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Abstract
The past 10 years have witnessed a dramatic proliferation in the availability of protein interaction
data. However, for interaction mapping based on affinity purification coupled with mass
spectrometry (AP-MS), there is a wealth of information present in the datasets that often goes
unrecorded in public repositories, and as such remains largely unexplored. Further, how this type
of data is represented and used by bioinformaticians has not been well established. Here, we point
out some common mistakes in how AP-MS data are handled, and describe how protein complex
organization and interaction dynamics can be inferred using quantitative AP-MS approaches.
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The hairball: representation of protein-protein interactions
The availability of cDNA and Open Reading Frame (ORF) collections [1–7] and yeast
strains engineered to express epitope-tagged proteins [8] first allowed us to begin to
characterize at a global level how proteins associate with one another. In 1989, Field and
Song published the first yeast two hybrid (Y2H) manuscript [9], introducing an approach
which has now been employed to generate large-scale interaction maps in multiple
organisms, including yeast [10–13], worms [14, 15], flies [16–18], humans [18–21] and
plants [22, 23]. Y2H maps ushered in a new era in the field of protein-protein interactions,
and changed the type of question that we can pose: instead of asking “Does protein A
interact with protein B?”, or even “What does protein A interact with?”, it has become “How
is the cell wired?”.

Y2H primarily detects direct protein-protein interactions (here referred to as binary
interactions), and a simple representation of such an interaction between two proteins
consists of drawing two circles (or nodes) linked by a line (or edge; Fig. 1A). Each detected

© 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
*Send correspondence to: Anne-Claude Gingras, Samuel Lunenfeld Research Institute, 600 University Ave, Rm 992, Toronto, ON,
M5G 1X6. Phone: 1 (416) 586-5027. Fax: 1 (416) 586-8869. gingras@lunenfeld.ca.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
FEBS Lett. Author manuscript; available in PMC 2013 August 14.

Published in final edited form as:
FEBS Lett. 2012 August 14; 586(17): 2723–2731. doi:10.1016/j.febslet.2012.03.065.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



interaction can be displayed in the same fashion, and combined to generate a map of the
protein-protein interaction network (or interactome; Fig. 1B). These types of representations
– and their analysis by computational biologists – are extremely useful, allowing for the
study of the organization of any given system, and such “hairballs” also allow for hypothesis
generation regarding the biological function of the proteins under analysis. While Y2H is
probably the most cost-efficient binary approach for proteome-wide surveys, other
techniques optimized for the detection of direct interactions also exist (for review, see [24,
25]). Data from these methods can be depicted and analyzed using the same type of
graphical representation.

Parallel to the development of Y2H and other types of binary approaches, dramatic
improvements in instrumentation have enabled the efficient coupling of affinity purification
to mass spectrometry (AP-MS) for the identification of protein-protein interactions.
Proteome-wide surveys of the interactome are still largely limited to S. cerevisiae [26–29],
though a growing number of medium-scale AP-MS studies in mammals, insects, plants and
various pathogens [30–46] indicate that reconstitution of near “complete” AP-MS
interactome maps is not only possible, but likely, in the near future. Importantly, however,
the interactions detected by AP-MS differ from those obtained via Y2H, in that they
represent a mix of direct and indirect binding relationships. For proteins that take part in
multiple alternative complexes (a very common occurrence), the interactors identified in
such an analysis thus represent a mixture of multiple protein machines (Fig. 1C; 1D). While
techniques such as high-density iterative mapping of protein complexes, the use of
quantitative mass spectrometry tools, or binary approaches such as Y2H, can be used to
decipher this information (see below), how these types of interactions are depicted and
analyzed remain as important challenges to be solved, as it is a priori not always possible to
distinguish direct versus indirect interactions in MS data.

In most cases, the same type of network representation used for Y2H (i.e. nodes linked by
edges) has been utilized to depict interactions discovered using AP-MS approaches.
However, the meaning of edges in AP-MS data is not always clear, as both direct and
indirect interactions are similarly represented. Computationally, there has also been much
confusion regarding whether to simply draw edges between a bait and all of the interactors
detected in the mass spectrometer (referred to as a “spoke” expansion), or to assume that all
identified components of an affinity purification are part of a single complex, and draw
edges between all prey proteins associated with a given bait (a “matrix expansion”). The
matrix expansion model is particularly problematic, in that it completely ignores the
partitioning of a bait into mutually-exclusive protein complexes (which may have
completely different biological roles; Fig. 1C, E), and improperly implies a series of
relationships that may never exist in a cell. Fortunately, this type of expansion method is
used less and less.

