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Genetic variants in the sortilin-related receptor (SORL1) and the sortilin-related vacuolar protein sorting 10 (VPS10) domain-
containing receptor 1 (SORCS1) are associated with increased risk of Alzheimer’s disease (AD), declining cognitive function and
altered amyloid precursor protein (APP) processing. We explored whether other members of the (VPS10) domain-containing
receptor protein family (the sortilin-related VPS10 domain-containing receptors 2 and 3 (SORCS2 and SORCS3) and sortilin
(SORT1)) would have similar effects either independently or together. We conducted the analyses in a large Caucasian case
control data set (n¼ 11 840 cases, 10 931 controls) to determine the associations between single nucleotide polymorphisms
(SNPs) in all the five homologous genes and AD risk. Evidence for interactions between SNPs in the five VPS10 domain receptor
family genes was determined in epistatic statistical models. We also compared expression levels of SORCS2, SORCS3 and
SORT1 in AD and control brains using microarray gene expression analyses and assessed the effects of these genes
on c-secretase processing of APP. Several SNPs in SORL1, SORCS1, SORCS2 and SORCS3 were associated with AD. In
addition, four specific linkage disequilibrium blocks in SORCS1, SORCS2 and SORCS3 showed additive epistatic effects on the
risk of AD (Pp0.0006). SORCS3, but not SORCS2 or SORT1, showed reduced expression in AD compared with control brains,
but knockdown of all the three genes using short hairpin RNAs in HEK293 cells caused a significant threefold increase in APP
processing (from Po0.001 to Po0.05). These findings indicate that in addition to SORL1 and SORCS1, variants in other
members of the VPS10 domain receptor family (that is, SORCS1, SORCS2, SORCS3) are associated with AD risk and alter APP
processing. More importantly, the results indicate that variants within these genes have epistatic effects on AD risk.
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Introduction

A central event in the pathogenesis of Alzheimer’s disease
(AD) is the deposition of amyloid b (Ab) 1–40 and Ab1–42
peptides generated by proteolytic cleavage by b- and
g-secretase from a larger membrane-bound protein, the
amyloid precursor protein (APP).1 APP and the secretases
are integral transmembrane proteins dynamically sorted
through the plasma membrane. Modulation of APP sorting
through the membrane or altering APP cleavage by secretase
enzymes could affect the regulation of Ab production or
processing.

Variants in two members of the vacuolar protein sorting 10
(VPS10) domain-containing receptor protein family, sortilin-

related receptor (SORL1) and sortilin-related VPS10 domain-

containing receptor 1 (SORCS1), are associated with late-

onset AD presumably through effects on APP sorting and

cleavage.2–4 The VPS10 domain-containing receptor protein

family contains five type I membrane homologs (SORL1,

sortilin (SORT1), SorCS1, SorCS2 and SorCS3),5–9 that are

expressed in the central nervous system. All contain a single

Vps10p-D situated at the N-terminus of their luminal/extra-

cellular moiety. The VPS10 motif functions as a sorting
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receptor in the Golgi compartment required for the intracel-
lular sorting and delivery of proteins, including APP.
In SORT1, also known as neurotensin receptor-3, the
Vps10p-D makes up the entire luminal extracellular part of
the receptor, but the other four receptors have additional
modules. In SORL1, the Vps10p-D is followed by five low-
density lipoprotein receptor class B repeats flanked by an
epidermal growth factor precursor-type repeat, a cluster of 11
low-density lipoprotein receptor class A repeats and 6
fibronectin type-III repeats. The mutually highly homologous
SorCS1, SorCS2 and SorCS3 contain a leucine-rich segment
between the Vps10p-D and the transmembrane domain.
Structure prediction of the leucine-rich segment suggests a
beta-sandwich fold and relates the domain to the immunoglo-
bulin-like fold (E-set) superfamily. Following the extracellular
and transmembrane segment, each receptor carries a short
(40–80 amino acids) cytoplasmic domain comprising typical
motifs for interaction with cytosolic adaptor molecules. In
genomic DNA, members of this family are large with many
exons but the coding sequence lengths are usually o3700
nucleotides. Very large introns (introns 1–2) typically separate
the exons encoding the VPS10 domain; the remaining exons
are separated by much smaller introns. Exons 1–3 encode the
VPS10 domain.

