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Abstract

To tackle the exponentially increasing throughput of Next-Generation Sequencing (NGS), most of the existing short-read
aligners can be configured to favor speed in trade of accuracy and sensitivity. SOAP3-dp, through leveraging the
computational power of both CPU and GPU with optimized algorithms, delivers high speed and sensitivity simultaneously.
Compared with widely adopted aligners including BWA, Bowtie2, SeqAlto, CUSHAW2, GEM and GPU-based aligners
BarraCUDA and CUSHAW, SOAP3-dp was found to be two to tens of times faster, while maintaining the highest sensitivity
and lowest false discovery rate (FDR) on Illumina reads with different lengths. Transcending its predecessor SOAP3, which
does not allow gapped alignment, SOAP3-dp by default tolerates alignment similarity as low as 60%. Real data evaluation
using human genome demonstrates SOAP3-dp’s power to enable more authentic variants and longer Indels to be
discovered. Fosmid sequencing shows a 9.1% FDR on newly discovered deletions. SOAP3-dp natively supports BAM file
format and provides the same scoring scheme as BWA, which enables it to be integrated into existing analysis pipelines.
SOAP3-dp has been deployed on Amazon-EC2, NIH-Biowulf and Tianhe-1A.
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Introduction

With the rapid advancement of Next-Generation Sequencing

technologies, modern sequencers like Illumina HiSeq 2500 can

sequence a human genome into 600 million pairs of reads of

100 bp in length (total 120 Gigabases) in merely 27 hours. The

cost is also decreasing fast. By 2013 year’s end, sequencing a

human genome is projected to cost less than $1,000. Bioinfor-

matics research using sequencing data often starts with aligning

the data onto a reference genome, followed by various

downstream analyses. Alignment is computationally intensive;

the 1000 genomes pilot paper [1] published in 2010 reported that

a 1192-processor cluster was used to align the reads using MAQ

[2]. This kind of computing resources is not available to most

laboratories, let alone clinical settings. Although considerable

advances have been made on new aligners, alignment still remains

a bottleneck in bioinformatics analyses. Thus, ultra-fast alignment

tools without relying on extensive computing resources are needed.

There are quite a few software tools for aligning short reads

onto a reference genome. The more popular ones include MAQ,

Bowtie [3], BWA [4] and SOAP2 [5]. The faster ones [3–5] index

the reference genome using the Burrows-Wheeler Transform

(BWT), which is efficient for aligning short reads with limited

mismatches, but inefficient for alignment with gaps. These tools

(running on a quad-core processor) take tens of hours to align 120

Gigabases with limited (or even none for Bowtie and SOAP2)

gapped alignment found. Alignment gaps can result from

insertions and deletions (Indels), which are thought to comprise

over 20% of genetic variations [6] and contribute to human traits

[7]. Hence, a successor is expected to be faster and more sensitive

to gaps.

SeqAlto [8], CUSHAW2 [9], and GEM [10] were published

recently. SeqAlto is a hash-based aligner that improves an earlier

hash-based aligner SNAP [11] (reported to have relatively poor

sensitivity for real reads and provide no mapping quality [8]) using

additional global and local alignments. SeqAlto is slower than

SNAP, yet SeqAlto is still faster than the BWT-based aligners

except Bowtie2. CUSHAW2 [9] uses the seed-and-extend

approach and maximal-exact-match seeds to enable gapped

alignment of long reads. GEM mapper leverages string matching

with filtration to search the alignment space more efficiently [10].

GEM is faster than comparable state-of-the-art aligners. Yet it

does not provide PHRED [12] compliant mapping quality score;
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this saves some tedious computation, but prohibiting it from

integrating into existing analysis pipelines.

Nowadays, general-purpose computing on graphics processing

units (GPUs) is becoming popular. A GPU is a piece of low-cost

hardware providing massive parallelism but with limited memory

and restricted usage. A number of GPU-based bioinformatics tools

have emerged last year [13]. CUSHAW [14] is the first to

introduce a complete alignment pipeline utilizing GPU power for

paired-end short reads (note that CUSHAW2, mentioned above,

is CPU-based). BarraCUDA [15] implements BWA to align reads

in parallel on a GPU; limited by the branch and bound trie

algorithm that requires extensive decisions making, BarraCUDA

works sub-optimally on GPU and gains a 4-time boost than a

single-thread BWA. SOAP3 [16] successfully exploits the massive

parallelism of a GPU with tailor-made GPU-BWT and read-

characteristics sensitive load balancing to effectively align short

reads. Albeit not supporting gapped alignment, which makes it

unsuitable for production, it is to date the most competitive aligner

for ungapped alignment.

