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Abstract

In Mediterranean intermittent streams, the hydrological fragmentation in summer and the successive water flow re-
convergence in autumn allow exploring how local processes shape the microbial community within the same habitat. The
objectives of this study were to determine how bacterial community composition responded to hydrological fragmentation
in summer, and to evaluate whether the seasonal shifts in community composition predominate over the effects of episodic
habitat fragmentation. The bacterial community was assessed along the intermittent stream Fuirosos (Spain), at different
levels of phylogenetic resolution by in situ hybridization, fingerprinting, and 16S rRNA gene sequencing. The hydrological
fragmentation of the stream network strongly altered the biogeochemical conditions with the depletion of oxidized solutes
and caused changes in dissolved organic carbon characteristics. In the isolated ponds, beta-Proteobacteria and
Actinobacteria increased their abundance with a gradual reduction of the alpha-diversity as pond isolation time increased.
Moreover, fingerprinting analysis clearly showed a shift in community composition between summer and autumn. In the
context of a seasonal shift, the temporary stream fragmentation simultaneously reduced the microbial dispersion and
affected local environmental conditions (shift in redox regime and quality of the dissolved organic matter) tightly shaping
the bacterioplankton community composition.
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Introduction

Microbial communities can exhibit spatial variability at scales

ranging from millimetres to thousands of kilometres [1]. Under-

standing the mechanisms governing such spatial distribution is a

key issue for elucidating the extent, specificity and stability of

microbial associations and the implications for ecosystem func-

tioning [2–5]. Microbial ecologists have recently started to

examine the role of dispersal in shaping community similarities

on large spatial scales [6–8]. Moreover, the microbial responses to

local environmental stresses have to be carefully considered to

properly interpret the dynamics of the microbial world [9].

The temporal and spatial variability found in bacterial

community composition is mainly driven by species sorting and

fast local growth, which counterbalance cell dispersion [10–12].

Both local interactions (e.g. within/between species, between

species and the environment) and regional processes (e.g. dispersal)

influence local community assembly [4]. High dispersal rates can

lead to a continuous, worldwide supply of taxa that can be found

even in less suitable habitats [13]. Local environmental charac-

teristics are relatively more important when variation between sites

increases [7,14,15,]. To gain a better understanding on how the

local environment shapes bacterial communities it is necessary to

address the proper spatial resolution at which microorganisms

assemble into local communities, thus minimising regional effects

at larger spatial scale [6,16].

In the case of freshwater environments, most studies tended to

focus on either similar habitats across different spatial scales or

interconnected habitats, reaching different conclusions on the

importance of environmental factors [11,17] and geographic

distance [8,18–20]. So far, few studies have focused on assessing

microbial assemblages when a habitat undergoes a gradual

fragmentation, which interrupts the flow of carbon and energy,

the dispersion of biota, and causes a marked environmental

heterogeneity [21,22]. In intermittent streams, hydrological

fragmentation in summer and water flow re-convergence in

autumn could provide the opportunity to explore how local

processes shape a microbial community within the same habitat.

Episodes of low flow fragment the hydrological stream network

into a patched landscape of unconnected standing water bodies.

As a consequence, fragmentation increases the environmental

heterogeneity and decreases hydrological connectivity and the

potential for bacterial cell dispersal.

We designed a field study following a gradient approach (from

flowing to stagnant waters, in ponds disconnected at different

times) that provides a framework for discussing how bacterial

community structure relates to water biogeochemistry during the

stream habitat fragmentation episodes. To avoid confounding

regional influences [14], we selected a small semi-pristine
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intermittent Mediterranean stream (Fuirosos, Spain) and microbial

assemblages were assessed along the whole stream network.

During summer, the streambed was completely dry except in the

five locations where water samples were collected. A second

sampling campaign was carried out in the same sites when the

stream connectivity was re-established in autumn. The hydrology

and the water chemistry were characterised and the bacterial

assemblages were assessed at different levels of phylogenetic

resolution by Fluorescence in situ Hybridization Catalysed

Reported Deposition (CARD-FISH) and by Denaturing Gradient

Gel Electrophoresis (DGGE) and 16S rRNA gene sequencing.

In this study, we aimed to determine (i) how the abundance and

composition of bacterioplankton communities respond to the

hydrological and biogeochemical changes when the stream shifts

between free-flowing and fragmented non-flowing conditions in

summer; and (ii) how the seasonal shift, in the transition from

summer to autumn, affects the occurrence of the major bacterial

species and predominates over the effects of episodic habitat

fragmentation.