Previously, we demonstrated that SORL1 modulates the
translocation and retention of APP in subcellular compart-
ments, which are less favorable for secretase processing,
thereby reducing the extent of proteolytic breakdown into both
amyloidogenic and non-amyloidogenic products.3 Further-
more, we showed that under-expression of SORL1 leads to
overexpression of Ab and an increased risk of AD. Subse-
quently, we demonstrated that genetic variation in SORCS1
also influences AD risk, cognitive performance, APP proces-
sing and Ab40 and Ab42 levels through an effect on
g-secretase processing of APP.2,10 Overexpression of
SorCS1 reduced Ab40 and Ab42 levels, whereas suppression
of SorCS1 increased g-secretase processing of APP. The
association of SORL1 with AD has been supported by a meta-
analysis of Caucasian and Asian data sets that included a total
of 12 464 cases and 17 929 controls11 and has been further
validated in various ethnic groups, including African Amer-
icans, Israeli Arabs and Caribbean Hispanics, although with
some degree of allelic heterogeneity.3,11–18 In addition, these
data are supported by a study in which overexpression of
SorCS1cb-myc in cultured cells caused a significant reduction
in A� generation, whereas, conversely, endogenous murine
A�40 andA�42 levels were increased in the brains of Sorcs1
hypomorphic mice.19

We hypothesized that variants in other members of the
sortilin-related VPS10 domain containing receptor family,
namely SORCS2, SORCS3 and SORT1, would also be
associated with AD risk either independently or through
epistatic effects. These homologous genes are expressed
in different brain regions with different subcellular localisa-
tions,20–22 but there are many brain regions, such as the
hippocampus, in which these genes are co-expressed albeit at
low levels.20

We conducted single-marker association and epistasis
analyses of all the five homologous genes in a large
Caucasian case-control data set, with sufficient power to detect

modest effect sizes and interactive effects. In addition, we
conducted microarray gene expression analyses and g-secre-
tase assays for SORCS1, SORCS2, SORCS3 and SORT1.

Participants and methods

Ethics statement. Informed consent was obtained from all
the participants using procedures approved by institutional
review boards at each of the clinical research centers
collecting human subjects for the ADGC project.

Participants. The data set included 11 840 cases and
10 931controls from the ADGC data set.23 The clinical
characteristics are summarized in Table 1. The diagnoses
of ‘probable’ or ‘possible’ AD were defined based on the
National Institute of Neurological and Communication Dis-
orders and Stroke–Alzheimer’s Disease and Related
Disorders Association (NINCDS-ADRDA) diagnosis criteria
at clinics specializing in memory disorders or in clinical investi-
gations. Persons were classified as ‘controls’ when they were
without cognitive impairment or dementia at last visit.

Genotyping. HapMap2-imputed genotypic data for single
nucleotide polymorphisms (SNPs) in SORCS1 (n¼ 648),
SORCS2 (n¼ 740), SORCS3 (n¼ 742), SORL1 (n¼ 160)
and SORT1 (n¼ 40) was obtained from the previously
published genome-wide association study.23 The SNPs
assessed included both intronic and exonic SNPs. The
SORCS1 SNPs were not identical to the SNPs assessed in
our previous study, which had been selected based on
previous reports.2 Details regarding apolipoprotein E (APOE)
genotyping are described in the Supplementary methods.

Cell culture and transfection. Using HEK293 cell lines,
reverse transcriptase–PCR (RT–PCR) and western analysis
were used to detect all five VPS10 proteins and to verify
the knockdown and specificity of each short hairpin
RNA (shRNA) as previously described.2 The corresponding
shRNA DNA sequences are shown in Supplementary
Table 3.