Results

Here we present a GPU-based alignment software SOAP3-dp

that allows multiple mismatches and gaps, which is well suited for

production environments (real data alignments) than the prede-

cessor SOAP3. A simple approach to extend mismatch alignment

to gapped alignment is to first identify candidate regions by exact

or mismatch alignment of short substrings (seeds) in the reads, then

use dynamic programming to perform a detailed alignment of the

read to the regions. Such an approach has been widely used (e.g.,

Bowtie2). The bottleneck occurs as substring alignment often

results in a large number of candidates, especially when

mismatches are allowed. As a result, reads with too many

candidates are often ignored due to time constraint. On the other

hand, the parallelism of GPU apparently would allow many

candidates to be verified in parallel; yet dynamic programming is

memory consuming, and the limited-memory of GPU becomes a

prohibiting factor to fully utilize the parallelism. SOAP3-dp gives a

pragmatic realization of this approach (Figure 1, Methods). By

exploiting compressed indexing and memory-optimizing dynamic

programming on a GPU, SOAP3-dp can efficiently tackle a large

number of candidates in parallel, and thus can examine gapped

alignments extensively and achieve a drastic improvement in both

speed and sensitivity over other tools.

See the Methods about the design of the dynamic programming

which attempts to minimize the memory usage for each candidate

so as to let a GPU to handle hundreds of candidates in parallel

while using limited shared memory. We also show the details of

SOAP3-dp’s intricate engineering solution to finding the optimal

way to align different reads using either the CPU or the GPU.

Experiments & Performance
We compared SOAP3-dp to other short-read alignment

software in terms of the speed, sensitivity and accuracy. We used

both real and simulated Illumina data. Furthermore, we tested out

SOAP3-dp’s alignment quality for variant calling using real data.

In particular, 41-fold of 100 bp (PE100) and 77-fold of 150 bp

(PE150) Illumina paired-end reads of YH [17] samples have been

generated (Table S1 in File S1) for the testing for variant calling.

Alignment Performance
We first used real data to test SOAP3-dp with BWA (BWA-SW

[18] for SE reads), Bowtie2, SeqAlto, CUSHAW2, GEM,

BarraCUDA, and CUSHAW. The aim was to compare the time

and alignment rate when each runs in the default setting. Next, to

assess the accuracy and sensitivity, we used simulated reads whose

correct alignments were known. We then considered more detailed

comparison with the software running in different settings. We also

attempted to compare SOAP3-dp against its predecessor SOAP3.

In our experiments, we assume that input reads are plain text

instead of in gzip-compressed format. This is because GEM (to the

date of paper submission) does not accept gzip-compressed

FASTQ file. All other software can handle compressed input,

which is getting common nowadays. Regarding output format, we

require all software to use SAM format, which is mandatory for

downstream analysis software including GATK [19] and SAM-

TOOLS [20]. All software except GEM can output directly in

SAM format; GEM first outputs in a simple format and then takes

an extra step to convert to SAM format. To test GEM’s efficiency

when using a simple format, we include a comparison to SOAP3-

dp also using a simple format (see the Remark section).

Real data
We used three real datasets for benchmarking of alignment

performance: (1) a lane (122.43M reads) from PE100, and (2) a

lane (374.87M reads) from PE150, and (3) SRR211279 (25.23M

100 bp paired-end reads generated by Illumina GAIIx) from the

Washington University Genome Sequencing Center. We tested

SOAP3-dp and seven other aligners (CPU-based: BWA, Bowite2,

SeqAlto, CUSHAW2, GEM; GPU-based: Barracuda, and CU-

SHAW; see Supplementary Note for receipts), all using 4 CPU

threads and one GPU device (for GPU aligner). As shown in

Table 1, SOAP3-dp is much faster than all others (Tables S2–S10

in File S1 for more details). It is at least 3.5 times faster than GEM,

and 7 to 15 times faster than the other six. SOAP3-dp also gave

better alignment rate consistently. SeqAlto comes closest, aligning

0.48% to 3.6% less reads than SOAP3-dp, and the others are in

the range of 2% to 8% less than SOAP3-dp. Notice that except

SOAP3-dp, aligners usually have an obvious drop in alignment

rate for longer reads (dataset 2). The two GPU-based aligners,

Barracuda and CUSHAW, are relatively primitive in optimizing

GPU’s utilization and overheads, and their performance was

dominated by new CPU-based aligners like GEM and Bowtie2.

For SOAP3, its alignment rate, as expected, is much poorer than

SOAP3-dp and the others (due to lack of gapped alignment);

furthermore, SOAP3 is slower than SOAP3-dp for 100 bp reads.

We did not include Barracuda, CUSHAW and SOAP3 for further

experiments.

Simulated data
To assess the accuracy and sensitivity of SOAP3-dp, we used the

short read simulator Mason [21] to obtain 5 sets of 6M Illumina-

style paired-end (PE) reads with 500 bp insert size from GRCh37

major build, with length ranging from 50–250 bp.

Notably, Bowtie2, SeqAlto and GEM were designed with

switches to favor speed at the expense of accuracy and sensitivity.