There is also significant confusion in protein interaction databases regarding how to record,
annotate and display AP-MS data. For example, IntAct [47] (currently the largest primary
repository of mammalian AP-MS experiments, to our knowledge) records AP-MS data by
indicating a single “interaction number”, which encompasses the bait and its interactors as
reported by the authors of individual studies. To display this data in a consistent manner, a
spoke expansion method is used to record bait-prey relationships, and to display them for a
single query (see Fig. 1D). The IntAct site however warns that “most interactions generated
by spoke and matrix expansion result in false positives”, and offers a convenient option to
“filter” them. This – sadly – only leads to more confusion. For example, in our own dataset
on the interactions established by the Ser/Thr phosphatase PPP4C, we deposited both AP-
MS data (which is filtered out by the spoke expansion filter), and a confirmation of these
interactions by immunoprecipitation followed by immunoblotting (IP/Western) on the same

Gingras and Raught Page 2

FEBS Lett. Author manuscript; available in PMC 2013 August 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



samples [48, 49]. Surprisingly, the IP/Western data survive the filtering process, and are
considered to be “binary” data. This is highly problematic because biochemically, the IP/
Western data are just as likely as the AP-MS data to be mediated by bridging proteins, yet
because the detection method is actually more biased (in that here we only queried for the
presence of a single prey with a specific antibody), the interactions are treated differently.
This is clearly not the best way to think about interaction data. Importantly, this problem is
not limited to IntAct, which actually provides very careful curation of experimental data,
enabling us to track down such issues (and we have worked with IntAct to properly annotate
our own experiments). Adding to the confusion, some AP-MS data have been deposited by
the authors as a set of “binary” interactions (i.e. they were pre-expanded using the spoke
model [43]), and are therefore not filtered out by the spoke and matrix expansion filters in
IntAct. Other repositories use different rules for annotation and display of interaction data
[50]; e.g. BioGRID annotates all interactions in a binary spoke-expanded [51] manner, while
HPRD sometimes just reports “complexes” [52]. Given that database aggregators and
computational biologists often download entire datasets from public repositories without
being aware of the underlying nature of the data, this confusion can lead to spurious
conclusions regarding protein-protein interactions.

It is important to note that several of the commonly employed “binary” approaches can also
detect both direct and indirect interactions, yet because the detection method is “single
channel” (that is, we blind ourselves to everything but the protein for which we have a
reagent for detection), the methods are optimistically thought to be “binary”. For example,
any experiment in which proteins are expressed in their host of origin (or a closely related
species) is susceptible to recovering both direct and indirect interactions, but this fact tends
to be ignored.

Simply put, spoke expansion of AP-MS data does not generate false-positives, if the data are
handled correctly. If the mass spectrometry and data analysis have been conducted properly,
these types of protein identifications are actually of very high quality: what they do not tell
you is that an interaction is direct. A better understanding by computational biologists and
experimentalists alike of what the edges in AP-MS actually represent is thus critical moving
forward. Rather than debating whether an indirect interaction is a false positive, we suggest
that it would be more useful to clearly highlight those interactions that have been
demonstrated to be direct (using one or more methods outlined below), and to make this
data more easily available for interactome analysis. Alternatively, calculating the probability
of a direct interaction (based, for example, on future benchmarking of “binary” methods
such as Y2H) and overlaying this information on AP-MS data would allow for a much better
understanding of the molecular organization of protein complexes. Visualization of the AP-
MS interactions amongst all nodes of a network superimposed onto proven direct binding
interactions (Fig. 1F and see below) would provide much higher information content to
interactome maps.

In summary, while true binary approaches are easily represented by a node-edge-node
relationship (and annotated as such in interaction databases), how data generated by AP-MS
are recorded, visualized and distributed to the research community remains somewhat
problematic. As MS instrumentation increases in speed and sensitivity, the use of AP-MS is
also increasing apace. A concerted effort by biologists, curators and bioinformatics experts
will be required to address this important issue.

