1. Mann-Whitney U statistical test applied to
performance measures of models generated from Normal
training datasets.

Datasets PPI NO-PPI

p-value p-value

C6C9 Precision 1.15E-04 2.43E-06

C6C9 Recall 3.51E-06 0.002

C6C9 AUC 1.73E-06 1.73E-06

C6F+C Precision 1.18E-11 1.61E-10

C6F+C Recall 5.36E-10 8.36E-12

C6F+C AUC 2.26E-11 2.26E-11

C6F9 Precision 8.41E-12 5.61E-10

C6F9 Recall 4.38E-09 0.000

C6F9 AUC 1.51E-09 1.51E-09

C6F9+C9 Precision 8.36E-12 1.61E-10

C6F9+C9 Recall 9.90E-10 7.21E-12

C6F9+C9 AUC 1.17E-10 1.17E-10

C96F+C Precision 7.54E-12 2.17E-11

C96F+C Recall 5.08E-11 0.000

C96F+C AUC 7.46E-12 7.46E-12

C96F9+C9 Precision 7.49E-12 1.49E-11

C96F9+C9 Recall 2.76E-11 7.56E-12

C96F9+C9 AUC 8.33E-12 8.33E-12

F+C6F9+C9 Precision 9.00E-04 1.76E-02

F+C6F9+C9 Recall *9.15E-02 0.002

F+C6F9+C9 AUC 2.46E-08 2.46E-08

F6C Precision 1.72E-11 2.11E-10

F6C Recall 7.28E-10 1.11E-11

F6C AUC 1.40E-10 1.40E-10

F6C9 Precision 7.49E-12 2.18E-11

F6C9 Recall 3.84E-11 0.000

F6C9 AUC 4.59E-11 4.59E-11

F6F+C Precision *2.49E-01 *8.91E-02

F6F+C Recall *1.27E-01 *2.79E-01

F6F+C AUC *1.34E-01 *1.34E-01

F6F9 Precision 6.91E-04 1.61E-02

F6F9 Recall *7.23E-02 0.001

F6F9 AUC 4.62E-08 4.62E-08

F6F9+C9 Precision 1.25E-02 *1.97E-01

F6F9+C9 Recall *4.14E-01 1.61E-02

F6F9+C9 AUC 4.67E-06 4.67E-06

F96C9 Precision 7.54E-12 1.11E-10

F96C9 Recall 1.40E-10 0.000

F96C9 AUC 1.16E-10 1.16E-10

F96F+C Precision 3.14E-05 2.31E-04

F96F+C Recall 2.86E-03 1.50E-04

F96F+C AUC 4.57E-10 4.57E-10

F96F9+C9 Precision *9.50E-02 *9.49E-02

F96F9+C9 Recall *9.75E-02 *0.162

F96F9+C9 AUC 1.12E-02 1.12E-02

*, no significant difference.
doi:10.1371/journal.pone.0065587.t001
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associations when attempting to reduce the number of interactions

to be further investigated using experimental procedures. Since the

interactomes are the most promising networks for drug target

candidate discovery [3], UNISPPI method can be useful to pace of

detection of these targets as well.

To learn how to apply UNISPPI in unlabeled instances, see

Text S1. The F9 Normal combined model (the UNISPPI per se) is

available in the Dataset S1. Eventually, UNISPPI will return

predicted PPIs and a probabilistic score assigned to each

interaction.

Materials and Methods

UNISSPI is a prediction model based on the combination of

other models (see further details in the final of this section)

constructed according to the typical steps performed in an ML

procedure: 1 - collection of instances (in this case, known PPIs and

no-PPIs) and selection of features to be used as learning attributes

(in this case, a set of physicochemical features); 2 - construction of

training datasets; 3 - selection of the ML algorithm to be trained

(in this case, the J48 algorithm); 4 - generation and evaluation of

the prediction model (Figure 5). The details of all procedures are

presented in Figures S4, S5, S6, S7, S8, S9. Moreover, important

definitions are presented in Text S1.

Figure 2. Synthesis of several decision trees generated during the ML training. The aa at the top of each box is relative to the attributes
specified at the first and second level of the trees. A, B, C and D indicate the low, moderate, high and very high bins, respectively (for more details, see
Table 3 and the ‘‘Materials and Methods’’ section). Green boxes, a combination that classifies an instance as a PPI; Red boxes, a combination that
classifies an instance as a no-PPI; Brown boxes, a combination that classifies an instance as a PPI or no-PPI; ‘‘?’’, a combination for which an instance
can not be classified, requiring classification at the next level of the tree.
doi:10.1371/journal.pone.0065587.g002
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Figure 3. Graphics of classification of the test sets using the F and F9 Normal combined models. The score represents the classification of
the instances as PPI. The instances were classified as PPIs or no-PPIs, and no-PPIs classification scores were converted to interaction scores. ‘‘A’’,
classification of the F test set using the F Normal combined model; ‘‘B’’, classification of the F9 test set using the F9 Normal combined model; Red, PPIs
instances; Gray, no-PPIs instances.
doi:10.1371/journal.pone.0065587.g003