We applied ‘‘very-fast’’, ‘‘sensitive’’, and ‘‘very-sensitive’’ switches

to Bowtie2, ‘‘fast (-f)’’ to SeqAlto and ‘‘fast adaptive (–fast-

mapping)’’, ‘‘fastest (–fast-mapping = 0)’’ to GEM. For SOAP3-dp,

we tested three versions whose indices are based on 1/4 sampled,

1/2 sampled and full suffix array (SA), respectively. Different sized

SAs still deliver identical alignment results, but a smaller one

consumes less memory at the expense of slightly longer alignment

time. All parameters of SOAP3-dp and SOAP3 remained as

default (for a 100 bp read, one gap up to 68 bp, to 23 one-bp gaps)

while parameters for other aligners were set to favor different read

types and lengths as suggested by previous studies. Detailed

command lines and descriptions of critical parameters were

SOAP3-dp Short Read Aligner
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summarized as receipts in the Supplementary Note. In total, 16

sets of programs and parameters were compared.

In all datasets of simulated reads, SOAP3-dp gives consistent

advantage. It is faster and simultaneously has higher sensitivity and

lower FDR over all other tools (Table 2 for 100 bp PE, Tables

S11–S14 in File S1 for all other simulated datasets, Figure 2). For

100 bp reads, SOAP3-dp with full SA takes 132 seconds to align

6M read pairs, and it is 2.26 to 12.63 times faster than the others

(others using the fastest switches). SOAP3-dp’s sensitivity is

99.96%, which is 0.13–0.85% higher than the others (others

using the sensitive switches), and SOAP3-dp’s FDR is 0.34%,

which is lower than the others by 0.13–0.85%. Apparently the

simulated data is easier to align than the real data due to

recombination hotspots with intensified variants in real genome

[6]. SOAP3-dp consumes more memory (9.3, 11.9, 17.2 GB for

1/4, 1/2 and full SA in average, respectively) than other software;

Bowtie2 has the least (3.5 GB). Nevertheless, workstations and

servers nowadays are equipped with at least 16 GB or even 32 GB

of memory; SOAP3-dp is designed to take advantage of the

available memory to achieve speed.

Mapping quality score is mandatory for most of the popular

downstream analysis tools such as GATK and SAMTOOLS.

SOAP3-dp uses the same scoring scheme as BWA so as to make its

alignment results compatible to the expectations of existing

analysis tools. As shown in Figure 3 and Figure S1 in File S1,

BWA, Bowtie2, SeqAlto, BarraCUDA, CUSHAW2 and SOAP3-

dp provide mapping quality scores that can differentiate different

alignments properly, while GEM’s scores are too rough, and too

many incorrectly aligned reads are given high quality scores,

which makes it unsuitable for downstream analysis.

Remarks
Note that GEM can output in a simple format to save time.

When compared to SOAP3-dp in its own simple format, GEM

and SOAP3-dp can both save about half of their running time; for

the 6M simulated paired-end data of length 100 bp, the alignment

time of GEM and SOAP3-dp is reduced to 90 seconds and

38 seconds, respectively. Downstream programs for variants

calling, if redesigned to utilize these specific formats, could save

time.

The simulated dataset is relatively small (6M read pairs), thus

when using a large SA, the index loading time of SOAP3-dp

dominated the total elapsed time. Considering only the alignment

time (time consumption after index loading, including input of raw

reads and output of alignment results), SOAP3-dp using the full

and 1/2 SA is 12 and 9 seconds faster than 1/4 SA, thus for large

real datasets, 1/2 and full SAs are suggested if memory permits.

Different generations of GPU device differ in speed. We

compared the performance of SOAP3-dp between the latest GPU

‘‘GTX680’’ and a previous generation ‘‘Tesla C2070’’ using

Figure 1. Alignment workflow. For each read (paired-end specifically, single-end is only with step 1 and step 3), the alignment would be decided
in at most three steps. In step 1, SOAP3-dp aligns both ends of a read-pair to the reference genome by using GPU version 2way-BWT algorithm
(Methods). Pairs with only one end aligned proceed to step 2 for a GPU accelerated dynamic programming (Methods) alignment at candidate regions
inferred from the aligned end. Pairs with both ends unaligned in step 1 and those ends failed in step 2 proceed to step 3 to perform a more
comprehensive alignment across the whole genome until all seed hits (substrings from the read) are examined or until a sufficient number of
alignments are examined.
doi:10.1371/journal.pone.0065632.g001

SOAP3-dp Short Read Aligner
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simulated datasets. The alignment time extended about 10% for

each dataset (Figure 4) using ‘‘Tesla C2070’’. Furthermore, a large

real set of 150 bp paired-end reads was used. The alignment using

the ‘‘GTX680’’ consumed 6,835 seconds, which is 4,658 seconds

(1.68 times) faster than ‘‘Tesla C2070’’.

Variant Calling Performance
Next, we considered SOAP3-dp’s alignment quality for variant

calling. The full sets of both PE100 and PE150 were aligned using

SOAP3-dp. We used the widely adopted BWA as benchmark.