Results

Hydrological and chemical dynamics
Hydrological fragmentation enhanced anaerobic conditions due

to both depletion of oxidised solutes (O2, N-NO3, SO4) and

accumulation of reduced solutes such as dissolved organic carbon

(DOC), dissolved organic nitrogen (DON) and N-NH4 in isolated

ponds (i.e. sites 2, 3 and 5) (Fig. 1 and 2; Table 1). The lowest

values of the Chemical Index (CI,0.3), used to describe the

degree of the aerobic/anaerobic conditions in the waters bodies,

were found in the isolated ponds, while the highest values (CI.3)

were observed in flowing waters (both in summer and in autumn)

and in groundwater. An inverse relationship between the CI and

the Pond Isolation Time (PIT) was observed (r = 0.92, p,0.05,

df = 3).

On average, the descriptors used to characterize the dissolved

organic matter (DOM) such as DOC:DON ratio, percentage of

biodegradable DOC (BDOC), and ratio of intensities of C and A

fluorescence peaks (IC/IA, a measure of in situ microbial

degradation), showed higher values in summer than in autumn

(Table 1). In particular, DOC was more biodegradable in ponds

(BDOC.16.9%) than in running waters (BDOC,14.5%). In

summer, BDOC was directly related to DON (r = 0.92, df = 4,

p,0.01,) and inversely related to CI (r = 0.84, df = 4, p,0.05).

Moreover, IC/IA showed higher values (.0.75) in ponds than in

running waters and groundwater.

The Fluorescence Index (FI, a descriptor of DOM origin) value

around 1.6, which is typically found in soil leachates in the

Fuirosos basin [23], indicated a greater contribution of allochtho-

nous DOC in the flowing waters than in isolated ponds. In

summer, specific UV absorbance at 254 nm (SUVA, a measure of

DOM aromaticity) values ranged from 0.88 to 2.42 with highest

values in running water sites 4 and 7 and lowest values in

Figure 1. Sampling point locations. Sampling point locations along
the longitudinal-altitudinal profile and the fluvial network (inset).
Triangles: surface waters. Star: riparian groundwater.
doi:10.1371/journal.pone.0064109.g001

Figure 2. Water discharge in the sampling points. Discharge from
May to November in the sampling points (1–7). (N) = summer sampling;
(#) = autumn sampling; («) = period between water segregation in the
pond (no flow) and sampling time; gray bars indicate the period of
complete dryness of the stream reach.
doi:10.1371/journal.pone.0064109.g002

Bacterial Responses to Stream Fragmentation

PLOS ONE | www.plosone.org 2 May 2013 | Volume 8 | Issue 5 | e64109



T
a

b
le

1
.

W
at

e
r

p
h

ys
ic

al
an

d
ch

e
m

ic
al

ch
ar

ac
te

ri
st

ic
s

in
sa

m
p

lin
g

p
o

in
ts

.

S
u

m
m

e
r

A
u

tu
m

n

1
2

3
4

5
6

7
g

w
1

2
–

3
4

5
6

7
g

w

W
a

te
r

p
h

y
si

ca
l

a
n

d
ch

e
m

ic
a

l
ch

a
ra

ct
e

ri
st

ic
s

P
IT

(d
)

d
ry

1
5

1
2

0
7

d
ry

0
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m

Q
(l

/s
)

d
ry

0
0

0
.1

0
d

ry
0

.2
n

m
0

.9
2

.9
2

.3
0

.7
0

.6
0

.6
n

m

T
e

m
p

e
ra

tu
re

(u
C

)
d

ry
1

8
.2

1
7

.1
1

7
.5

1
6

.7
d

ry
1

8
.0

1
7

.0
1

1
.3

1
1

.3
1

1
.4

9
.5

1
1

.4
9

.6
1

4
.8

O
2

(m
g

/l
)

d
ry

0
.5

1
.0

1
.5

2
.0

d
ry

9
.0

6
.5

8
.3

1
0

.8
7

.3
9

.1
5

.4
1

0
.3

8
.4

p
H

d
ry

7
.3

7
.3

6
.9

7
.3

d
ry

8
.0

6
.9

7
.2

7
.6

7
.5

7
.5

7
.0

7
.6

7
.4

EC
( m

S/
cm

)
d

ry
4

6
3

3
4

9
3

4
9

4
0

8
d

ry
1

6
1

3
8

7
2

6
5

2
6

7
2

2
0

2
5

8
2

7
4

1
6

4
4

1
9

C
h

lo
ri

d
e

(m
g

/l
)

d
ry

3
3

.9
2

9
.7

1
8

.9
2

1
.7

d
ry

1
4

.1
2

0
.2

2
6

.3
2

3
.5

2
0

.5
2

1
.6

2
3

.2
1

4
.2

2
3

.2

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

SO
4

(m
g

/l
)

d
ry

4
.7

3
.6

2
.8

1
0

.3
d

ry
8

.4
3

6
.5

2
1

.6
2

1
.9

1
9

.2
1

9
.1

2
1

.5
9

.3
1

4
.4

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

N
-N

O
3

(m
g

/l
)

d
ry

0
.0

8
0

.0
1

0
.0

2
0

.0
8

d
ry

0
.2

3
1

.3
1

0
.2

5
0

.0
1

0
.1

2
0

.3
4

0
.7

4
0

.0
4

0
.0

2

(*
)