Figure 4. Detailed analysis of the classification of the test set using the F9 Normal combined model. The values in the right side of each
table and the score over each bar indicate the number and percentages of instances correctly classified, respectively. Single species, indicates PPIs
and no-PPIs within the same species; Different species, indicates PPIs and no-PPIs among different species; *, groups that include instances of
parasite-host associations.
doi:10.1371/journal.pone.0065587.g004

Predictor of Protein-Protein Interactions

PLOS ONE | www.plosone.org 7 May 2013 | Volume 8 | Issue 5 | e65587



Collection and selection of instances for the training and
test sets

The PPIs and no-PPIs were obtained from the BIOGRID [47]

and Negatome databases [48], respectively and their aa sequences

were retrieved from the UniProt database [49] (details in Figure

S4). From PPIs, we retrieved sequences from proteins associated

with just one UniProt ID in BIOGRID. To avoid bias and

misclassification, the PPIs and no-PPIs data were refined as

follows: 1 – Only one example was chosen from redundant

instances (example of redundancy: ab interaction = ba interaction,

in which a and b represent proteins of one instance); and 2 - The

instances classified as both PPIs and no-PPIs were also excluded.

Approximately 50% of the PPI examples for each species and all

species-specific no-PPIs of eukaryotes were selected to build the

training set. All other instances – instances from species with only

one instance; instances with proteins from two different species;

and instances from prokaryotes and viruses - were included in an

independent test set (details in Figure S4).

Generation of attributes, discretization procedure and
dataset building

To build the attributes, we first calculated two different sets of

physicochemical features for all proteins obtained: ‘‘frequency’’

and ‘‘composition’’. The ‘‘frequency’’ set holds the percentages for

each of the 20 aa in the protein: Af ~
NA

N
, where NA is the

number of aa of type A (NA = 1, 2, 3, …, 20), constituting a total of

20 feature descriptors. The ‘‘composition’’ set was obtained by

grouping each aa of a protein into one of three different groups

related to seven physicochemical features (details in Table S4)

followed by a calculation of the percentage of each group for each

feature: Cr~
nr

N
, where ‘‘nr’’ is the number of the aa included into

group 1, 2 or 3, constituting a total of 21 feature descriptors (3

groups67 physicochemical features) (details in Figure S4). The

‘‘N’’ corresponds to the sequence length [50]. Proteins with

identical features, as well as their instances in the training and test

sets, were excluded from training and test datasets.

The discretization procedure was performed using the average

and the standard deviation calculated for each feature descriptor

for the ‘‘frequency’’ and ‘‘composition’’ sets based on the proteins

in the training set (Table S5). The values of each feature descriptor

in the training set were binned into four groups according to the

rules described in Table 3. The protein pairs were then re-

organized, and the feature descriptors of all instances that were

already discretized were combined to form the final set of

attributes. These procedures were conducted for all proteins for

both the ‘‘frequency’’ and ‘‘composition’’ training datasets

separately, resulting in the F (from ‘‘frequency’’) and C (from

‘‘composition’’) datasets, respectively. The symmetrical attributes

(attributes of the same physicochemical features) were selected

from F and C, and two other datasets were constructed, the F9 and

C9 datasets, respectively. Furthermore, F and F9 were combined

with C and C9, respectively, forming the F+C and F9+C9 datasets.

The numbers of attributes for the F, F9, C, C9, F+C and F9+Cv

training datasets were 400 (20620 features), 20 (4002380

features), 441 (21621 features), 21 (4412420 features), 841

(400+441 features) and 41 (8412800 features), respectively. All

Table 2. Summary of the number of instances of the test set correctly classified using the F and F9 Normal combined models.

Classification using F Normal combined model Classification using F9 Normal combined model

Classes numb. of instances % of instances numb. of instances % of instances

PPI 33,609 79.9 33,363 79.4

no-PPI 319 73.3 316 72.6

numb., number.
doi:10.1371/journal.pone.0065587.t002

Figure 5. A general workflow of the procedures adopted in this work.
doi:10.1371/journal.pone.0065587.g005

Table 3. Descriptions of the bins used to discretize the
attributes of the F and C datasets.

Bins Description Letter codes

Low ,avg2stdv A

Moderate .avg2stdv and , = avg B

High .avg and , = avg+stdv C

Very high .avg+stdv D

avg, average; stdv, standard deviation.
doi:10.1371/journal.pone.0065587.t003
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training sets included the same instances (details in Figure S5, S6,

S7, S8).