With the alignment results, variants were called using GATK’s

UnifiedGenotyper [22] and filtered by VariantRecalibrators, with

and without GATK’s local realignment (see Methods). Before we

detail the results on variant detection, it is worth mentioning that

BWA, even running in a slower mode to allow a longer gap (one

gap up to 50 bp, without ‘‘-m’’ parameter to allow hit entries

higher than 2 million due to out of memory error), still cannot

catch up the sensitivity of SOAP3-dp in default setting (for a

100 bp read, one gap up to 68 bp, to 23 one-bp gaps, Table 3).

SOAP3-dp’s better sensitivity is due to its ability of extensive

gapped alignment; the extra reads aligned are crucial for variant

detection (in particular, Indels). SOAP3-dp allowed 2.4% and

4.0% more SNPs than BWA, and 6.1% and 9.8% more Indels for

the two datasets PE100 and PE150, respectively. Intuitively, longer

reads are more favorable for variant detection; this is indeed

reflected in SOAP3-dp’s performance, but not for BWA (Table 3).

We further checked the SNPs detected against dbSNP v135 (an

archive of SNPs validated by previous studies); SOAP3-dp has

notably 2.1% and 3.6% more SNPs found in dbSNP, confirming a

higher sensitivity.

SOAP3-dp allowed more Indels to be detected than BWA,

especially more Indels longer than 20 bp (Figures 5a, 5b, Figure

S2 in File S1). To validate the novel Indels detected, we randomly

selected 50 deletions that SOAP3-dp exclusively detected and are

not yet archived in dbSNP v135, and verified them using Fosmid

sequencing (see Methods). The Fosmids were sequenced, assem-

bled and then aligned to the reference genome. The 50 deletions

were covered by 460 Fosmid sequences. The findings are as

follows: 6 deletions were inconclusive due to insufficient coverage

of Fosmid sequences, 40 deletions were validated, and 4 rejected,

revealing a FDR of 9.1% (Table S15 in File S1, Data S2). SOAP3-

dp’s ability to allow long gaps without speed penalty provides an

unprecedented opportunity to come up with a more comprehen-

sive Indel identification in large-scale genome studies.

With SOAP3-dp’s ability to authentically align more reads,

more multi-nucleotide polymorphisms (MNP) among the whole

genome were identified (Figure S3 in File S1). Notably, GATK’s

local realignment can eliminate inauthentic alignments and rescue

true variants. For SOAP3-dp, the number of MNP increased by

4.1% after realignment; yet for BWA, the number decreased by

6.3% (Table S17 in File S1), indicating that SOAP3-dp initially

provided much more reliable alignments and led to more accurate

variant calling.

Discussion

SOAP3-dp has been successfully deployed on Amazon EC2,

NIH BioWulf and Tianhe-1A computing-cloud. On Amazon

EC2, users can access SOAP3-dp’s program and a testing dataset

by mounting EBS snapshot ‘‘snap-154f1c54’’ named ‘‘SOAP3-dp’’

while creating a GPU instance (Supplementary Note). To test out

SOAP3-dp’s performance on Amazon EC2, we selected 10

Illumina PE datasets from 1000 genomes project, comprising

131.44 Gbp of raw reads (43.8-fold). The 10 datasets were
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distributed to the two available Tesla M2050 GPU cards (see

Methods and Supplementary Note. Notably, Tesla M2050 is

slower than the GTX680 and Tesla C2070 we have used for real

and simulated data evaluation) with one copy of the index shared

in host memory. Using default parameters and BAM output, the

alignment finished in 3.8 hours, yielding a total cost of $7.98, or

$0.061 per Gbp reads aligned.

For users’ convenience, SOAP3-dp separates the output of reads

into three categories: 1) alignments involve gaps and extensive

mismatches; 2) few mismatches only and 3) improperly paired or

unaligned (file suffix ‘‘dpout’’, ‘‘gout’’, and ‘‘unpair’’ respectively).

The separate file scheme fits well with the production environ-

ments, where files could be sorted separately in parallel and then

merged together, which saves time than sorting a single SAM file.

The files could also be concatenated by SAMTOOLS easily.

SOAP3-dp does not enforce a maximum read length. However,

read length longer than 500 bp is not recommended while the

current version of SOAP3-dp is tailor-made for Illumina reads. A

version for longer 454 reads and Ion Torrent reads without

performance degradation is our next task.

Overall, SOAP3-dp is an efficient alignment tool that targets the

future of genome analysis where reads are longer and the volume

is larger. SOAP3-dp is much faster than existing tools while

retaining the ability to align more reads correctly. To be flexible,

SOAP3-dp outputs both SAM and BAM formats that are

compatible with most downstream analysis tools. SOAP3-dp is a

free and open-source alignment tool available at http://www.cs.

hku.hk/2bwt-tools/soap3-dp/.

