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Our evolving view of Wnt signaling in C. elegans
If two’s company and three’s a crowd, is four really necessary?
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In this commentary, we discuss how
our recent paper by Yang et al. con-

tributes a new wrinkle to the already
somewhat curious Wnt signaling pathway
in C. elegans. We begin with a historical
perspective on the Wnt pathway in the
worm, followed by a summary of the key
salient point from Yang et al., 2011,
namely demonstration of mutually inhib-
itory binding of a β-catenin SYS-1 to
the N-terminus and another β-catenin
WRM-1 to the C-terminus of the TCF
protein POP-1, and a plausible structural
explanation for these differential binding
specificities. The mutually inhibitory
binding creates one population of POP-
1 that is bound by WRM-1, phosphory-
lated by the NLK kinase and exported
from the nucleus, and another bound by
coactivator SYS-1 that remains in the
nucleus. We speculate on the evolution-
ary history of the four β-catenins in C.
elegans and suggest a possible link
between multiple β-catenin gene duplica-
tions and the requirement to reduce
nuclear POP-1 levels to activate Wnt
target genes.

Some Background

In the late 1990s it was determined by
standard genetic analysis and cloning that
C. elegans had three β-catenin genes.1-3

This number was confirmed when the C.
elegans genome sequence was published
in 1998 and completed in 2002,4 as no
additional β-catenin related genes were
revealed by sequence homology. C. elegans
was therefore something of a Wnt signal-
ing oddity—most organisms, including
Hydra, Drosophila, mouse and man, have

a single β-catenin protein. This bifunc-
tional protein participates in at least two
quite different processes: First, cell-cell
adhesion through interaction with cad-
herin and a-catenin and localization at
adherens junctions, and second, canonical
Wnt pathway signaling, in which cyto-
plasmic β-catenin is stabilized as a result
of the Wnt signal, translocates to the
nucleus, and functions as a coactivator
of the TCF protein in activating transcrip-
tion of Wnt target genes (reviewed in
refs. 5 and 6). The genetic analysis in
C. elegans was consistent with these two
functions being split between the three β-
catenins, HMP-2, BAR-1 and WRM-1.7,8

HMP-2 seemed fairly straightforward, as it
appeared to function in adhesion only.1

HMP-2 bound to cadherin (HMR-1) and
a-catenin (HMP-1), localized to adherens
junctions, and the hmp-2 mutant pheno-
type was consistent with a single function
in cell-cell adhesion.1 BAR-1 also appeared
relatively straightforward: it functioned
as a coactivator with the sole C. elegans
TCF protein, POP-1, in a canonical Wnt
pathway during post-embryonic deve-
lopment.2 BAR-1 bound to POP-1 via a
conserved N-terminal β-catenin binding
domain, did not bind to a-catenin, did
not localize at adherens junctions, and
its mutant phenotype was completely
consistent with a function only in Wnt
signaling.

It was the third β-catenin, WRM-1,
that was puzzling for some time. WRM-1
was shown by RNAi to be required for the
specification of the endoderm precursor
in the early embryo.3 This process was
shown to require Wnt and MAPK signal-
ing from P2 to the EMS blastomere at the
4-cell stage, resulting in E, the posterior
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daughter of EMS, being specified as the
sole endoderm (gut) precursor for the
worm.3,9-12 The observation that embryos
depleted of wrm-1 by RNAi resembled
embryos lacking Wnt signaling3 led to an
early assumption that WRM-1 was prob-
ably the β-catenin transcriptional coacti-
vator for POP-1 and activated Wnt target
genes in the E nucleus. However, WRM-1
showed almost no signs of functioning
as such. WRM-1 did not function as a
coactivator of POP-1 in the standard
reporter assays.7 While two groups failed
to detect a physical interaction between
WRM-1 and POP-1 by co-immunopreci-
pitation,7,13 one of these two groups and
another group reported a very weak
interaction in yeast two hybrid assays.8,13