APP-GV Assay. The g-secretase activity and nuclear
translocation of the APP/Fe65/TIP60 protein complex was

Table 1 Characteristics of the study sample

Characteristics

Number of cases with AD 11 840
Number of controls 10 931
Age at Onset for AD cases (s.d.) 74.55 (6.8)
Age at last exam for controls (s.d.) 76.26 (7.2)
Proportion of females 59.66%

Frequency of APOE e4þ
Cases 0.38
Controls 0.14

Frequency of APOE e4�
Cases 0.62
Controls 0.86

Abbreviation: AD, Alzheimer’s disease; APOE, apolipoprotein E.
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monitored with the APP-GV assay.24 The APP-GV assay is a
luciferase-based assay24 consisting of the APP gene’s
C-terminus (AICD) fused to a transcription factor composed
of the GAL4 DNA-binding domain with VP16 transcriptional
activator (GV). In addition, the AICD fragment is fused to the
GV domains as a positive control of AICD generation and
allows for the evaluation of the AICD-specific contribution to
the observed modulation in the APP-GV assay. Briefly,
SorCS2 cDNA or SorCS2 shRNAs transiently transfected
were evaluated in either the APP-GV or the AICD-GV assay,
as previously described24 in the HEK293 cell line. SorCS3
cDNA or SorCS3 shRNAs, and SORT1 cDNA or SORT1
shRNAs, were evaluated in a similar fashion.

Microarray gene expression and quantitative RT–PCR.
Expression profiling was performed separately for the
cerebellum, parietal-occipital neocortex and amygdala
regions from 19 AD and 10 control brains from the New
York Brain Bank (www.nybb.hs.columbia.edu). This three-
region approach allowed us to enhance the signal-to-noise
ratio25 and to determine those changes in expression that are
specific for late-onset AD and consistent with the distribution
of AD pathology. For the expression profiling of AD and
control brains, the Affymetrix GeneChip Human Exon 1.0 ST
Arrays (Affymetrix, Santa Clara, CA, USA) were used.
Frozen brain tissue was ground over liquid nitrogen and
stored at � 80 1C until use. Total RNA was extracted
and purified using the TRIzol Plus RNA purification kit
(Invitrogen, Life Technologies, Grand Island, NY, USA). All
RNA preparations were analyzed using an Agilent Bioana-
lyzer (Agilent Technologies, Santa Clara, CA, USA; RNA
6000 nano-kit) to determine RNAquantity/quality and only
samples with RNA integrity number 48 were used in the
subsequent RNA amplification and hybridization steps. The
Genechip expression two-cycle target labeling kit (Affyme-
trix) was used for all samples according to Affymetrix’s
protocols. Briefly, the procedure consists of an initial
ribosomal RNA reduction step and two cycles of reverse
transcription followed by in vitro transcription. For each
sample, 1mg of total RNA is initially subjected to removal of
ribosomal RNA using the RiboMinus Transcriptome Isolation
Kit (Invitrogen) and spiked with Eukaryotic PolyA RNA
controls (Affymetrix). The ribosomal RNA-depleted fraction
was used for cDNA synthesis by reverse transcription primed
with T7-random hexamer primers, followed by second strand
synthesis. This cDNA served as the template for in vitro
transcription to obtain amplified antisense cRNA. Subse-
quently, cRNA from the first round was reverse transcribed
using random primers to obtain single-stranded sense DNA.
In this second reverse transcription, dUTP (20-deoxyuridine,
50-triphosphate) is incorporated into the DNA to allow for
subsequent enzymatic fragmentation using a combination of
UDG (uracil-DNA glycosylase) and APE1 (apyrimidinic
endonuclease 1). All reverse and in vitro transcription steps
were performed using the GeneChip WT cDNA synthesis
and amplification Kit (Affymetrix). The resulting fragmented
DNA was labeled with Affymetrix DNA Labeling Reagent.
Labeled fragmented DNA was hybridized to Affymetrix
Human Exon 1.0 ST arrays, washed and stained using the
GeneChip Hybridization, Wash and Stain Kit (Affymetrix).