Methods

Implementation details of SOAP3-dp
To align a paired-end read, SOAP3-dp proceeds in three steps

(Figure 1). In step 1, SOAP3-dp uses GPU-accelerated 2way-BWT

[16] to align those reads without gap opening on to the reference

using a 3-level stratified alignment pipeline design. In step 2, for

those reads with one end mapped but another end unmapped, a

candidate region flanking the mapped end is aligned to the

unmapped end using GPU-accelerated dynamic programming

algorithm. In step 3, for those reads with both ends unmapped as

well as reads still unmapped in step 2, seeds (substrings of a read)

are extracted at regular intervals along the read and its reverse

complement. SOAP3 module aligns these seeds back to the

reference genome and enumerates candidate regions to be aligned

to the whole read using dynamic programming.

To better illustrate SOAP3-dp’s detailed workflow and param-

eters, we have prepared two sets of slides, which should be read

together with the text.

http://bio8.cs.hku.hk/dataset/Workflow.ppsx

1. SOAP3-dp workflow for paired-end alignment

2. SOAP3-dp workflow for single-end alignment

http://bio8.cs.hku.hk/dataset/Parameters.ppsx

1. Optimization of parallel access to the GPU global memory.

SOAP3 makes use of the 2way-BWT indexing technique [23]

and involves random access to the indexing data structures in the

main memory. The original design of 2way-BWT [5] was based

on two-level sampling. The design works well for CPU but not in

the highly parallel environment of GPU. The data structures are

too large and must be placed into the global memory of GPU,

causing serious memory contention among the processors inside

the GPU. For this purpose, in SOAP3, the index is redesigned to

use one-level sampling instead, which greatly reduces the number

of memory accesses by half (for details, one may refer to our

previous study [24]).

Apart from reducing the number of global memory accesses, we

also optimize the time of individual access to the global memory.

This is achieved by coalescing simultaneous global memory accesses.

To illustrate the idea of coalescing, we first need to explain how

the GPU handles threads. GPU threads are grouped into units

called warps for execution on a streaming multiprocessor (SM).

The typical size of a warp is 32 threads. At some point, all threads

in the same SM access the global memory. Since the threads are

working with different data, it is likely that they access different

memory locations at the same time. The GPU architecture is

designed in a way that, these memory accesses would be much

faster if 1) the memory locations accessed are close to each other

(e.g. within a 128-byte segment), and 2) no two threads access the

Figure 2. Speed and sensitivity of alignment using simulated paired-end reads. We recorded the number of correct and incorrect
alignments stratified by reported mapping quality for each dataset. We then calculated the cumulative number of correct and incorrect alignments
from high to low mapping quality. We considered an alignment correct only if the leftmost position was within 50 bp of the position assigned by the
simulator on the same strand according to the previous study of Bowtie2 to avoid soft-clipping artifacts.
doi:10.1371/journal.pone.0065632.g002
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same memory location. A group of memory accesses is considered

to be coalesced if they satisfy the above properties.

In SOAP3-dp, we try to coalesce as many memory accesses as

possible. The global memory of GPU device holds two large data

structures – the 2way-BWT index, and the set of reads. To enable

coalesced access. the set of reads is partitioned into groups of 32

(equals the warp size). For each group, the reads are arranged as

follows. Let wi,j denote the j-th word of the i-th read in the group

(1, = i, = 32). Instead of storing the reads in the most natural

way, i.e. w1,1, w1,2, …, w1,m, w2,1, w2,2, …, w2,m, w3,1, … (where m is

the number of words occupied by each read), we rearrange them

into: w1,1, w2,1, …, w32,1, w1,2, w2,2, w3,2, …, w32,2, w1,3, …. When

the threads simultaneously access, say, the first words (more

precisely, 4 bytes) of the reads, the memory locations accessed are

w1,1, w2,1, …, w32,1, 32 words forming a contiguous 128-byte

segment. These coalesced accesses could be done in a single

memory transaction with only one time of memory address

interpretation, achieving excellent memory throughput.

Memory accesses to the BWT index are highly unpredictable,

thus coalescing them is difficult. Nevertheless, the BWT index is

designed as all the BWT information for matching a base was

grouped together in a memory chunk (64 bytes), which could be

assessed using one memory transaction.

2. Divergence control and 3-level stratified alignment pipeline.

GPU works in a single-instruction multiple-thread (SIMT)

mode. Processors in the same SM must execute the same

instruction at one time. When mismatches are allowed, a read

can have more than one branch during alignment. Too many

diverging branches however would lower the efficiency of GPU

drastically, because most processors (with few branches) may

become idle and wait for a few others. For this purpose, we derive

a suffix array (SA) ranges count based parameter, which can be

determined at runtime, whether a read would generate too many

branches, and reads are classified into different levels of

complexity according to this parameter. The basic idea is that

reads of different levels should be aligned separately. In SOAP3-

dp’s implementation, we have designed three levels of complexity.