The use of quantitative data in interaction mapping
Most graphic representations of Y2H binary data tend to be unweighted; i.e. all edges
possess the same value. If value is added to these types of edges, it is most often based on
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confidence in the detection of the interaction (e.g. signal strength in a screen). These scores
can be very useful (see in particular a confidence score developed by Braun et al. based on
reproducibility of the detection of an interaction across several orthogonal binary assays [25,
53]), but they do not directly translate to a likelihood of interaction in a physiological
context. Another important issue in our field is that, similar to most Y2H maps, AP-MS
network edges are often also represented as being of equal weight, with little consideration
for the confidence in each putative interaction or the relative abundance of the interaction
partners. We and others have developed new methods to use quantitative information
embedded in mass spectrometry data to assist in the identification of true positives in
interaction maps [30, 33, 38, 54–58], and such information can very effectively be used to
calculate absolute or relative differences in the abundance of proteins across multiple
samples, and to better understand protein complex topology (Fig. 1G, H). Excellent reviews
on quantitative mass spectrometry applied to protein complexes have been published
recently [59–61]; here we will refer only to quantification as it applies to topology and
stoichiometry, with a short discussion of interaction dynamics.

Absolute quantification of proteins in a given sample can be determined using isotopically-
labeled “heavy” peptide or protein standards. Such peptides are commercially available [62],
and can be spiked into any sample of interest prior to MS analysis (Fig. 2A). Since the mass
spectrometer measures mass/charge (m/z) ratios, these standards are easily distinguished
from the “light” endogenous counterparts in the sample (Fig. 2B). Alternatively,
recombinant proteins can be expressed and isotopically labeled (e.g. with 15N or heavy
amino acids [63]) in-house, then spiked into a sample prior to proteolysis. A third variation
of this approach involves a recombinant, isotopically labeled concatenated polypeptide
sequence derived from multiple proteins of interest (qConCat [64, 65]). Ideally, several
standard peptides derived from each protein of interest should be used for quantification (to
prevent hidden biases that can arise from, e.g. post-translationally modified peptides in one
condition and not another). While most researchers would agree that using isotopically-
labeled standards is ideal for accurate quantification, this may not be practical for large-scale
AP-MS studies, both due to the cost of large numbers of standards, and various technical
difficulties, especially in determining the quantity of each standard to be added to each
sample to cover a broad dynamic range of protein concentrations across multiple
experiments. For example, when a given protein is used as a bait, its abundance in the AP
may be several hundred-fold higher than when it is isolated as an interactor with another
bait. The proper concentration of each standard peptide must be tuned in each case to ensure
that it is present at amounts within the linear range of the mass analyzer.

A number of alternative approaches have been developed to assess protein abundance. One
simple, yet surprisingly effective strategy, is to monitor spectral counts (simply the number
of mass spectra assigned to each protein; Fig. 2C) to model the abundance of interactors
across parallel purifications [38, 66–68]. Spectral counts are most often normalized to
protein length (since larger proteins yield more peptides, they tend to generate more spectra
at the same molarity), and sometimes to the expression levels of the bait itself. Spectral
counts can be used for filtering out noise in AP-MS experiments, but also to compare the
recovery of the same prey across samples [67]. Importantly, spectral counts are more
reliable for proteins in the medium to high abundance range in a sample, but are not as
useful for low abundance polypeptides. More accurate quantification that does not require
isotopes can be performed by analyzing the intensity of the signal in the precursor scan of
the mass spectrometer (here referred to as the MS1 scan), or the intensity of the product ions
after fragmentation (MS/MS or MS2 scan). Similar to spectral counts, MS1 quantification
has been used to identify true positives in AP-MS data, and in some cases to compare the
samples quantitatively [58, 69, 70]. However, since different peptides ionize differently in
the mass spectrometer (i.e. ion intensities for different peptides at equimolar concentrations
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can vary widely), these methods can only provide an estimation of abundance (although
these issues decrease as the counts or intensities of more peptides from the same protein are
averaged; see e.g. [71]). To circumvent this problem, while keeping overall costs of the
experiment more manageable, Wepf and colleagues devised an approach in which the
recombinantly expressed “bait” protein is fused to an epitope tag that can be used both for
isolation and quantification [72]. A single heavy isotopic standard corresponding to a
peptide in the epitope tag is spiked into samples to establish a quantitative reference point
for the bait in each experiment. Computational analysis can then be used to quantify each
protein previously used as a bait across multiple experiments. This approach is more useful
when looking at interconnected networks, such that each prey in the dataset is also analyzed
as a bait. An extension of this type of approach could consist of spiking a general mixture of
heavy peptides into each AP, where some correspond to the epitope tag, some to common
contaminants, and others correspond to various components of the network under study, and
using these as beacons for quantification of the entire interaction network. While this has not
(to our knowledge) been used for interaction proteomics, similar strategies have been
applied in the field of biomarker detection [73].