Natarajan et al. noted that the weak
interaction did not require the POP-1 N-
terminal domain, an evolutionarily con-
served domain through which β-catenins
bind to TCFs.8 The Mello lab subse-
quently identified a biochemical function
for WRM-1 which explained the require-
ment for WRM-1 in E specification. They
showed that WRM-1 binds to the MAP
kinase LIT-1, and that this binding was
required for LIT-1 kinase activity.13 The
LIT-1 kinase activity is required for the
nuclear levels of POP-1 to be lowered in
the E nucleus, which is a requirement for
activation of Wnt target genes.3,14,15

While the role of WRM-1 in the
specification of the endoderm precursor
was becoming more clear, the nature of
the Wnt pathway and its role in endo-
derm/gut specification remained murky.
Depletion of the TCF protein POP-1
resulted in a phenotype opposite to that
from depletion of wrm-1 or the gene
encoding the Wnt ligand, mom-2.3,12,16

These results initially suggested that POP-
1 functioned to repress Wnt target genes
in the E blastomere. TCF proteins, by
virtue of being able to bind to corepressors
such as Groucho, can also function as
potent repressors of Wnt target genes.17-19

Therefore, it was initially concluded that
high levels of POP-1 repressed Wnt
targets, and the Wnt-dependent lowering
of POP-1 levels in the E nucleus resulted
in transcriptional derepression of these
genes. The POP-1/WRM-1 Wnt pathway
was initially referred to as being non-
canonical (not in the PCP or Ca2+ sense)

because it appeared to deviate significantly
from the canonical pathway.20-23

“If there are four equations and only three
variables, and no one of the equations is
derivable from the others by algebraic
manipulation then there is another variable
missing.”—Talcott Parsons

“I need more.” —Iggy Pop

However, analyses of Wnt target gene
expression in E showed that the lowered
POP-1 levels in the E nucleus did not
result in simple derepression of Wnt target
genes. Instead, lowered POP-1 level was
shown to be a requirement for activated,
higher level expression of Wnt target
genes.15,24 These results called for a
coactivator of POP-1 whose level is
limiting relative to POP-1.15 It was
proposed that when nuclear POP-1 levels
are too high, excess POP-1 that is not
bound by the limiting coactivator would
be available to bind to corepressors,
resulting in transcriptional repression of
Wnt targets.20,25 None of the three
previously identified C. elegans β-catenins
fit the bill for this candidate coactivator for
POP-1. Enter the fourth worm β-catenin,
SYS-1, which was identified not through
sequence homology, but solely through its
function as a POP-1 coactivator via a
genetic screen that identified regulators of
the asymmetric cell division of the somatic
gonadal precursor (SGPs) cells Z1 and
Z4.26,27 Structural analysis confirmed the
β-catenin nature of SYS-1, which only
exhibits approximately 10% sequence
identity with human β-catenin.28 We and
others subsequently showed SYS-1 to be
the limiting coactivating β-catenin for
POP-1 in the specification of endoderm
in embryos, while others showed the same
to be true for the SGPs.26,29,30 SYS-1 levels
(both cytoplasmic and nuclear) are higher
in E compared with the sister cell of E,
MS, and the high level of SYS-1 is
dependent on mom-2 and other genes in
the Wnt signaling pathway.29,30 We also
showed that forced expression of SYS-1 in
MS could lead to MS developing into
endoderm,29 supporting the proposed
model that expression of Wnt target genes
depends on the abundance of SYS-1
relative to POP-1.