Fluorescent images were recorded on a Genechip scanner
3000 and analyzed with the GeneChip operating software.

Significant results obtained from the microarray study were
validated by quantitative RT–PCR using the same set of AD
and control samples. Total RNA (1mg) from of the amygdala
region was used to generate cDNAs using the AffinityScript
first-strand synthesis kit (Agilent Stratagene, CA, USA).
RT–PCR primers were designed for three randomly selected
exons of SorCS3 (10, 17 and 21). The housekeeping gene,
TBP (TATA-binding protein) , was used as the endogenous
control; and samples were analyzed in triplicate. The primers
used in the quantitative RT-PCR are available from
Supplementary Table 1. Real-time RT-PCR was done using
SYBR Green reagent (TaKaRa Mirus Bio, Madison, WI, USA)
on an ABI7500 system (Applied Biosystems, Foster City, CA,
USA).

Statistical methods. Extensive quality review of SNPs and
samples were previously completed.23 Then multivariate
logistic regression analyses in PLINK (http://pngu.mgh.
harvard.edu/Bpurcell/plink/) were used to assess additive
genotypic and allelic associations with AD risk in the case-
control data sets, and generalized estimating equation
models were used for family-based data sets. All models
were first adjusted for age at examination, sex and
population stratification and subsequently for APOE-e4
(additive effect) as well. For adjustment for population
stratification, the first two, three or four estimated principal
components were used, as described previously.23 Logistic
generalized estimating equation models26,27 were used to
evaluate association in the family-based data sets, using the
same adjustments. Then, a meta-analysis of the individual
study results was performed using inverse variance weights
for the effect estimates as implemented in METAL (http://
www.sph.umich.edu/csg/abecasis/Metal/). In order to take
linkage disequilibrium (LD) between the markers into
account, the P-value threshold for multiple testing correction
was, in both single-marker and epistasis analyses, deter-
mined by applying the algorithm by Li and Ji.28 As this was a
candidate gene study with the a priori hypothesis of an
association between each of the explored genes and AD, the
calculation was done separately for each gene.

Epistasis. Using only the SNPs that were associated with
AD in the single-marker analyses (Pp0.05), we tested for an
interaction between SNPs in the five homologous genes. The
analysis was carried out using PLINK (http://pngu.mgh.
harvard.edu/Bpurcell/plink/) adjusting for population stratifi-
cation. The model based on generalized estimating equa-
tions yields a list of SNP-by-SNP comparisons with beta
coefficients and P-values. Based on the number of indepen-
dent interactions tested, we accepted a P-value of p0.0001
as statistically significant. As described above, LD between
the markers was taken into account applying the algorithm by
Li and Ji.28

Statistical analysis for the gene expression and quanti-
tative RT–PCR data. To determine in which genes expres-
sion levels differ between affected and unaffected
brain regions, as well as between AD and control brains,
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we performed both within- and between-group factors’
analysis of variance using PARTEK GENOMICS SUITE 6.4
(http://www.partek.com/partekgs). Before the expression
analysis, we log10-transformed the Rank invariant normalized
expression data. False discovery rate was used to account
for the error in multiple comparisons. The real-time RT–PCR
data were analyzed by the comparative CT method
integrated in the DataAssist Software (Life Technologies).29

Statistical analysis for the cell biology assays. Mean
expression levels were compared by analysis of variance
with post hoc correction using Graphpad Statistical software
(Graphpad, Inc., San Diego, CA, USA). All data were norma-
lized to transfection efficiency (for example, green fluores-
cent protein) and then to the control values on each plate for
every assay to allow for comparisons across experiments.