Unfortunately, at present much of this type of data in proteomics experiments is essentially
ignored. For example, abundance measures are stripped out of interaction data recorded in
the major interaction databases, and in most cases, confidence values are also not tracked.
As such, major and minor interactors are given equal weight in such datasets. This is
problematic because it enhances the disconnect between small scale and large scale studies,
and prevents access to new types of information for modeling by computational biologists.
This being said, since abundance levels may vary depending on the experimental set-up, it
will be challenging to harmonize quantitative data deposited from different sources.

From interactor lists to complexes
A single AP-MS analysis reveals little regarding the supramolecular architecture of
individual protein complexes, but this technique can be harnessed in multiple ways to reveal
how protein machines are assembled. For example, the composition of a given complex, and
multiple mutually-exclusive assemblies, can often be deduced by performing iterative “high
density” AP-MS [74], in which each of the preys from one round of analysis become baits in
the next round (Fig. 1E). This is clearly somewhat labor-intensive, but the use of incomplete
data (e.g. when not all proteins in a complex are analyzed as baits, or if any of the preys fall
below the detection limit) can result in the over-fitting of complex composition and a loss of
biologically important information. For example, when we characterized the STRIPAK
(STRiatin Interacting Phosphatase And Kinase) complex, 10 different protein families were
identified as bona fide components. Only after performing AP-MS on each of the
components were we able to define two independent molecular entities in the pulldowns:
one complex associated with the cortactin binding protein 2 (CTTNBP2), and a second
complex containing the proteins SLMAP and SIKE [34].

An alternative to reciprocal AP-MS (which to date has been used only in smaller scale
studies) is to combine the standard AP step with an orthogonal approach to separate multiple
bait-containing complexes; this may be accomplished e.g. via gel filtration chromatography
or other standard chromatographic steps followed by AP-MS [75]. Despite obvious
advantages, this approach has not generally been applied to large-scale AP-MS analysis,
most likely due to the additional analytical steps required (e.g. tracking down the fractions in
which the bait partitions) and increased analysis time. Approaches such as Blue Native gels
have been combined effectively with AP-MS for the analysis of membrane-associated
protein complexes [76, 77], and it is likely that such studies will be expanded in the near
future. In recent years, parallel (and still largely unpublished) efforts from several groups
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have attempted to forego the AP step completely, and to systematically analyze protein
complexes by chromatographic fractionation coupled to mass spectrometry (L Foster, pers.
comm.). Although the dynamic range and limitations of this approach are not entirely clear
at present, it could represent a very useful companion to AP-MS analysis to enable the
detection of mutually exclusive complexes containing a given protein. Furthermore, as
discussed below, this type of approach could be very useful in mapping global changes in
interactomes imparted by a stimulus, drug or other perturbation.

An obvious limitation to the use of AP-MS to identify and characterize protein complexes is
that the complex must be soluble in the buffer used for affinity purification and the
interactions must withstand the affinity purification step. Simply put, if a bait protein and its
interacting partners are not extracted efficiently during lysis, they will not be observed by
the mass spectrometer. For example, proteins associated with chromatin are often found in
the pellet after centrifugation of the crude lysate, unless steps to shear the DNA (such as
sonication or treatment with nucleases) are included in the lysis protocol [78–80]. Similarly,
membrane proteins are typically poorly recovered in standard extraction buffers, though
employing different detergents for their extraction has recently enabled the recovery of
multiple complexes associated with different membranes [81–85]. Systematic studies in S.
cerevisiae to define the chromatin-associated interactome [79] and the interactome of all
membrane-localized proteins (J. Greenblatt, pers. comm.) indicate that these types of
approaches will lead to a greatly expanded view of the interactomes for proteins previously
thought to be inaccessible to AP-MS analysis. To better understand interactions that do not
withstand the affinity purification step (often referred to as “transient” interactions, but more
accurately defined as interactions that have a fast “OFF” rate in solution) a variety of
different strategies will most likely be required. That these types of interactors do in fact
exist has been defined by quantitative proteomics with SILAC, in which combining samples
at different times (prior to lysis, after lysis, or after affinity purification) revealed
interactions that are stable in solution, and interactors that exchange rapidly [86–88]. The
simplest approach to capture rapidly-dissociating interactors is to decrease the chances for
the interactions to be lost in the first place. For example, in a dual purification protocol such
as Tandem Affinity Purification (TAP), a protein with a fast off rate has the chance to
dissociate from its interactors in each of the two purification steps (and during the
proteolysis and washes steps). Using a single step purification method, accompanied by
shorter incubation times and limited washes, can help to maintain interactors that would
otherwise be lost [48, 89]. While these types of samples are likely to contain a larger
numbers of contaminants, the use of improved software for statistical analysis of putative
interactors (e.g. SAINT and similar tools [30, 33, 38, 54–58]) allows for efficient
discrimination between contaminants (e.g. proteins that bind to the solid phase support or
antibody) and bona fide interactors.