POP-1 can be Bound by SYS-1 and
WRM-1, but not at the Same Time

The level of SYS-1 is only regulated by the
Wnt pathway, and not by LIT-1, WRM-1
or MOM-4, a MAPKKK that functions
upstream of LIT-1.29,30 The signal from P2
to EMS results in a simultaneous increase
in the level of SYS-1 (Wnt signal) and
decrease in the level of nuclear POP-1
(MAPK signal) in E. This immediately
presents a problem: how can cells maintain
a high level of SYS-1 in the nucleus while
simultaneously exporting from the same
nucleus the SYS-1 binding partner, POP-
1? That this in fact happens argues that
there must be two separate populations of
POP-1, one which is not bound by SYS-1
that is exported from the nucleus, and
another, bound by SYS-1, that remains in
the nucleus and transcriptionally activates
Wnt target genes. Our recent paper31

directly addresses this question, and pre-
sents a mechanism whereby this partition-
ing of POP-1 can be achieved. We showed
that WRM-1 interacts robustly and spe-
cifically with the C-terminus of POP-1,
and not via the conserved N-terminal β-
catenin binding domain. In addition, we
showed that WRM-1 has two functions:
first, as the substrate-binding unit of the
LIT-1/WRM-1 kinase complex, and sec-
ond, as an activator of LIT-1 kinase
activity that is independent of its ability
to bind POP-1. Most importantly, how-
ever, we showed that SYS-1 binding to the
N-terminus and WRM-1 binding to the
C-terminus of POP-1 are mutually inhib-
itory. This mutual inhibition generates the
two distinct populations of POP-1 in the
Wnt responsive cell. POP-1 bound by
WRM-1 is phosphorylated and exported
from the nucleus, whereas POP-1 bound
by SYS-1 is not LIT-1 phosphorylated,
remains in the nucleus, and activates
transcription of Wnt target genes. The
final nuclear level of POP-1 will be
determined primarily by competition
between SYS-1 and WRM-1 binding to
POP-1.

But how does this actually work? An
unexpected finding that the C-terminal
sequence of POP-1 bore limited but
significant similarity to its N-terminal β-
catenin binding domain gave a hint. This
suggested to us that the two domains
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might exhibit structural similarity, and,
furthermore, that structural variations
between these domains could possibly
explain the differential binding specificities
of the two β-catenins. Taking advantage of
several solved vertebrate TCF/β-catenin
structures,32-34 including the POP-1/SYS-1
structure,28 we performed computer mod-
eling of a POP-1/WRM-1 interaction, and
presented a plausible structural explanation
for how SYS-1 and WRM-1 bind specif-
ically to the opposite termini of POP-1.31

β-catenins are comprised of a central
core of 12 armadillo repeats, along with
N-terminal and C-terminal tails.35 Each
armadillo repeat is comprised of typically
three helices, with each repeat packing
together with neighboring repeats to form
a superhelix with a continuous hydro-
phobic (positively charged) groove on the
concave surface of the superhelix.36 It is
via this hydrophobic groove that β-
catenin contacts most of its binding
partners. The β-catenin binding domain
of vertebrate TCFs contains two separate
structural motifs that contact the β-
catenin positive groove: first, an extended
strand which interacts with ARM repeats
5–9 primarily via charged amino acids,
followed by an a helix, which interacts
with ARM repeats 3–4, mostly through
hydrophobic interactions.32,37-39 Interac-
tion via the extended strand motif in
human TCF4 is stabilized when a con-
served aspartate (D16) forms a crucial salt
bridge with K435, termed a “charged
button,” in ARM repeat 8 of β-catenin.
The structure determined for the complex
of SYS-1 interacting with the N-terminus
of POP-1 shows interaction of an
extended strand of POP-1 with SYS-1
ARM repeats 5–9, including a conserved
“charged button.”28 However, the POP-1
N-terminus did not appear to form an a
helix and was unstructured in the crystals,
suggesting that it played little direct role
in the interaction with SYS-1. Computer
modeling suggested that WRM-1 had the
conserved lysine in the right position to
form the conserved salt bridge. However,
the large sidechain of a residue near the
“charged button” would preclude the
formation of the salt bridge.28 Expanding
upon these studies, we undertook a
computer-based modeling of an interac-
tion between WRM-1 and the C-terminal

domain of POP-1.31 The very C-terminus
of POP-1 was predicted to have a high
propensity to adopt an a-helical con-
formation and to interact with WRM-1
ARM repeats 3–5 through hydrophobic
interactions.