(0
.0

0
1

)
(0

.0
0

4
)

(*
)

(0
.0

6
0

)
(*

)
(0

.0
5

0
)

(0
.0

1
0

)
(*

)
(*

)
(*

)
(0

.0
3

0
)

(0
.0

6
0

)

N
-N

H
4

(m
g

/l
)

d
ry

1
3

.0
0

1
.8

9
0

.1
0

1
.5

5
d

ry
0

.0
2

0
.0

4
0

.0
4

0
.0

4
0

.0
2

0
.0

1
0

.0
3

0
.0

1
0

.0
1

(*
)

(*
)

(0
.0

2
0

)
(0

.1
9

0
)

(0
.0

0
5

)
(0

.0
1

0
)

(0
.0

6
0

)
(*

)
(0

.0
0

4
)

(0
.0

0
3

)
(*

)
(0

.0
1

0
)

(0
.0

0
4

)

P
-P

O
4

(m
g

/l
)

d
ry

0
.0

1
7

0
.0

1
7

0
.0

0
1

0
.0

3
1

d
ry

0
.0

1
7

0
.0

0
8

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

C
I

d
ry

2
3

.3
2

0
.6

2
.7

0
.3

d
ry

6
.3

5
.0

5
.2

5
.6

6
.1

6
.6

5
.3

7
.2

6
.6

(*
)

(*
)

(0
.1

)
(0

.1
)

(0
.3

)
(0

.3
)

(1
.3

)
(*

)
(*

)
(0

.6
)

(0
.6

)
(*

)
(*

)

D
O

M
ch

a
ra

ct
e

ri
st

ic
s

D
O

C
(m

g
/l

)
d

ry
3

3
.1

5
.9

6
.0

6
.1

d
ry

1
.8

1
.7

1
.7

2
.8

4
.1

2
.0

2
.2

1
.9

1
.1

(*
)

(*
)

(*
)

(*
)

(*
)

(0
.6

0
)

(0
.0

2
)

(*
)

(*
)

(*
)

(*
)

(0
.4

1
)

(*
)

D
O

N
(m

g
/l

)
d

ry
1

.3
1

0
.1

4
0

.2
9

0
.8

7
d

ry
0

.0
5

0
.0

9
0

.1
1

0
.1

7
0

.3
2

0
.1

6
0

.1
4

0
.0

8
0

.1
7

(*
)

(0
.0

5
)

(0
.0

3
)

(0
.2

1
)

(0
.0

3
)

(0
.0

1
)

(0
.0

2
)

(0
.0

3
)

(0
.0

6
)

(0
.0

2
)

(0
.0

2
)

(0
.0

3
)

(0
.1

4
)

D
O

C
:D

O
N

d
ry

2
5

4
1

2
1

7
d

ry
3

7
1

9
1

6
1

7
1

3
1

3
1

6
2

5
6

(*
)

(*
)

(5
)

(*
)

(1
3

)
(*

)
(*

)
(2

)
(3

)
(*

)
(*

)
(5

)
(3

)

B
D

O
C

(%
)

d
ry

3
9

.6
1

6
.9

7
.7

2
6

.1
d

ry
5

.3
1

4
.2

1
0

.8
6

.5
1

2
.7

5
.8

9
.9

1
4

.5
3

5
.9

(3
.9

)
(2

.7
)

(2
.7

)
(*

)
(3

.4
)

(1
0

.5
)

(1
.5

)
(5

.7
)

(5
.5

)
(2

.3
)

(1
1

.6
)

(*
)

(6
.4

)

FI
d

ry
1

.8
5

1
.8

0
1

.7
2

1
.9

0
d

ry
1

.6
0

1
.8

7
1

.7
6

1
.7

7
1

.6
9

1
.7

2
1

.7
4

1
.6

2
1

.9
5

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

SU
V

A
(l

/m
g

C
cm

)
d

ry
0

.8
8

1
.3

8
2

.4
2

2
.0

4
d

ry
2

.2
8

0
.6

9
0

.5
0

0
.7

5
1

.1
1

1
.2

9
0

.3
6

1
.4

0
0

.3
0

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

(*
)

I C
/I

A
d

ry
0

.9
1

0
.7

5
0

.7
1

0
.8

9
d

ry
0

.5
5

0
.6

3
0

.4
2

0
.5

4
0

.3
8

0
.3

8
0

.4
9

0
.5

8
0

.6
3

St
an

d
ar

d
d

e
vi

at
io

n
is

re
p

o
rt

e
d

in
b

ra
ck

e
ts

;
(*

)=
st

an
d

ar
d

d
e

vi
at

io
n

lo
w

e
r

th
an

1
0

%
.