While more sensitive MS instruments, an increase in the speed of bait isolation, fewer wash
steps, and smarter software have dramatically improved our ability to identify interacting
partners, this pipeline will probably not be sufficient to maintain all interactions; alternative
strategies, most often making use of crosslinking reagents that can be applied directly to
cells prior to lysis, can also be exploited (see, e.g. [35]). It must be stated that each of the
approaches described above has advantages and caveats, but – performed under well-
controlled conditions – have the potential to greatly expand the detection of protein-protein
interactions by AP-MS.

Mapping topologies
All of the approaches highlighted above are aimed at defining protein complexes in the
biochemical sense: i.e. providing a “parts list” of complex composition. Understanding how
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these parts are assembled into a functional unit is also clearly important. In a best-case
scenario, information from binary approaches (e.g. Y2H) may already be available, and used
to model protein complex topology. Crosslinking followed by mass spectrometric
identification of the crosslinked residues in protein partners is also increasingly used (for
reviews, see [90–94]). Since this approach also identifies likely direct interactions,
crosslinking data could easily be integrated within the networks generated by AP-MS to
identify some of the topological elements (Fig. 1F).

It is also possible to use “binary” approaches to systematically test for direct interactions
between proteins detected by AP-MS. To determine the viability of such an approach, we
have tested several different methods. Using Y2H, we performed a pilot re-scoring of ~
1000 high-confidence AP-MS interactions (P Braun, pers. comm.). This assay yielded a
fairly low (<10%) validation rate, likely due to a combination of false negatives in Y2H
(where assay sensitivity is ~25% [53]), indirect interactions identified by AP-MS, and
perhaps false positives in AP-MS. Combined with the tedious cherry-picking required for
assembling the large number of individual protein pairs for such an analysis, this method
may not be the most efficient way to identify direct interactions in an AP-MS dataset,
especially since genome-wide screens by Y2H are underway and should in theory test all
possible pairs. In another study, we used LUMIER [95] to test ~50 baits against a total of
600 interacting proteins, in an attempt to identify direct interactions in a single high-
confidence interaction network (M Taipale, pers. comm.). LUMIER monitors the recovery
of a luciferase-tagged bait protein with a FLAG-tagged prey, following
immunoprecipitation. LUMIER validation was more successful than Y2H, although the
percentage of interactions that are truly direct in the LUMIER assay is unclear (in this
method, two proteins are co-expressed in a human cell line, and could therefore be bridged
by one or more additional endogenous proteins). Finally, in a much smaller test case, we
successfully identified direct protein-protein interactions by programming reticulocyte
lysates to express nuclear proteins, which are normally not expressed in red blood cells.
Here, we demonstrated that the catalytic subunit of PP4 interacts directly with PP4R2, and
that this dimer was necessary for the recruitment of a third member of the complex, PP4R3
[49]. In this case, all interactions were also recapitulated by Y2H [49].

It may also be possible to retest AP-MS interactions to look for direct interactors by
employing assays with a strong bias for close proximity, using methods such as protein
fragment complementation (PCA [96, 97]); the use of fluorescent proteins for PCA has the
added advantage of providing information regarding the subcellular location in which the
interaction takes place.

Ideally, retesting could also be done using purified proteins from a phylogenetically distant
host (e.g. a bacterial expression system for eukaryotic proteins); to date, this is widely
considered to be the gold standard for the identification of direct protein-protein interactions.
With the availability of cDNA and ORFeome collections, and the ongoing construction of
protein collections [98–101], systematic retesting of proteins by expression in bacteria (or
other hosts) may be scaled-up. While this type of testing can certainly be done using
standard pull-down experiments and SDS-PAGE, protein array technologies [102, 103]
could afford higher throughput. However, some difficulties remain with testing interactions
using bacterially expressed recombinant proteins: e.g. many classes of proteins are not easily
expressed (especially as full length polypeptides), and interactions which require, for
example, a post-translational modification may be missed using this method. In summary,
while it is not yet clear which of the approaches mentioned above (or others) may be the
most efficient for providing information about direct interactions in AP-MS data to better
understand the architecture of protein complexes, there are a number of possibilities that are
becoming increasingly available. Furthermore, as high throughput mapping efforts using
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many different approaches continue, merging of datasets may eventually provide much of
this information.