Results

Single-marker analyses. Table 1 shows the characteristics
of the study populations. In all, 15 SNPs in SORL1, 23 SNPs
in SORCS1, 18 SNPs in SORCS2 and 12 SNPs in SORCS3
were associated with AD (Table 2). These SNPs belonged to
distinct LD blocks in these genes (Supplementary Figure S1).
All SNPs in SORL1 reached statistical significance after
correction for multiple testing and taking LD between the
markers into account. One of these SNPs, rs1784933,
corresponds to SNP26 in the original study by Rogaeva
et al.3 and is located 6 kb from SNP 25, which is part of one of
the two SORL1 clusters that have been repeatedly asso-
ciated with AD in different ethnic groups.3,18 The SNPs in
SORCS1, SORCS2 and SORCS3 were close, but not
statistically significant. Interestingly, in line with previous
reports,2 most of the significant SNPs in SORCS1 and
SORCS2 are located in intron 1, which is adjacent to the
exons encoding the VPS10 domain. In addition, in all the four
homologs (SORL1, SORCS1, SORCS2, SORCS3) some of
the disease-associated SNPs were close to splice sites
(Table 2). None of the genotyped SNPs in SORT1 were
significantly associated with AD (Supplementary Table 2).

Epistasis analysis. Upon testing for epistatic effects
between the SNPs that were associated in the single-marker
analyses (Table 3a), 34 pairs of SNPs showed epistatic
effects at a P-value of o0.01. The vast majority (n¼ 26 pairs)
included a specific LD block in SORCS3 with two specific LD
blocks in SORCS2 (Table 3, Figures 1a and b). Consistent
with the single-marker analyses, the interacting SNPs were
located in introns 1 and 2 (Table 3, Figure 1), adjacent to the
exons coding for the VPS10 domain. The epistasis b for
these SORCS2/SORCS3 interactions ranged from � 0.94 to
0.94, reflecting larger effects (additive) than the single-
marker effects (� 0.15obo0.20).

Eight pairs resembled additional epistatic effects between
SORCS1/SORCS3 and between SORCS1/SORCS2
(Table 3b). Of note, the single SORCS3 SNP (rs1670036)
interacting with SORCS1 is located in the specific LD block
also showing interaction with SORCS2 (Figure 1a), and again
all SNPs constituting the LD block in SORCS1 are located inT
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Figure 1 Black arrows: (a) The linkage disequilibrium (LD) block in sortilin-related VPS10 domain-containing receptor 3 (SORCS3) showing significant interaction with (b)
two specific LD blocks in SORCS2 and (c) one specific LD block in SORCS1. Red arrows: Additional single nucleotide polymorphisms (SNPs) showing epistasis between
SORCS2 and SORCS3. (a) The single LD block in SORCS3 showing epistasis with two specific LD blocks in SORCS2 (Figure 3b) and one specific LD block in SORCS1
(Figure 3c). (b) The two specific two LD blocks in SORCS2 (black arrows) showing epistasis with SORCS3, and SNPs showing in addition epistasis with SORCS1 (red arrows).
(c) The specific LD block in SORCS1 (black arrows) showing epistasis with the specific LD block in SORCS3, and SNPs showing epistasis with SNPs in SORCS2 (red arrows).
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Figure 2 (a) View of sortilin-related VPS10 domain-containing receptor 3 (SORCS3) exon expression profile in 19 Alzheimer’s disease (AD; red triangles) and 10 control
(CTRL; blue squares) amygdala tissue. Each triangle dot represents least squares mean expression of an exon in AD tissue; each square dot represents least squares mean
expression of an exon in control tissue. The mean gene expression intensity of AD vs controls was 4.17±0.43 vs 5.03±0.49 (P¼ 5.1E-5) across all exons. (b) View of
SORCS2 exon expression profile in 19 AD (red triangles) and 10 control (blue squares) amygdala tissue. Each triangle dot represents least squares mean expression of an
exon in AD tissue; each square dot represents least squares mean expression of an exon in control tissue. The mean gene expression intensity of AD vs controls was
5.29±0.33 vs 5.08±0.32 (P¼ 0.12) across all exons. (c) View of sortilin 1 (SORT1) exon expression profile in 19 AD (red triangles) and 10 control (blue squares) amygdala
tissue. Each triangle dot represents least squares mean expression of an exon in AD tissue; each square dot represents least squares mean expression of an exon in control
tissue. The mean gene expression intensity of AD vs controls was 9.43±0.38 vs 9.21±0.39 (P¼ 0.17) across all exons.
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introns 1 and 2 (Figure 1c) adjacent to the exons encoding the
VPS10 domain. The epistasis b for these SORCS1/SORCS3
and SORCS1/SORCS2 interactions ranged from � 0.39 to
0.40, again reflecting larger effects (additive) than the
corresponding single-marker analyses (� 0.15obo0.20).
Although the P-values for epistatic effects just missed
the multiple testing threshold of 0.0001, the number of
significant interactions was clearly higher than expected
by chance (expected SORCS2/SORCS3 interactions: 10.8).
Forest plots for the SNPs with epistatic effects or strongest
individual associations with AD (rs7665496, rs6840423,
rs7684383, rs4234804, rs1670036, rs1792124, rs12248379,
rs13110208) are shown in Supplementary Figure S2.