For the ‘‘all best’’ output parameter, which outputs all alignment

results equally the best, if 2 mismatches are allowed, the SA ranges

count dividing the three levels are 4 and 32 respectively (it means

that, during alignment, a read with SA ranges count exceeding a

threshold after extending a base, will be stopped and scheduled for

next level, thresholds for other mismatch allowances and output

parameters are included in the ‘‘definition.h’’ file in the source

code). In particular, we let the GPU handle the first two levels, and

use the CPU to take care of the most complicated reads (which

account for a small percentage only). Furthermore, to fully utilize

both GPU and CPU processing power, SOAP3 overlaps the

alignment of complicated reads from the previous batch in CPU

with the alignment of the next batch in GPU (as shown in the

Figure S4 in File S1).

Figure 3. The accumulated number of incorrectly aligned reads
categorized at different mapping quality scores by the five
aligners.
doi:10.1371/journal.pone.0065632.g003

Figure 4. Alignment time consumption of using GPU card ‘‘GTX680’’ and previous generation GPU card ‘‘Tesla C2070’’
respectively.
doi:10.1371/journal.pone.0065632.g004
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3. GPU-accelerated dynamic programming.

To perform dynamic programming for aligning a read with a

candidate region in genome, Smith-Waterman algorithm is

applied. However, a straightforward implementation of the

algorithm does not fit well under the GPU environment due to

the large number of memory accesses. For this purpose, another

implementation is suggested so that the number of memory

accesses can be reduced by half. In the following, the straightfor-

ward implementation is first described, and then it is shown how to

be modified in order to decrease the number of memory accesses.

Similar implementations have also been applied in ClustalW [25]

and CUDASW++ before [26].

Given a candidate region T (of length m) and a read R (of length

n), the aim is to find a sub-region T9 inside T such that the

alignment score between R and T9 is maximum.

Let M(i,j) be the maximum alignment score between all suffixes

of T[1…i] and R[1…j]. The resulting score would be:

max1ƒiƒmM(i,n).

Let SMA, be the score for match, and let SMI, SGO, SGE be the

penalty scores for mismatch, gap opening and gap extension. It is

also needed to define I(i,j) as the maximum alignment score all

suffixes of T[…i] and R[1…j] under the condition that R[j] is

aligned to a space, and D(i,j) as the maximum alignment score

between all suffixes of T[1…i] and R[1…j] under the condition

that T[i] is aligned to a space.

The recursive formulas are as follows:

I(i,j)~max
M(i,j{1)zSGO

I(i,j{1)zSGE

(

D(i,j)~max
M(i{1,j)zSGO

I(i{1,j)zSGE

(

M(i,j)~max
M(i{1,j{1)zd(R½i�,T ½j�)

I(i,j)zD(i,j)

(

where d(x,y)~SMA if x = y, or d(x,y)~SMI if x?y.

And the base cases are:

I(i,0)~{?, i~1:::m

D(0,j)~{?, j~1:::n

M(i,0)~0, i~0:::m

M(0,j)~SGOz(j{1)SGE , j~1:::n

A straightforward approach of the implementation is as follows:

Smith-Waterman algorithm: Compute I, D and M

1: Initialize tables I, D and M according to the base cases.

2: For j~1?m do

3: For j~1?n do

4: I(i,j)/maxfM(i,j{1)zSGO,I(i,j{1)zSGEg
5: D(i,j)/maxfM(i{1,j)zSGO,I(i{1,j)zSGEg
6: M(i,j)/maxfM(i{1,j{1)zd(R½i�,T ½j�),I(i,j),Dfi,j)g
7: End for

8: End for

To implement this straightforward approach on GPU, tables I,

D and M are created inside the GPU’s global memory. The fact

that the access of GPU’s global memory is much slower than its

arithmetic operation affects the efficiency of the algorithm. In

every loop, there are 7 table-reading and 3 table-writing

operations.T
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It is realized that backtracking could be done with only tables D

and M, thus the table I can be eliminated. For this purpose,

another approach is suggested as follows, which requires only 2

table-reading and 2 table-writing operations in each loop.

Improved implementation of Smith-Waterman algorithm for

GPU:

Compute D and M

1: Declare register variables: Mu, Md, VM ,VI ,VD

(note: Mu refers to M(i21, j21) and Md refers to M(i21, j))

2: Initialize tables D and M according to the base cases.

3: For j~1?m do

4: Md/0,VM/0,VI/{?
5: For j~1?n do

6: Mu/Md

7: Md/M(i{1,j)
8: VI/maxfVMzSGO,VIzSGEg
9: VD/maxfMdzSGO,D(i{1,j)zSGEg
10: VM/maxfMuzd(R½i�,T ½j�),VI ,VDg
11: D(i,j)/VD

12: M(i,j)/VM

13: End for

14: End for

4. Effort Limit for Dynamic Programming.

Reads with seeds that match an exceedingly large amount of

places on the genome can spur an excessively large number of

dynamic programming problems. For example, a poly-A homo-

polymer could match over ten thousand loci in the genome.

SOAP3-dp avoids executing an excessive number of dynamic

programming problems by adopting a ceiling on the number of

candidate regions in step 2 and step 3. Candidate regions are

scored with number of supporting seeds and sorted descendingly.