(g
w

)=
g

ro
u

n
d

w
at

e
r

sa
m

p
le

s;
(P

IT
)=

P
o

n
d

Is
o

la
ti

o
n

T
im

e
;

(Q
)=

D
is

ch
ar

g
e

;
(E

C
)=

El
e

ct
ri

ca
l

C
o

n
d

u
ct

iv
it

y;
(C

I)
=

C
h

e
m

ic
al

In
d

e
x;

(B
D

O
C

)=
B

io
d

e
g

ra
d

ab
le

D
is

so
lv

e
d

O
rg

an
ic

C
ar

b
o

n
;

(F
I)

=
Fl

u
o

re
sc

e
n

ce
In

d
e

x;
(S

U
V

A
)=

Sp
e

ci
fi

c
U

V
A

b
so

rb
an

ce
;

(I
C

/I
A

)=
R

at
io

o
f

in
te

n
si

ti
e

s
o

f
C

an
d

A
fl

u
o

re
sc

e
n

ce
p

e
ak

s.
Se

e
te

xt
fo

r
ad

d
it

io
n

al
d

e
ta

ils
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
6

4
1

0
9

.t
0

0
1

Bacterial Responses to Stream Fragmentation

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e64109



groundwater and sites 2 and 3. In autumn, these values were lower

than in summer and tended to increase with respect to CI values.

Overall, hydrological fragmentation enhanced biogeochemical

heterogeneity as graphically summarised by the non-Metric Multi-

Dimensional Scaling analysis (nMDS). In the headwater and

groundwater sites (7 and gw) changes between the two hydrolog-

ical periods (summer and autumn) were minimal compared to the

high biogeochemical shift in isolated ponds (Fig. 3 a).

Bacterial community composition by in situ hybridization
Bacterial cell abundance averaged 9.76105 cells/ml during

summer, with great variability among the sites (CV = 68%). In

autumn, the cell abundance was lower (2.96105 cells/ml) and less

variable (CV = 21%). Groundwaters (site gw) had the lowest

concentrations at any time (average 9.86104 cells/ml, CV = 16%)

(Fig. 4). We also observed statistically significant differences, both

between seasons (two way ANOVA F = 569.03; P,0.001) and

among the sites (F = 163.46; P,0.001). Pair-wise multiple

comparisons (Student-Newman-Keuls method) revealed no signif-

icant differences between sites 2 and 4 or among sites 3, 5 and 7 in

the summer. In autumn, cell abundance in site 4 showed the

highest value, significantly different from any other site except site

1 (q = 1.709 p.0.05). Cell abundance was positively correlated

with DOC concentration (r = 0.72; P,0.004) and water temper-

ature (r = 0.51; P,0.05). The multiple regression analysis high-

lighted that the seasonal and spatial dynamics of cell abundance

could be significantly explained by DOC, Temperature, and NH4

dynamics (r = 0.93; P,0.001).

When quantifying the occurrence of specific clusters, beta-

Proteobacteria was the most abundant among the analysed groups in

both the summer (up to 4.7610560.46105 cells/ml in Site 2) and

the autumn (up to 5.9610460.46104 cells/ml in site 4). On

average, Actinobacteria was the second-most abundant group,

reaching the highest values in summer (isolated ponds 2 and 3).

The alpha- and gamma-Proteobacteria showed the highest values in

autumn at sites 1 and 4. The Bacteroidetes did not display a seasonal

trend, and were below 16104 cells/ml, while the Firmicutes were

only detected in groundwater samples and in site 1 during autumn

(Fig. 4).

The nMDS analysis revealed a consistent shift of community

composition in the isolated ponds (Fig. 3 b). CI was the chemical

variable most strongly associated with community composition

(Mantel test r = 0.51; p,0.001) followed by qualitative DOM

properties (i.e. intensity of fluorescence peaks A and C, r = 0.37

and r = 0.33 respectively; p,0.001). When considering two or

more variables together, the explanatory power of the Mantel test

did not improve. Overall, changes in the alpha-diversity level of

the bacterial community were observed in summer (Shannon

entropy, H = 1.35 in headwaters and H = 0.50 in isolated ponds),

whereas in the autumn it increased from 1.06 to 1.46 along the

stream continuum. We observed a significant linear relationship

(r = 0.82; p,0.05) between CI and the alpha-diversity level of the

bacterial community (Fig. 5).