Microarray gene expression and quantitative RT-PCR
analyses. Microarray expression analyses showed lower
expression of SorCS3 in AD brains compared with control
brains (mean gene expression intensity: 4.17±0.43 vs
5.03±0.49 (P¼ 5.1E� 5; Figure 2a), in line with what we
had previously observed in SORL1 and SORCS1.2,3 To
validate the significant results of the Affymetrix array, we
conducted a quantitative RT-PCR for the SORCS3 gene,
using brain tissue from the amygdala region. Calculation of
the fold change rate with the Relative Quantitation method of
DataAssist software confirmed the results of the expression
array for all the three investigated SORCS3 exons. Com-
pared with the control samples, the AD samples showed
significantly reduced expression of exons 10, 17 and 21 of
SORCS3; 87% (P¼ 0.012), 74% (P¼ 0.003) and 83%
(P¼ 0.003), respectively (Supplementary Figure S3).
Notably, these findings were also validated by comparison
with publicly available gene expression results (188 cases,
176 controls, Po0.0001, http://labs.med.miami.edu/myers/
).30 We did not find a significant difference between AD and
controls in the expression levels of SORCS2 or SORT1
(Figures 2b and c). There was no significant difference in the
expression levels between AD and control brains in brain
tissue from regions unaffected by the disease process
(occipital lobe, cerebellum) for any of the homologs.

Cell culture and transfection. cDNA transfection of Vps10
family members in Hek 293 cells demonstrated a significant
(0.01pPp0.05) decrease of g-secretase (APP-GV),
whereas there was no effect on the AICD-GV translocation
assay (Figure 3).

c-Secretase processing. In HEK293 cells (Figure 4), 4/4
SorCS2-shRNAs, 3/3 SorC3-shRNAs and 2/3 SORT1-
shRNAs caused a significant increase greater than threefold
in APP processing (from Po0.001 to Po0.05) as compared
with the result with the scrambled shRNA (analysis of
variance with Bonferroni correction) while not affecting the
nuclear translocation of the control AICD-GV only-fragment.

Discussion

Taken together with previous studies,2,3 the findings here
indicate that variants in SORL1, SORCS1, SORCS2 and
SORCS3 of the VPS10-d receptor family are associated with
AD risk. The results are consistent with previous studies

showing associations between the SNPs in SORL1 and
SORCS1 with AD2,3,11,13–16,18 and with cognitive perfor-
mance.10 Similar to previous reports, the associated SNPs
in SORCS1, SORCS2 and SORCS3 were mostly located in
introns 1–3, implicating the VPS10 domain.