If the ceiling is set to 30, for example, SOAP3-dp will only perform

dynamic programming alignment in the best 30 candidate regions.

The ceiling is set in the configuration file, but values higher than

the default may strongly affect the performance with limited

accuracy improvement.

5. Paired-end alignment.

SOAP3-dp supports alignment of paired-end reads in which

both ends of a single DNA fragment are sequenced. The user sets

expected minimum and maximum fragment lengths using –v and

–u parameters, as well as orientations of the ends in configuration

file (typically, Illumina uses Forward-Reverse while SOLiD uses

Forward-Forward). A paired-end alignment that matches these

expectations is called ‘‘properly paired’’ and an alignment that

violates these expectations is ‘‘unpaired’’. If a pair fails to be

aligned as properly paired, SOAP3-dp attempts to align each end

individually. This is similar to both BWA’s and Bowtie2’s

behavior. When a read pair fails to be aligned properly but both

ends could be aligned individually, SOAP3-dp reports these

alignments.

In contrast to BWA and SOAP2, which rely on a mapped end

to determine a candidate region for further dynamic programming

alignment, SOAP3-dp could align those reads with both ends

unmapped. This allows read pairs from large period of variation

hotspots to be aligned.

6. Scoring functions.

Details discussed in Supplementary Note.

Simulation of single-end and paired-end reads
Mason 0.1 [21] was used to simulate reads using the GRCh37

major build human reference genome, including 22 pairs of

autosomes, 2 sex chromosomes and a mitochondrial chromosome.

For the paired Illumina-style datasets with read length ranging

from 50 bp to 250 bp, Mason was run in ‘Illumina’ read mode

with options -N 6000000 –source-no-N -mp -sq -ll 500 -le 25 -rn 2

-hn 2 –haplotype-snp-rate 0.001 –haplotype-indel-rate 0.0001 –

haplotype-no-N -n 100 -pi 0 -pd 0 –no-N’. Each PE set was

simulated to contain exactly 12 million reads (6M pairs), which is

about 2 times the default batch size of SOAP3-dp.

All simulated datasets are available at http://bio8.cs.hku.hk/

dataset/.

Simulation comparison between tools
Executable files for SOAP3-dp v2.3, Bowtie2 v2.0.0-beta4,

BWA 0.6.2, SeqAlto basic 0.5-r123, BarraCUDA_r232, CU-

SHAW-1.0.40, CUSHAW2-v2.1.9, SOAP3_version146 and

GEM-core_i3-20121106-022124 were obtained via standard build

procedures with default arguments. We indexed the reference

genome with each tool’s default indexing parameters. SeqAlto uses

22 bp seed length and sub-sampled mode. ‘‘Running time’’ was

measured from initial call of the aligner to the completion of SAM-

format output. ‘Reads aligned’ was measured as the number of

reads for which the tool found at least one alignment regardless of

mapping score. ‘Properly paired’ was measured as the number of

Figure 5. The length distribution of Indels identified by SOAP3-dp and BWA respectively using full set of 100 bp paired-end YH
sample reads. a. Indels smaller than or equal to 20 bp, b. larger than 20 bp.
doi:10.1371/journal.pone.0065632.g005
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read-pairs aligned with proper read orientation and insert-size

range (mean insert-size 63*standard deviation). ‘Peak memory’

and ‘Average memory’ usage was measured by tracking the

Linux’s proc file-system with respective process id.

For BWA and BarraCUDA, separate calls of the software

modules were required for aligning each end and for processing

intermediate alignment results into a final SAM file. ‘Running

time’ was measured for separate modules while ‘Peak memory’

and ‘Average memory’ were measured across all modules. For

GEM, to be consistent with other tools, a conversion is necessary

after alignment to obtain SAM format results with mapping

quality. Time consumptions were measured separately and then

summed for comparison to other tools. All tools or components

were run with 4 threads (except for the alignment module of

BarraCUDA, where the CPU thread is constantly 1). Parameters

were listed in Supplementary Note as receipts.

The experiments used a single computing node running

CentOS v6.3 with an Intel i7-3930k 3.2 Ghz quad-core processor,

an Nvidia GTX 680 GPU card with 4 GB non-ECC (Error-

correcting code) graphic memory and 64 GB non-ECC memory.

Scripts and command lines to evaluate the authenticity of

aligned reads and generate the ROC curves are available at

http://bio8.cs.hku.hk/dataset/.

YH data production
Genomic DNA was isolated using standard molecular biology

techniques. For each short insert library, 5 mg of DNA was

fragmented, end-repaired, A-tailed and ligated to Illumina paired-

end adapters. The ligated fragments of 100 bp paired-end reads

(PE100) were size-selected at 170 bp and 500 bp on agarose gels,

while PE150 were size-selected at 240 bp. All libraries are

amplified by LM-PCR to yield the corresponding short insert

libraries. PE100 were sequenced using TruSeq v2 while PE150

were sequenced using TruSeq v3 reagent on the Illumina

sequencing platform.