Bacterial phylogenetic assessment by fingerprinting and
sequencing

The number of DGGE bands was similar among samples and

ranged between 8 and 13. The prominent bands (overall c.a.

.80% of total band intensity in the lanes) were sequenced and

alpha-, beta-, gamma-, and delta-Proteobacteria and Bacteroidetes were

identified (Fig. 6). DGGE detects populations with a relative

abundance around 0.1–1% of the total PCR-targeted cells [24],

and we cannot, therefore, disregard the possible presence of other

populations below this detection limit. It was possible to detect a

shift in the retrieved phylotypes between summer and autumn

samples for each bacterial phylum by grouping the samples

according to the sampling season (Fig. 6).

The alpha-Proteobacteria (freshwater SAR11 cluster) were only

detected in autumn as very prominent DGGE bands in sampling

sites 2, 3, 4 and 5. The beta-Proteobacteria were abundant in most of

the sites and split into three groups for the two different sampling

periods: i) beta_Autumn, detected only in the autumn samples and

related to Hydrogenophaga and Massilia spp.; ii) beta_ Summer1,

detected in the summer samples and closely related to Poly-

nucleobacter sp.; and iii) beta -Summer2, detected in the summer

samples and distantly related to Azoarcus sp. (see accession numbers

in Fig. 6). Overall, beta-Proteobacteria were heterogeneously

distributed both in space and in time for the different sampling

points.

We also observed changes in population composition between

the two sampling periods for gamma-Proteobacteria (closely related

to Pseudomonas sp. in autumn and to Rickettsiella sp. in summer) and

Bacteroidetes (closely related to Flavobacterium spp. in autumn and to

Flexibacter spp. in summer). The gamma-Proteobacteria were wide-

spread in autumn, but were only detected in site 5 in summer. The

delta-Proteobacteria (distantly related to the SAR324 cluster) were

only detected in autumn. Bacteroidetes were found in a few sites in

autumn (sites 1, 6, and 7) and only in site gw in the summer.

Figure 3. nMDS ordination analysis. (a) biogeochemical data as in
Table 1, and (b) community composition analysed by CARD-FISH from
both summer and autumn samplings.
doi:10.1371/journal.pone.0064109.g003
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Discussion

In the Mediterranean region, hydrological fragmentation is a

common feature of both headwaters and extended reaches of large

rivers [25–26]. When stream flow is interrupted, the longitudinal

lentic water continuum disappears. The water mass remains

fragmented and stagnant in ponds and the hydrological connec-

tions to the surrounding environment are lost [27]. Our results

showed that the qualitative DOM characteristics were extremely

sensitive to the hydrological conditions showing a higher

contribution of autochthonous organic solutes in the disconnected

ponds in summer. Furthermore, the biogeochemical status of each

disconnected pond was clearly related to the length of the isolation

period. Hence, the generation of a set of transient isolated patches

with high rates of biogeochemical processes [28,29] and with

different isolation times, increases the chemical heterogeneity

spectrum of the entire Fuirosos stream system during summer

[30].

The effect of biogeochemistry on microbial community

composition and functioning is well known [31]. In the present

study, the aquatic bacterial communities responded promptly to

the biogeochemical heterogeneity. We observed that total bacterial

abundance was positively related to DOC and N-NH4 concen-

trations and to temperature, with the highest values in the isolated

ponds, where DOM mainly originated from in-situ microbial

processes (i.e. high FI and Ic/Ia values). The alpha-, beta- and

gamma-Proteobacteria accounted for the largest number of bacteria

among the analysed groups, in agreement with the findings of

other studies carried out in riverine systems by either 16S rDNA

gene sequencing or FISH counts [32–34]. The dominance of beta-

Proteobacteria in freshwater habitats was highlighted in a variety of

other investigations [3,22]. The alpha and gamma classes were

consistently less abundant than the beta-Proteobacteria, and were

also associated with more oxic conditions. Members of Bacteroidetes,

reported as an autochthonous component of the limnetic habitat

Figure 5. Chemical Index vs alpha-diversity. Relationship between
biogeochemical conditions (expressed as Chemical Index – CI =
log([O2]/[N-NH4])) and the alpha-diversity index (r = 0.82; p,0.05).
s = summer; a = autumn.
doi:10.1371/journal.pone.0064109.g005