“Pop changes week to week, month to
month.” —Ravi Shankar

It appears, therefore, that at some point
during an expansion of the β-catenin gene
family during the evolutionary history of
C. elegans, duplicated β-catenin proteins
(see further below) diverged to the point
that they bound to separate domains of
POP-1. In doing so, each of the β-catenins
adapted to a different binding motif in
POP-1 from the two available (extended
strand vs. a helix) to predominate each
interaction. It is intriguing that the small
first exon at the pop-1 locus encodes the β-
catenin binding domain and little else.
The fact that the C-terminal domain of
POP-1 shares sequence and structure
similarity with the N-terminal domain
suggested to us the possibility that a
shuffling of the first pop-1 exon to the 3'
end of the genomic locus might account
for the two termini bearing some resemb-
lance. Although highly speculative, this
scenario does beg the question whether the
exon duplication and shuffle happened
first, with duplicated β-catenins adapting
to the presence of two potential binding
sites, or whether duplicated and diverging
β-catenins competing for a single N-
terminal binding site on POP-1 drove
selection for an exon shuffle event.

“If evolution really works, how come
mothers only have two hands?”
—Milton Berle

Most organisms, including humans,
make do with a single, multifunctional
β-catenin. It is not clear at all why the
~1,000-cell worm maintains four func-
tional β-catenin genes, especially in light of
the very compact nature of its genome.
Here we would like to speculate on the
evolutionary history of the four C. elegans
β-catenins, and, specifically, how those
gene duplications might have led to the
requirement to lower POP-1 nuclear levels
in order to activate Wnt target genes.

A typical bifunctional β-catenin
contains GSK-3 phosphorylation sites
required for ubiquitination and degrada-
tion located near the N-terminus,40,41

followed by two small domains involved
in a-catenin binding, the central 12 ARM
repeats, followed by a C-terminal transac-
tivation domain and a short PDZ binding
motif at the very C-terminus (Fig. 1).42

The a-catenin binding domains and the
PDZ binding domain are absolutely
required for cell-cell adhesion but are
dispensable for Wnt signaling, whereas
the GSK-3 motif and the C-terminal
transactivation domains are required for
Wnt signaling but are dispensable for the
adhesion function. In addition, there are
specific residues within the ARM repeat
domain that are critical for the interaction
of β-catenin with APC, axin and TCF but
are not required for cadherin binding, and
vice versa.

β-catenin is a very ancient protein,43

and both the primary sequence and the
functional domain structure of β-catenin
tend to be highly conserved during
evolution. The single β-catenin detected
in Hydra magnipapillata bears a striking
similarity to human β-catenin, given the
evolutionary distance between hydra and
humans.44,45 This protein is 62% identical
to human β-catenin, and includes all the
diagnostic motifs present in well-charac-
terized bifunctional β-catenins, and func-
tions in both cell-cell adhesion and Wnt
signaling. Similarly, a single bifunctional
GSK-3β-sensitive β-catenin in the annelid
Platynereis dumerilii contains all of the
same domains and exhibits 84% amino
acid identity to human β-catenin in the
ARM repeats.46 The unicellular amoeba
Dictyostelium discoideum has a single β-
catenin-related protein, Aardvark, which
functions both in adherens junctions in
the stalk cells of the fruiting body as well as
a GSK-3 dependent transcriptional regu-
lator during spore cell differentiation, and
exhibits approximately 50% similarity in
the ARM repeats with human β-catenin.47