Real data comparison
The 100 bp and 150 bp paired-end Illumina HiSeq 2000 reads

of YH sample were sequenced and deposited to EBI with study

accession number ERP001652. The data are also available at

http://yh.genomics.org.cn.

SOAP3-dp uses default parameters. BWA uses both default

parameters and ‘‘-o 1 –e 50’’, which allows at most a gap not

longer than 50 bp (-m option to elevate the 2M hits limit for each

read was not applied due to out of memory error, the option allows

more reads to be aligned but consumes much more memory and

longer alignment time). The latter option allows more reads to be

aligned and more indel signals to be discovered, but would

enormously decrease the running speed. Alignments were post-

processed by following procedures: 1) local realignment by GATK

v2.1, 2) duplication removal by Picard v1.74, 3) base quality score

recalibration, 4) variants calling by UnifiedGenotyper and 5)

variants quality score recalibration by GATK v1.6. Step 1 is

optional according to the experiment while steps 2 to 5 are

mandatory. Parameters and known variant sets were set according

to the GATK’s Best Practice v4 on GATK’s website.

SOAP3-dp used a single node with a quad-core Intel Xeon

E5570 2.93 Ghz CPU and a GPU while BWA used 10 nodes with

the same CPU. To imitate the real production environment, we

used Nvidia Tesla C2070 GPU device with 6 G graphic memory

and with ECC enabled to perform full YH dataset alignment.

Fosmid sequencing
Fosmid libraries (averagely 40 kbp in size) were constructed

according to Kim et al. [27]. In total, ,100 k Fosmid clones were

created and every 30 Fosmids were pooled together sharing a

barcode for Illumina HiSeq 2000 sequencing. For each pool, one

200 bp and one 500 bp insert size libraries were constructed and

sequenced at 206 respectively. If a library had problem of

abnormal base content bias or a relatively high base error rate

reported by base-calling software, we took it as a non-qualified

library and performed sequencing again. Each pool was assembled

with SOAPdenovo [28] using 63-mer and other parameters as

default. Sequences solved by SOAPdenovo’s repeat solving

module were remembered and soft-masked in final sequences in

order not to obscure the following alignment. The assembled

sequences were aligned to the human reference genome using

BWASW with default parameters. Most of the Fosmid clones

could be assembled to full length. For fragmented Fosmid clone

sequences, we further assembled the fragments according to the in-

pool linkage information during alignment. We require over 90%

of a Fosmid clone sequence to be linearly aligned to only one

location in the reference genome. Finally, 460 Fosmid clones were

found covering the 50 randomly selected SOAP3-dp specific

deletion calls that are not yet archived in dbSNP v135. We define

‘‘a Fosmid sequence supporting a deletion’’ as over 80% of the

deleted bases in reference genome cannot be covered by the

aligned Fosmid sequence (excluding soft-masked bases), and the

identity of the 200 bp alignments flanking the deletion should

exceed 90%. While a Fosmid clone can only come from a haploid,

we require a heterozygous deletion has at least a Fosmid

supporting the deletion, while a homozygous deletion should only

have Fosmids supporting the deletion. Heterozygous deletions

with lower than 5 spanning Fosmids and without a Fosmid

supporting the deletion will be classified as ‘‘not clear’’.

Homozygous deletions without a spanning Fosmid will also be

classified as ‘‘not clear’’ (Table S15, Data S2).

The assembled Fosmid sequences are available as Data S1 in

BAM file format. Raw reads are available upon request.

Experiment on Amazon EC2
The experiment used a single GPU Quadruple Extra Large

Instance (cg1.4xlarge, $2.1 per hour) rented from the Amazon

Elastic Compute Cloud (EC2) service (http://aws.amazon.com/

ec2). The instance has 2 quad-core Intel Xeon X5570 at

2.93 GHz with hyper-threading, 2 Nvidia Tesla M2050 GPU

cards with 3 GB ECC graphic-memory per card, 22 gigabytes of

physical memory and runs Amazon Linux AMI v2012.09

operating system. Alignments were distributed onto the two

GPU cards with two SOAP3-dp processes sharing the same copy

of index in host memory. Each process occupies at most 7 threads.

10 sets of Illumina HiSeq 2000 reads generated in 1000 genomes

project (Supplementary Note) were downloaded from the Amazon

Simple Storage Service (S3). Additional tests have been carried out

by NIH biowulf laboratory (http://biowulf.nih.gov/apps/bioinf-

gpu.html) and Tianhe-1A super-computing center (http://en.

wikipedia.org/wiki/Tianhe-I). While these clouds host CPU and

GPU computing nodes and centralized storage system, the ultra-

fast SOAP3-dp could be easily integrated into existing pipelines.

Supporting Information

Data S1 Assembled Fosmids sequences in BAM file.
(BAM)

Data S2 Supplementary Table S16. Table S16.xls.

(XLS)
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