Figure 4. Bacterial abundance. Abundance of the selected bacterial
phylogenetic groups as analysed by CARD-FISH. Values are expressed as
cells per ml. Error bars indicate standard deviation. (*) = dry reach in
summer.
doi:10.1371/journal.pone.0064109.g004

Bacterial Responses to Stream Fragmentation

PLOS ONE | www.plosone.org 5 May 2013 | Volume 8 | Issue 5 | e64109



Figure 6. Maximum parsimony tree of the bacterial 16S rRNA gene sequences. Partial sequences were inserted into the optimised and
validated tree available in the ARB program without changing the initial topology of the consensus tree provided by default. The scale bar represents
10% estimated divergence. Those identical sequences found in different sites are indicated in the band code. ALPHA, BETA, GAMMA, DELTA = Classes
of Proteobacteria; CFB = Bacteroidetes.
doi:10.1371/journal.pone.0064109.g006
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[32], were found in lower numbers. As shown by earlier

investigations, the proportion of Actinobacteria can vary consider-

ably in different freshwater habitats [35] and may locally belong to

the dominant fractions of freshwater bacterial communities.

Firmicutes were only locally present in low-stream reaches and

groundwater with a low relative abundance, as reported for other

stream environments [32,36,37]. The distribution of these

bacterial classes showed relevant changes between stagnant and

flowing waters. The degree of aerobic/anaerobic conditions

seemed to be the main driver of the bacterial community

composition and it was related to PIT and to autochthonous

DOM. In summer, the bacterial communities showed higher

alpha diversity in the stream reaches with flowing water. In the

pond most recently isolated (site 5, PIT = 7 days), the community

was composed by all the groups primarily found in headwaters,

although a reduction in the abundance of alpha- and gamma-

Proteobacteria was already evident. As isolation time increased

(PIT.10 days) and CI decreased (Sites 2, and 3), the abundance of

the beta-Proteobacteria and Actinobacteria increased significantly.

These groups were probably adapted to the selective conditions

that follow the interruption of the flow. Overall, during the

summer, the change in community composition was closely related

to the chemical variability determined by the isolation time. In

autumn, as flow was restored, the alpha diversity of the

communities increased downstream. This could be related to the

greater contribution of organic substances derived from the

allochthonous DOM in the upper reaches and the autochthonous

DOM in the downstream reaches, as indicated by the increasing

FI values. Therefore, when the river continuum was re-established,

organic C transport provides a linkage along the stream that is

fundamental to the nature of fluvial systems [38].

Variations in bacterial species composition, characterised by

PCR-based community fingerprinting techniques, are often

related to physical, chemical, and biological factors (e.g.

[11,39,40]). Microcosm experiments clearly demonstrated that

variations in DOM composition and origin (allochthonous versus

autochthonous) could affect community composition [31,41,42].

In our study, the analysis of the genetic fingerprinting showed a

temporal clustering instead of a spatial grouping. This indicated a

seasonal shift of the populations within the same phylogenetic

group (e.g. beta-, gamma-Proteobacteria and Bacteroidetes) in the

transition from summer to autumn conditions for most of the sites.

The sequences of beta-Proteobacteria retrieved from the hypoxic

summer ponds were mainly affiliated to two different clusters,

which were closely related to the genera Azoarcus spp. and

Polynucleobacter spp., while the groups found in autumn were related

to Hydrogenophaga and Massilia spp. The genus Azoarcus is reported

to degrade aromatic compounds under denitrifying conditions

[43,44], and it might contribute to the removal of nitrogen and

aromatic DOM in the isolated ponds. It is likely that Polynucleobacter

spp. is ubiquitously distributed in lentic and stagnant habitats

worldwide [45]. Recent observations from laboratory studies

suggest that they prefer autochthonous rather than allochthonous

substrate sources [46,47]. Our results, therefore, confirm that the

source and lability of DOM could drive bacterial community

composition [48].

In conclusion, we found that (i) the temporary hydrological

fragmentation simultaneously reduced the microbial dispersion

and affected local environmental characteristics (i.e. redox regime

and DOM quality) prompting the gradual development of selected

bacterial groups in isolated water ponds, and (ii) a shift of the

populations within the same phylogenetic classes (i.e. beta- and

gamma-Proteobacteria) was observed in the transition from summer

to autumn conditions. In the context of the seasonal dynamics, the

temporary limitation in microbial dispersal and the environmental

changes, promoted by pond isolation, gradually revealed local

patterns in the community composition.

Materials and Methods

All the sampling sites along the Fuirosos stream are located in

the protected area of Natural Park Montnegre-Corredor, under

the authority of the Diputació de Barcelona. No specific

permissions were required for all these locations to carry out the

research activities, reported in this study, by the University of

Barcelona. We confirm that the field studies did not involve

endangered or protected species.