The Four b-Catenins in C. elegans

One major surprise from the sequence
of the four C. elegans β-catenins was the
degree to which they have diverged in
sequence from human β-catenin. Indeed,
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the four C. elegans β-catenins are more
highly diverged from vertebrate β-catenin
than any other characterized β-cate-
nins.1-3,7,8,26 The C. elegans β-catenins
exhibit identity values ranging from only
~10% for SYS-1 up to ~28% for HMP-2
when compared with human β-catenin.
Furthermore, these four worm proteins are
almost as diverged from one another as
they each are from human β-catenin. This
is a remarkable degree of sequence diver-
gence, to the point that one of the
C. elegans β-catenins, SYS-1, was not
identified as such even following comple-
tion of the genome sequence. Although
there are indications that protein sequence
divergence rates might be higher in C.
elegans than other animals,48 this level of
divergence was nonetheless surprising.
Because the C. elegans genome encodes at

least four bone fide β-catenin proteins,
with each protein appearing to retain only
one of β-catenins several functions, the
argument was made that this then freed
the individual β-catenin genes to undergo
more extensive sequence divergence.
However, this argument is undermined
by the β-catenin gene duplication and
functional divergence observed in the
planaria Schmidtea mediterranea.49,50 S.
mediterranea has two β-catenins, Smed-β-
catenin-1 and Smed-β-catenin-2, which
have diverged such that each appears
to have preserved only one of the two
main functions of human β-catenin:
Smed-β-catenin-2 functions solely in
adhesion, whereas Smed-β-catenin-1 func-
tions solely in Wnt signal transduction.
Despite divergent functional domains,
these two proteins still maintain signifi-

cant similarity (~44% each) to human
β-catenin.

The duplicated β-catenins in planaria
clearly illustrate how the multiple func-
tional domains present in the bifunctional
protein can be partitioned between
two monofunctional proteins (Fig. 1).49

Smed-β-catenin-1, which functions solely
in Wnt signaling, has the GSK-3 motif,
has a functional C-terminal transactivation
domain, and binds TCF but not a-
catenin. It lacks the a-catenin binding
domain and the very C-terminal PDZ
binding domain required for the cell-cell
adhesion function. Smed-β-catenin-1 can
induce axis formation when assayed in
Xenopus embryos.50 Conversely, Smed-β-
catenin-2, which functions solely in cell
adhesion, has the a-catenin binding
domain and the C-terminal PDZ binding

Figure 1. b-catenin domain structure. Schematic representation of the indicated b-catenin proteins with functional domains referred to in the text
highlighted in color: central ARM repeat domain in yellow; coactivator-associated domains in shades of green: GSK-3 phosphorylation sites (dark green)
and C-terminal transactivation domain (light green); cell-cell adhesion-associated domains in shades of red: N-terminal a-catenin-binding domain (pink)
and C-terminal PDZ-binding domain (red). The bifunctional mouse (Mm, top) b-catenin is used here to represent the canonical single b-catenins in
human, Xenopus, and flies. The two monofunctional planarian (Smed) proteins are above the four C. elegans (Ce) proteins, followed by the oncogenic
form of b-catenin (bottom). GSK-3 phosphorylation motif: typically DpSGWXpS/T, where W is a hydrophobic amino acid (V, I, L, M, F, W, or C). This motif is
often coupled with additional S/TxxxS/T motifs. Mouse b-catenin, planaria b-catenin-1, and Ce BAR-1 contain this motif near their N-termini. The three
other Ce proteins lack this motif, but do have 2–3 possible GSK-3 sites (simple (S)/(T)xxx(S)/(T) near their N-termini. a-catenin-binding and the C-terminal
PDZ-binding domains: Both planaria b-catenin-2 and C. elegans HMP-2 bind a-catenin (experimentally tested) through a domain similar to the a-catenin-
binding domain in mouse (TRAQRVRAAMFPE ..21.. VQRLAEPSQMLK). All three proteins also have a PDZ-binding domain at their very C-terminus
(mouse: WFDTDL[stop]). The other three C. elegans b-catenins do not exhibit sequence related to either motif and have been tested negative in
a-catenin binding assays. C-terminal transactivating domain: Transcription activation domain was normally tested in a TOPFLASH reporter assay. Only
BAR-1 and SYS-1 activate a TOPFLASH reporter in tissue culture cells. However, this assay does not accurately measure the transactivation domain of
b-catenin as this assay requires binding of b-catenin to the N-terminal domain of the TCF/POP-1 protein. Natarajan (2001) reported that both BAR-1 and
HMP-2 can activate transcription in a yeast 1-hybrid assay, but BAR-1 did so significantly better than HMP-2. WRM-1 was shown to have a very weak,
slightly above background activation capability in such an assay.
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domain, and binds cadherin/a-catenin but
not TCF or other Wnt pathway factors.
The N-terminal GSK-3 motif of Smed-β-
catenin-2 is missing and it lacks a func-
tional C-terminal transactivation domain.
Smed-β-catenin-2 does not induce axis
formation when assayed in Xenopus
embryos.50