As an alternative to the use of external data sources, it is possible in some cases to map the
organization of protein complexes using quantitative MS data as a proxy. For example, if a
bait protein retrieves only a single high abundance interactor and many lower abundance
interactors, it is unlikely that the high abundance interaction partner is bridged by another
protein. In a similar way, if an interactor remains associated with the bait under conditions
where most of the other interactors are displaced (e.g. by increasing the stringency of the
washes), it is more likely to be a direct binding partner than an indirect interactor. An
alternative is to progressively dissociate protein interactions in the mass spectrometer; this
has been done for several large complexes, including the multisubunit translation initiation
factor eIF3 [104] (for recent reviews of MS of intact complexes, see [92, 105]).

To better understand protein complex topology, it can be informative to place additional
focus on putative scaffolds in a given dataset. For example, based on quantitative MS data
we postulated that the striatin molecule could act to bridge the phosphatase (PP2A) and
kinase (a family of Sterile 20 kinases known as GCKIII) components of the STRIPAK
complex. To explore this hypothesis, we performed AP-MS on a series of epitope-tagged
striatin truncation mutants [106]. This and subsequent studies indeed revealed that striatin is
a scaffold, but that the kinase is likely recruited to the phosphatase via the CCM3 protein
(mutated in Cerebral Cavernous Malformations) [107]. To confirm this model, we
immunoprecipitated the kinase and analyzed by quantitative mass spectrometry the recovery
of interaction partners, following the depletion of CCM3 and striatin by RNAi. A similar
approach – using genetic deletion in S. cerevisiae – was employed by the Washburn group
to define the network architecture of both the SAGA and ADA chromatin remodeling
complexes [108], and the Rpd3 histone deacetylase complex [109]. Despite potential
complicating issues (e.g. the expression level of a given protein may be influenced by the
absence of interacting partners), this type of approach – especially in the context of modern
quantification methods – offers great promise for the systematic analysis of complex
topologies. In the case of S. cerevisiae, the approach consists of simply transforming a
plasmid coding for the protein of interest into a relevant strain, or crossing strains in which
endogenous proteins have been epitope tagged to strains in which a single complex
component has been deleted (such crosses are now routinely used, and can even be
conducted in a large-scale, automated fashion). In human cell systems, the limiting factor (at
least in our hands) is the establishment of stable cell lines expressing tagged bait proteins:
though still relatively expensive, transient knock down of suspected direct interactors is now
robust, and enables the global analysis of protein complex organization.

We also note that – while not directly performed in the experiments described above – the
inclusion of absolute peptide or protein standards within this type of framework may be
extremely useful for elucidating the stoichiometry of components of a given complex. In this
respect, the concatenated peptide strategy (qConCAT) mentioned above is particularly
appealing, as each of the peptides in the qConCAT are present at identical molarities,
thereby enabling determination of the molecular stoichiometry for multiple proteins in a
complex. Using such approaches, we were able to determine that striatin is likely present as
a trimer within STRIPAK (Kean et al., unpublished).

One interactome to many
While we have discussed some approaches to enable the integration of quantitative
information into large-scale AP-MS interaction maps, we have not discussed what these
maps actually mean. The majority of protein-protein interaction maps have been generated
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under a single physiological condition, and usually in only one organism or cell line,
resulting in a steady-state (or static) interactome. For example, the bulk of the data currently
available from medium or high-throughput human interactomes have been generated from
derivatives of the HEK293 cell line (a smaller number of experiments have employed other
immortalized cell lines). This concerted focus on a single cell line does have advantages in
terms of benchmarking interactomes from different research groups, and in establishing a
baseline for a draft map of a complete interactome in a human cell. However, there are
clearly many interactions which may not be detected under these conditions, e.g. because
certain proteins are not expressed in these cells (e.g. we have never detected CIP2A, a PP2A
inhibitor upregulated in certain cancer cells, since it is not expressed in HEK293 cells
[110]). We may also miss interesting protein-protein interactions that occur only after
exposure to certain hormones, growth factors or stresses, only during apoptosis, only in
highly confluent cells, or only during a given developmental stage. Standard AP-MS
methods can also miss interactions that occur with; (i) membrane proteins, because buffer
conditions that liberate proteins from membranes are often not compatible with maintaining
protein-protein interactions in solution, and (ii) amongst chromatin-associated proteins that
can be pelleted with the DNA during lysate preparation. As such, it is unclear what fraction
of physiologically-relevant interactions will ultimately be identified by current efforts to
systematically map protein-protein interactions in one cell type, and under one condition.