Site description and sampling
Fuirosos, a tributary of the River Tordera, is a third-order

stream that drains a forested granitic catchment area of 16.2 km2

(NE Spain, 41u429N, 2u349W, 50–770 m a.s.l.). The climate is

Mediterranean, with mean monthly temperatures ranging from

3uC in January to 24uC in August. Precipitation mostly falls in the

autumn and spring, with occasional summer storms. The average

annual mean rainfall for the region is 750 mm [49], and the

catchment is covered mainly by perennial woodland, with

agricultural fields representing ,10% of the area.

The mean daily flow at the hydrochemical long-term monitor-

ing station (Site 1, Fig. 1) ranged between 0 and 20 L s21 [50].

During summer, the basal discharge decreased from 15 L s21 in

May to 0 L s21on June 6th, when the water flow stopped and the

water masses started to be confined in ponds. During this period,

daily hydrological monitoring along the stream network allowed us

to estimate the age of each isolated water pond. Surface flow

recovered in the fluvial network on August 24th and the basal

discharge gradually increased to 3–4 L s21 and remained steady

at around these values throughout November. In order to cover a

wide range of hydrological conditions, samples were collected

during summer (July), when the stream was disconnected into a

series of isolated ponds, and after autumnal rainfall (November)

when the stream connectivity was re-established. During the

summer sampling, the entire stream network was completely dry,

except in the five ponds where water was collected (ponds 2, 3, 4,

5, 7; Fig. 1 and 2). Ponds 2, 3, 5 were completely isolated, with

stagnant water since 15, 12 and 7 days before sampling

respectively. Ponds 2 and 3 were 15 meters apart. In ponds 4

and 7 water was still flowing (0.1–0.2 L s21). During the autumn

sampling, when the surface flow was continuous along the fluvial

network (discharge 3–4 L s21), samples were collected in six

locations including those previously sampled in summer (Fig. 1

and 2). In autumn, only one sample was collected in correspon-

dence of the summer ponds 2 and 3 as no differences were

registered in water physical and chemical in situ measurements in

the two contiguous sites.

Samples were also collected from a shallow, perched, riparian

aquifer (site gw), which was recharged by stream water, by a

peristaltic pump from a well (2 m depth) located outside the

stream edge that perforated the sandy-gravel and the weathered

granite layers [51]. We decided to sample this aquifer because

during dry periods, it loses the hydrological connectivity with

surface water, essentially becoming an underground pond with

stagnant infiltrated water [27]. It was not possible to determine the

PIT value for the groundwater site. However, it can be presumed

that it was isolated from the surface’s running water for at least 15

days before the sampling date.

Overall, the sampling sites covered a hydrological gradient

including: surface stagnant waters in isolated ponds (sampling
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points 2, 3 and 5 in summer); surface waters under very low-flow

(sampling points 4 and 7 in summer) and basal-flow conditions

(sampling points 1 to 7 in autumn); and groundwater (gw) (Fig. 1

and 2). Temperature, pH, electrical conductivity, oxygen concen-

tration and, when possible, discharge were measured at each

sampling location. Triplicate water samples were collected in clean

acid-washed bottles for water chemical characterisation (2 L) and

in sterile flasks for microbiological analysis (1 L). The water

samples were pre-filtered in the field with pre-combusted GF/F

filters (Whatman) and transported in an icebox (4uC).

Water chemistry
Chloride and sulphate content was analysed with liquid

chromatography using a Metrohm 76 compact IC, while nitrates

and ammonia were determined colorimetrically using a Technicon

auto-analyser, by means of the Griess-Ilosvay method [52] and

oxidation by salicylate [53], respectively. The relationship between

the concentration of dissolved oxygen and nitrogen, in ammonium

form (CI = log([O2]/[N-NH4]) was used to describe the degree of

the aerobic/anaerobic conditions in the waters bodies [30]. Under

anaerobic conditions, CI is expected to have low values as a

consequence of the decrease of oxygen and the concomitant

accumulation of reduced solutes (i.e. NH4) [54,55].

DOC and total dissolved nitrogen (TDN) concentrations were

determined using a Shimadzu TOC-VCS with a coupled TDN

analyser unit. Meanwhile, DON was estimated from the difference

between the TDN and the dissolved inorganic nitrogen. Five

descriptors were used to characterise the DOM: DOC:DON ratio,

BDOC, SUVA, FI, IC/IA. The BDOC content was determined

according to the method proposed by Servais et al. [56], using site

4 GF/F filtered water as inoculum in all samples. SUVA was

calculated from the measured absorbance at 254 nm, corrected by

the cuvette path length in meters and the DOC concentration.