Despite the very low level of identity to
each other and to human β-catenin, the
C. elegans β-catenins do not appear to be
as fully diverged in function as the two
planaria proteins (Fig. 1).49 However, it
has been shown that overexpression of
HMP-2 or WRM-1 from the bar-1
promoter can rescue the developmental
defects in bar-1(-) mutants.8 Two recent
papers have also suggested that HMP-2,
when released from the adherens junc-
tion, can enter the nucleus and partially
suppress the phenotype due to a lack of
Wnt signaling.51,52 However, the mole-
cular mechanisms by which HMP-2 or
WRM-1 should exert these effects remains
unknown as no direct molecular or
biochemical analyses were performed.
Whether HMP-2 can function in POP-1
nuclear export, like WRM-1, or in
transcription activation, like BAR-1 and
SYS-1, is unknown. Similarly, it is not
clear whether WRM-1 rescues bar-1(-) by
functioning as a coactivator or through
an indirect effect. Unlike BAR-1, which
exhibits a classic N-terminal GSK-3 phos-
phorylation motif,8,40,41 the HMP-2 pro-
tein has an N-terminal truncation which
deletes the region which would contain
the GSK-3 phosphorylation motif. There-
fore, were HMP-2 to function as a
coactivator for POP-1, it would not be
subject to the same APC-Axin-GSK-3
cytoplasmic degradation that establishes
the unstimulated ground state for canon-
ical Wnt signaling.

It appears that the four β-catenins in
C. elegans have each acquired mutations
in different domains that restrict their
function to one or a subset of those for
the ancestral β-catenin. However, despite
accumulating mutations, some functional
domains remain at least partially opera-
tional and can be detected under certain
experimental conditions. Why the C.
elegans β-catenin proteins are so divergent
at the amino acid sequences is unclear,
although a high sequence divergence

has also been noted for other worm
proteins functioning in the Wnt pathway.
For example, the two axin-related pro-
teins PRY-1 and AXL-1, are both func-
tional Axin orthologs and yet display
only 20% amino acid identity when
compared with each other, and are only
14–16% identical to Drosophila and
vertebrate Axins.53

“In trying to make something new, half
the undertaking lies in discovering whether it
can be done. Once it has been established
that it can, duplication is inevitable.”
—Helen Gahagan

Did the b-Catenin Gene
Duplications Drive the
Requirement for POP-1

Reduction?

We suggest that immediately following a
β-catenin gene duplication, the overall
level of β-catenin is likely to be elevated,
leading to an undesirable hyperstimulation
of the Wnt pathway. There would there-
fore be considerable selective pressure to
curb the over activation of Wnt target
genes. This could be achieved by one or
more of the following mechanisms. First,
expression at one, or the other, or both of
the duplicated loci could be reduced, or
even shut down completely as in the case
of pseudogenes. There is accumulating
evidence from both yeast and mammals
that a substantial decrease in the level of
gene expression occurs following gene
duplication, and in certain cases this can
be shown to be beneficial by rebalancing
gene dosage after duplication.54 Second,
β-catenin could be sequestered to other
subcellular locations outside of the
nucleus. Third, the expression of different
β-catenins could be temporally and spati-
ally separated. Fourth, the level of nuclear
TCF protein could be lowered. We propose
that a combination of all these possible
adaptations took place following multiple
β-catenin gene duplication events during
C. elegans evolution.