There has been an increase in efforts to produce more “dynamic” views of interactomes
using AP-MS. (The LUMIER approach mentioned above was also designed with this type
of analysis in mind, and can be used to monitor changes imparted by signaling events [95]).
Systematic methods to map dynamic changes include the use of isotopic labeling
approaches, and increasingly, quantification based on spectral counts [31, 35] or ion
intensities of precursor peptide (MS1) or fragment ions (MS2). As quantitative methods and
the accompanying software become more robust, there will be a major increase in
interaction maps comparing cell- or tissue-specific interactions, or attempts to address
changes in subsets of a network. It is not realistic to expect that every possible protein
product will be monitored across all cell types (or tissues), or following treatment with every
stimulus. However, as data become increasingly available regarding the function of each of
the proteins encoded in a genome (e.g. via systematic RNA interference screens), and as the
transcriptomes and proteomes of various cell types and tissues become known, cell types
and screening conditions can be specifically selected based on the biological process of
interest. For example, Glatter et al. were interested in defining the interaction network
surrounding the insulin receptor / target of rapamycin pathway in Drosophila, and therefore
profiled interactions in Kc167 cells following insulin stimulation using a spectral count
based label-free approach [35]. Their study, in addition to identifying new components of
the pathway, revealed that 22% of the detected interactions were regulated by insulin. A
spectral count-based approach was also utilized by Li et al., to map interaction network
dynamics regulating interferon production, centered on 58 known innate immunity
regulators. This work revealed ~20% regulated interactions (following treatment with
mimics of infection), and enabled them to establish the role of Mind Bomb proteins in the
anti-RNA viral innate immune response [111]. Baker et al., employed a SILAC approach to
reveal light-modulated interactions with the circadian clock protein FRQ in Neurospora
[112]. To begin identifying cell fate decisions specified by the ERK kinase, and its
dynamically-regulated interactors, von Kriegsheim et al. employed a SILAC approach to
quantify interactors in rat PC12 cells stimulated for different times with nerve growth factor
(NGF) or epidermal growth factor (EGF). This work revealed key differences between
protein-protein associations modulated by the two different growth factors [113].

Lastly, while the quantitative approaches described above use spectral counting or SILAC
for quantification, another quantification method that is gaining in popularity in the
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proteomics community exploits quantification of the product ions in MS2 spectra. In the
standard approach known as selected reaction monitoring (SRM) [114–116], a prerequisite
for quantification is to establish a robust list of peptides and product ions (these pairs are
called transitions) to be recorded and quantified. Although the set-up phase of an SRM assay
is time-consuming, once in place, the assay is rapid and extremely sensitive. Recently,
Bisson et al. combined affinity purification with SRM (in a modified approach they call AP-
SRM), and used it to better understand membrane-proximal phosphotyrosine signaling
events by performing quantitative proteomics in HEK293T cells stimulated with EGF and
other growth factors. Due to the combination of low cost per sample, sensitivity and
accuracy, AP-SRM has great potential to enable the generation of time-resolved
interactomes (e.g. Bisson et al. looked at six times points after EGF treatment) and to screen
condition-specific interactions (in this case, six different growth factors). However, AP-
SRM also has drawbacks, first in the need to optimize the quantification method (i.e. select
the transitions to follow), but more importantly, the fact that one can only quantify what they
expect to be present in the sample. These drawbacks may be eliminated in a variation on the
theme of quantification in the MS2 spectra recently implemented as a pipeline on fast
scanning, high resolution mass spectrometers. This approach, referred to as SWATH MS,
enables sensitivity and precision similar to that of SRM [117], but because it analyzes the
entire contents of a sample it can be re-interrogated at a later stage for any protein or peptide
of interest. We have recently shown that SWATH can be used (similar to AP-SRM) to
characterize changes in interactomes, with the added advantage of rapidity in method
building, and the possibility to retrospectively analyze the data (Lambert et al., in prep.). In
summary, methods harnessing the quantitative power of mass spectrometry to study
interaction dynamics are becoming more robust and sensitive, and will undoubtedly lead to
an increase in the number of studies producing such data. While this is exciting, how these
types of data are recorded in public repositories, and how they are displayed, will remain
issues that the field must deal with.