The symmetrical attributes of all six training datasets were

subjected to a standardization procedure because PPIs are

supposed to be non-directional: the attributes with BA, CA, CB,

DA, DB and DC were converted to AB, AC, BC, AD, BD and

CD, respectively. This lack of directionality implies that f1p1 and

f1p2 = f1p2 and f1p1 in a protein pair, where ‘‘f’’ and ‘‘p’’ mean

‘‘feature’’ and ‘‘protein’’, respectively (details in Figure S9).

The ‘‘frequency’’ feature descriptors of all proteins from

instances selected to form the test set were also subjected to the

previously mentioned discretization procedures, and the average

and standard deviation values obtained for the proteins of the

‘‘frequency’’ training set were used for the discretization (Table

S5). The instances were reorganized, and the procedures for

selecting the symmetrical attributes were also conducted, resulting

in the F and F9 test datasets. Moreover, the symmetrical attributes

of both test datasets were also subjected to the same standardi-

zation procedure as previously mentioned. All training sets

included the same instances.

By the end, each training dataset (F, F9, C, C9, F+C and F9+C9)

consisted of 43,365 instances from 20 eukaryotic species and

12,510 different proteins (11,609 and 944 for PPIs and no-PPIs,

respectively). Moreover, each test dataset (F and F9) consisted of

42,473 instances from 78 species and 11,881 different proteins

(11,576 and 305 for PPIs and no-PPIs, respectively) (Table 4–5;

details in Table S6, S7).

Balancing the training datasets and building the Random
training dataset

Because the number of PPIs is much higher than no-PPIs and it

is known that data imbalance degrades the performance of ML

algorithms [51], it was necessary to build balanced datasets from

the six original training datasets. For this purpose, 31 balanced

datasets were constructed, 30 containing 2,780 instances (all 1,390

no-PPIs and 1,390 PPIs) and 1 containing 550 instances (275 no-

PPIs and 275 PPIs). Before the construction of these balanced

datasets, the PPI examples were randomized in an attempt to

avoid bias in the datasets, and the PPIs were randomly selected

from the total set of PPIs for all balanced dataset constructions. All

balanced datasets for all six training datasets were named Normal

datasets. From these Normal datasets, we constructed Random

datasets by shuffling their classes to check whether the generated

model on non-shuffled datasets learned the traits actually

associated with PPIs instead of traits associated with any random

subset of protein pairs. Thus, we generated 62 datasets for each of

the six balanced training datasets, half of which were Normal and

half were Random datasets (details in Figure S9).

Predictive performance: validation and application tests
The prediction models were generated by training ML

algorithm J48 [52] with bootstrap aggregating (bagging) [53] on

all balanced datasets (Normal and Random datasets) for each

group of the six training datasets. Before constructing the

UNISPPI per se (a model based on the combination of 31 F9

Table 4. Descriptions of instances inserted in the training set.

Number of instances

Groups PPI no-PPI
Number of species per
group

Amphibians 0 1 1

Annelids 0 6 3

Arthropods 6,295 1 1

Avians 9 3 1

Mammals 499 1,320 5

Plants 768 37 6

Rays 0 4 2

Yeasts 34,404 18 2

TOTAL 41,975 1,390 -

-, numbers not showed.
doi:10.1371/journal.pone.0065587.t004

Table 5. Descriptions of instances inserted in the test set.

Numb. of instances Numb. of species per group

Groups PPI no-PPI

*Eukaryotes 41,967 0 14

*Prokaryotes 1 168 17

*Virus 3 1 2

*TOTAL 41,971 169 -

**Eukaryote viruses and eukaryote non-host 0 13 14

**Eukaryote parasites and host 21 37 17

**Eukaryotes 15 176 34

**Eukaryotes and prokaryotes 31 13 16

**Prokaryote viruses and host 0 1 2

**Prokaryotes 0 26 8

**TOTAL 67 266 -

TOTAL 42,038 435 -

numb, numbers.
*, indicates PPIs and no-PPIs within the same species.
**, indicates PPIs and no-PPIs among different species.
-, numbers not showed.
doi:10.1371/journal.pone.0065587.t005
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Normal models), all generated models were first validated by

estimating their predictive performances using the 10-fold cross-

validation test via WEKA (Waikato Environment for Knowledge

Analysis) software version 3.7.5 [54] (details in Figure S9). The K-

fold cross-validation is helpful to overcome some link prediction

problems [1].

To test the ability of UNISPPI to classify unseen instances, we

performed an application test. Four combined models were

obtained from the 31 models generated by the ML training using

the F and F9 Normal and Random training datasets separately.

These combined models were then used to classify the F and F9

test datasets (Table 5; Table S6, S7; procedure detailed in Text

S1). Comparing the ability to classify unseen instances using

models from normal and random datasets is useful for verifying the

predictive ability. The same procedures were performed for the

instances used in the F and F9 training datasets (Table 4; Table S6,

S7). No instances in the test set were previously exposed to the J48

algorithm.