The effect sizes of the associated SNPs were small
(b: � 0.45 to 0.36), but this is consistent with previous
observations for the homologous genes SORL1 and
SORCS12,3,18 as well as all recently detected novel AD
susceptibility loci identified by large genome-wide association
studies.23,31–34

The epistasis models of SNPs significant in single-marker
analyses further revealed pairwise SNP associations between
specific LD blocks in the highly homologous SORCS1,
SORCS2 and SORCS3. One single LD block in SORCS3
showed epistasis with both a single LD block in SORCS1 and
two specific LD blocks in SORCS2. In addition, the same two
regions of SORCS2 and SORCS3 interacted. Of note, the
epistasis b ranging from � 0.94 to 0.94 reflected larger effects
(additive) than the corresponding single-marker analyses
(� 0.15obo0.20), and the interacting SNPs are almost
exclusively located in introns 1 and 2, adjacent to the exons
encoding the VPS10 domain. This region has also been
demonstrated to include the majority of disease-associated
SNPs for both SORCS1 and SORL1.2,3,10,18,20 Our findings
indicate that there are sequences within these specific LD
blocks that are biologically important and that are interacting.
The mechanism underlying these interactions is presently
unclear. It could arise from direct interaction between the
homologs, interactions with a mutual binding partner
or interactions with a common substrate, such as APP or
APP-CTF. However, it could also result from quite remote
interactions that do not require a first- or second-order
interaction between these proteins.

Suppression of SORCS2, SORCS3 or SORT1 increased
g-secretase processing of APP, findings consistent with
reported effects by SORL1 and SORCS1 on g-secretase
processing of APP and changes in Ab40 and Ab42 levels.2,3

Although SorCS3 and SorCS1 do not convey trans-Golgi
network to late endosome sorting,35,36 SORT1 is—similar to
SORL1—also capable of mediating sorting of ligands from the
trans-Golgi network to late endosomes or lysosomes.22

APP-GV Assay (HEK293)
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Figure 3 cDNA overexpression in transfected HEK293 cells. AICD, APP gene’s
C-terminus; APP, amyloid precursor protein; GV, GAL4 DNA-binding domain with
VP16 transcriptional activator; SORCS, sortilin-related VPS10 domain-containing
receptor; SORLA, sortilin-related receptor.
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Interestingly, sortilin-mediated endocytosis has been shown
to determine levels of progranulin involved in frontotem-
poral dementia.37 Results from the current genome-wide
association studies suggest that other genes PICALM, BIN1
and CD2AP, modulate intracellular trafficking of cell surface
proteins. Thus, it is appears that in addition to their effect on g-
secretase processing of APP, some members of the VPS10-d
receptor family exert their effect on AD through modulation of
APP trafficking.

Reduced expression of SORCS3 may be a secondary
effect of the disease, but it is consistent with the g-secretase
assays, which indicated that suppression of SORCS3
activates Ab production. If correct, this would provide a
potential explanation for how downregulation of SORCS3
might increase risk for AD. We are unable to see any
difference in the expression of SORCS2 and SORT1.
However, we cannot yet exclude the possibility that this was
the result of the small sample size or chosen phenotype. In a
previous study by Mufson et al.,38 SORT1 levels were—
consistent with our findings—not associated with clinical
diagnosis or antemortem cognitive test scores. However,
there was an association with severity of neuropathology by
Braak and NIA-Reagan diagnoses.

The significant strengths of this study are the large sample
size, allowing us to detect small effects and explore epistasis.
Limitations include that the SNPs assessed were derived from
available genome-wide arrays. Thus, they do not cover the
complete genetic variation in these genes, and it is possible
that there are additional disease-associated markers that
have not been genotyped. It is also possible that we lacked
the power to detect additional disease-associated markers or
interactions of SNPs with lower allele frequencies or effect
sizes.

Taken together, our results indicate that in addition to
SORL1 and SORCS1, the variants in other members of the
VPS 10-D receptor family (SORCS2, SORCS3 and SORT1)
are associated with AD either independently or through
epistatic mechanisms.
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