Perspective
In this review, we have attempted to raise awareness for; (i) the need to promote a better
understanding of what AP-MS data can provide, and how this type of data differs from that
generated by “binary” detection methods, (ii) to advocate for recording quantitative MS
information in public repositories, and (iii) to take advantage of this data to better
understand protein-protein interactions. While at the moment there is no single “winning”
genome-scale technique that enables structural and dynamic analyses of all types of
interactomes, many encouraging results which in principle should be scalable are coming to
the fore. One remaining challenge will be determining how to visually and computationally
represent the multiple layers of data that will be generated by future experiments focused on
dynamic changes in protein-protein interactions. Lastly, while computational biologists have
learned to deal with noise in interaction data (especially for making general conclusions
regarding the behavior of a system), the systems biology community faces a daunting task in
convincing other biologists that datasets acquired in high- or medium-throughput studies are
both of high quality and biologically meaningful. This is necessary to engage the global
scientific community in finally bridging the gap between the hairball and the atomic level
understanding of protein-protein interactions.
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Abbreviations

AP-MS Affinity purification coupled to mass spectrometry

Y2H Yeast two hybrid

TAP Tandem Affinity Purification

QconCAT Quantification concatemer

STRIPAK Striatin Interacting Phosphatase And Kinase

LUMIER Luminescence-based Mammalian Interactome Mapping

cDNA complementary DNA

ORF Open Reading Frame

MS1 Precursor ion mass spectrum

MS2 Also called MS/MS or tandem mass spectrum; product ion mass spectrum

SRM Single Reaction Monitoring

SILAC Stable isotope labeling with amino acids in cell culture

EGF Epidermal growth factor

NGF Nerve growth factor
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Highlights

• Data generated by AP-MS is different from “binary” data and need to be better
understood.

• Quantitative data in AP-MS can be used to understand complex organization.

• Quantitative AP-MS is poised to help understand interactome dynamics.

Gingras and Raught Page 19

FEBS Lett. Author manuscript; available in PMC 2013 August 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Graphical representations of protein interactions
A) Graphical representation of a direct protein-protein interaction. The two circles (referred
to as “nodes”) represent each of the proteins engaged in an interaction, and the line linking
them (the “edge”) represents the interaction. B) Interaction network (or “hairball”)
representing ~ 500 interactions amongst ~100 proteins (generated by Cytoscape [103]). C)
Protein complexes in a cell. Here, the green protein is found in three different biochemically
defined complexes (direct interactions are depicted by contact between the nodes). Not
shown here is the relative abundance of these three complexes. D) Unweighted graphical
representation (spoke expansion) of the interactions established by the green protein after
affinity-purification coupled to mass spectrometry. The organization in different complexes
is lost (from this single AP-MS analysis) and direct and indirect interactions are represented
in the same manner, as they are indistinguishable in the mass spectrometer. E) Iterative AP-
MS helps to resolve complex organization surrounding a central bait. After identification of
each of the interaction partners for the green protein, these can be in turned cloned, and
analyzed by mass spectrometry. This recapitulates the complex organization shown in (C),
though it does not indicates direct or direct interactors. F) Adding binary data to AP-MS
data is beneficial to reconstitute the assembly of individual complexes. The dashed lines
represent demonstrated (thickest lines) or predicted (thinner lines) direct interactions (the
likelihood of a direct interaction is proportional to edge thickness). G) Complexes are not
always present in the cell in the same abundances; here, complex 1 is more abundant than
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complex 2, itself more abundant than complex 3. Most of the green protein will reside in
complex 1. H) Quantitative mass spectrometry data provides the relative abundance of each
of the interactors for the green protein. This information is shown here as the thickness of
the edges.
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Figure 2. Strategies for quantification of AP-MS data
A) Absolute quantification with isotopes; alternative sources of isotopically labeled peptides
are indicated. In all cases, the absolute concentration of the standards must be determined
prior to use in mass spectrometry. B) General principle behind the use of isotopic labels in
quantitative proteomics. In the precursor (MS1), the mass to charge ratios (m/z) of all co-
eluting peptides are monitored, and their intensity recorded. Since isotopically labeled
peptides have different m/z, they are distinguished from each other in the MS1 scan:
Relative differences in abundance are proportional to their intensities. Identification (here of
the light, green, species) is performed in the MS/MS (or MS2) spectrum. C) Quantification
based on spectral counting. Different unique peptides from the same protein may be
sequenced; spectral counts refers to the sum of all spectra mapped to a given protein.
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