Performance measures and statistical analysis
The estimated predictive performance of the prediction models

was measured in terms of their precision, recall (equivalent to

sensitivity or true positive rate) and area under the receiver

operating characteristic curve (AUC). The performance measures

estimated for models constructed from Normal datasets were

compared using the non-parametric Mann-Whitney U statistical

test [55]. In the application test, instances with a classification

score of 0.50 were not classified neither PPIs nor no-PPIs.

Supporting Information

Text S1 Definitions and the instruction to apply UNI-
SPPI.
(PDF)

Figure S1 Predictive performance of the machine
learning using the Random training datasets. The letters

F, C and F+C indicate that the Random training datasets

originated from the feature descriptors ‘‘frequency’’, ‘‘composi-

tion’’, and ‘‘frequency’’ plus ‘‘composition’’, respectively. The

prime symbol indicates the Random training datasets formed

using the symmetrical attributes of the previously mentioned

datasets (details in the ‘‘Material and Methods’’ section).

(TIF)

Figure S2 Graphics of classification of the training sets
using the F and F9 Normal combined models. The score

represents the classification of the instances as PPI. The instances

were classified as PPIs or no-PPIs, and no-PPIs classification scores

were converted to interaction scores. ‘‘A’’, classification of

instances used in the F Normal training set using the F Normal

combined model; ‘‘B’’, classification of instances used in the F9

Normal training set using the F9 Normal combined model; Red,

PPI instances; Gray, no-PPI instances.

(TIF)

Figure S3 Classification of the training and test sets
using the F and F9 Random combined models. The score

represents the classification of the instances as PPI. The instances

were classified as PPIs or no-PPIs, and no-PPIs classification scores

were converted to interaction scores. ‘‘A’’ and ‘‘C’’, classification

of F test and Normal training set, respectively, using the F

Random combined model; ‘‘B’’ and ‘‘D’’, classification of F9 test

and Normal training set using the F9 Normal combined model;

Red, PPI instances; Gray, no-PPI instances.

(TIF)

Figure S4 Details of the collection of instances and
generation of attributes. P, stands for proteins and the colors

are relative to different proteins. The different geometrical formats

represent different amino acids. ‘‘AA’’ and ‘‘CC’’, feature

descriptors.

(TIF)

Figure S5 Generation of attributes, discretization pro-
cedure and the generation of F and C training datasets. P

stands for proteins and the colors are relative to different proteins.

AVG, average; STDV, standard deviation. ‘‘AA’’ and ‘‘CC’’,

feature descriptors.

(TIF)

Figure S6 Details of generation of F9 and C9 training
datasets. P stands for proteins and the colors are relative to

different proteins. ‘‘AA’’ and ‘‘CC’’, feature descriptors.

(TIF)

Figure S7 Details of generation of F+C training dataset.
P stands for proteins and the colors are relative to different

proteins. ‘‘AA’’ and ‘‘CC’’, feature descriptors.

(TIF)

Figure S8 Details of generation of F9+C9 dataset. P stands

for proteins and the colors are relative to different proteins. ‘‘AA’’

and ‘‘CC’’, feature descriptors.

(TIF)

Figure S9 Final building of training Normal and
Random datasets; machine learning procedure and test
of classification.

(TIF)

Table S1 Decision trees generated during the ML
training. The aa at the top of each box is relative to the

attributes specified in the first and second levels of the trees. A, B,

C and D indicate the low, moderate, high and very high bins,

respectively (for more details, see Table 3 and the ‘‘Materials and

Methods’’ section). Green boxes, a combination that classifies an

instance as a PPI; Red boxes, a combination that classifies an

instance as a no-PPI; Numbers in white boxes, a combination for

which an instance can not be classified, requiring classification at

the next level of the tree.

(XLS)

Table S2 Details of the PPIs and no-PPIs correctly
classified using the F9 Normal combined model.

(XLS)

Table S3 Comparative table of the different computa-
tional PPI methods. Dashed lines, indicate that the underlined

columns are related each other; -, indicates absent information,

not showed, not used or not obviously reported in the paper.

(XLS)

Table S4 Description of the physicochemical features in
the ‘‘composition’’ feature descriptors.

(XLS)

Table S5 Average and standard deviation values from
the ‘‘frequency’’ feature training dataset. See ‘‘Material

and Method’’ section and the Supplementary Text S1 to apply in

your study case.

(XLS)

Table S6 Description of amount of instances per
species used in the training and test datasets.

(XLS)
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Table S7 Description of the instances presented in the
training and test datasets. Include their UniProt accession

numbers and species descriptions.

(XLS)

Dataset S1 The model F_line_Normal_combined_model
(binary file).
(ZIP)
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