Previous studies have revealed that SUVA is highly correlated to

DOM aromaticity [57,58]. Fluorescence measurements were

performed using a Shimadzu RF-5301PC. The FI, calculated

from the ratio between the emission intensities at 450 and 500 nm

at a fixed excitation of 370 nm, allows discriminating DOM origin

[59]. It ranges from 1.2 to 2, where low values indicate

allochthonous origin while high values point to an autochthonous

origin. The EEMs were obtained by concatenating emission

spectra ranging from 280 to 690 at a range of excitation

wavelengths from 240 to 420 in steps of 10 nm. Raman scattering

was corrected by subtracting the value of ultra pure water blanks,

and the EEMs were then corrected by the Raman area.

Fluorescence intensity is expressed in Raman units. The determi-

nation of fluorescent peaks was performed by visual ‘‘peak

picking’’, using the coordinates estimated by Coble [60] as

reference. The fluorescence maximum of peaks C and A were used

to calculate IC/IA [30]. Fluorescent peaks A and C are generally

associated with substances of terrestrial origin [60]. However, the

fluorescence of certain components, which correspond to peak C,

increases as a result of the microbial degradation of estuarine

DOM of an autochthonous origin [61]. Accordingly, high values

in this ratio provide information about the magnitude of the in-situ

microbial processing.

Fluorescence in situ hybridization
CARD-FISH was performed following the protocol optimised

by Fazi et al. [62,63]. The following rRNA-target HRP-labelled

probes (Biomers, Ulm, Germany) were used: ALF968, targeting

sequence types affiliated with alpha-Proteobacteria; BET42a for beta-

Proteobacteria; GAM42a for gamma-Proteobacteria; CF319a for

Bacteroidetes (formerly Cytophaga-Flavobacterium-Bacteroides); HGC69a

for Actinobacteria; LGC354a for Firmicutes [64]. The stained filter

sections were inspected on a Leica DM LB 30 epifluorescence

microscope (Leica Microsystems GmbH, Wetzlar, Germany) at

10006 magnification. At least 300 cells were counted in .10

microscopic fields randomly selected across the filter sections. The

relative abundance of hybridized cells was estimated as the ratio of

hybridized cells to total DAPI-stained cells.

DGGE fingerprinting analysis and 16S rRNA gene
sequencing

A variable volume (200 ml to 800 ml) of stream water was

filtered through a number of 0.2 mm- polycarbonate membranes

(Nuclepore) until filter clogging decreased the flow rate to ,1 ml

per min. Because of the differences in cell abundance among sites,

filter clogging provided an indication that we had processed a

similar number of cells for each sample. Samples were digested in

lysis buffer and phenol extracted [65,66]. The 16S ribosomal RNA

gene was PCR amplified with the universal bacterial primer set

341fGC-907r and run in a DGGE as previously described [67].

Prominent bands were excised from the gel, re-amplified, and

sequenced [68]. The sequences were submitted to a BLAST

search [69] and inserted into an optimised and validated ARB

consensus tree (www.arb-home.de). The 16S rRNA gene sequence

accession numbers at EMBL are from FN869992 to FN870020.

Statistical analysis
The abundances of different phylogenetic taxa estimated by

CARD-FISH in each sampling site were compared by performing

a two-way ANOVA and pair-wise multiple comparisons (Student-

Newman-Keuls method). A multiple regression analysis was run to

identify the environmental parameters that best explained the

variability of the abundance of the bacterial taxa. To explore

similarities between the sampling sites along the gradient from

flowing to stagnant waters, the nMDS was performed with log

transformed data according to the basic Euclidean distance

matrix. The analysis was computed with either the environmental

variables or the abundances of the bacterial taxa estimated by

CARD-FISH. In addition, Mantel tests were run (permutation

tests for correlation between Euclidean similarity matrices; 1000

randomised runs) to determine which combinations of environ-

mental variables were more closely related with the similarity

patterns of the abundances of the bacterial taxa [70]. Multivariate

analyses were performed by the PAST software package (PAlae-

ontological STatistics, ver. 2.05). The alpha-diversity index was

based on the relative abundance of the phylogenetic taxa

estimated by CARD-FISH [Shannon entropy, H = 2S (Pi ln

Pi), Pi = relative abundance].

In order to evaluate if seasonal (summer versus autumn)

community changes predominate over episodic habitat fragmen-

tation, the primary DGGE bands at the same position in the

different lanes of the gel were identified. A binary matrix (1/0) was

produced to build a dissimilarity matrix based on the Jaccard

coefficient (Sj) and a dendrogram with the un-weighted pair group

average linkage method (UPGMA). Relative band intensities were

calculated by comparison with the total intensity of all bands in

each lane [68].
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