At an early point in C. elegans evolu-
tionary history, an ancestral multifunc-
tional β-catenin gene duplicated. We
suggest that worms responded to the
elevated level of β-catenin initially by

reducing the overall expression of β-
catenin. In addition, sequence divergence
in one of the β-catenin genes (“adhesion”
β-catenin) led to a progressive reduction
in binding to Wnt components. As the
function of this protein became more
adhesion-specific, it was sequestered away
from the nucleus. This “adhesion” β-
catenin subsequently lost the GSK-3
phosphorylation sites as a result of N-
terminal truncation. We suggest that this
is how the hmp-2 gene came to be.

The other β-catenin gene that resulted
from the duplication event maintained
primarily a Wnt pathway coactivator
function (“Wnt” β-catenin). It was
relieved, therefore, from selective pressure
to maintain functional adhesion domains,
and began to accumulate inactivating
mutations in those domains required solely
for the cell-cell adhesion function—i.e.,
the
a-catenin binding and the C-terminal
PDZ binding domains. Following the
initial gene duplication event, we propose
that a subsequent gene duplication event
occurred involving specifically this “Wnt”
β-catenin gene. In addition to the worms
responding with a further reduction in the
level of the two β-catenins, both capable of
coactivating Wnt targets, we propose that
changes in the cis regulatory sequences
resulted in their non-overlapping temporal
and spatial expression patterns during
development. The bar-1 precursor was
expressed only post-embryonically. The
sys-1 precursor was expressed in embryos
and, when expressed post-embryonically,
was expressed in distinct tissues from those
expressing bar-1.

Reducing the level of nuclear TCF
protein could also reduce Wnt signal
strength in cells expressing abnormally
high levels of β-catenin. We propose that
the need to reduce nuclear levels of POP-1
in order to generate the correct Wnt signal
coevolved with the reductions in β-catenin
expression that followed each β-catenin
gene duplication. As β-catenin expression
levels dropped over evolutionary time, the
level of coactivating β-catenin in any given
cell became limiting as the functions of
duplicated β-catenin started to diverge. If
POP-1 levels had remained unchanged, it
would have led to an abundance of POP-
1/corepressor interactions and permanent
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repression of Wnt target genes. Therefore,
the nuclear level of POP-1 was reduced to
accommodate the limiting level of coacti-
vating β-catenin.

POP-1 levels must be reduced for Wnt
target gene activation, and the worm
achieves this is by exporting POP-1 from
the nucleus of the Wnt-responsive cell.
The fourth C. elegans variant β-catenin,
WRM-1, functions, along with the NLK
homolog LIT-1, to promote POP-1
nuclear export. Is the WRM-1 function
the result of a worm-specific adaptation for
the need to reduce POP-1 levels, or might
this instead indicate another general
function of β-catenins? A recent report
shows that in Xenopus, phosphorylation of
certain TCF proteins by the HIPK2 kinase
requires β-catenin, which appears to
function as a scaffold bringing the TCF
and kinase together.55,56 The end result is
the removal of a repressive TCF/LEF from
target promoters and the replacement by
an activating TCF. These findings and our
results on WRM-1 are consistent with an
ancestral form of β-catenin having a
function promoting TCF phosphorylation
and its subsequent removal from target
genes or nucleus. In vertebrates, NLK
phosphorylation of certain TCFs has also
been shown to inhibit their DNA-binding
ability.57,58 Therefore, although the mech-
anistic details differ between the worm
and vertebrates with respect to how NLK
regulates TCF proteins, the end result
appears to be the same—NLK phos-
phorylation of a TCF results in removal
of that TCF from the Wnt target genes
and subsequent activation of the same
genes. We suggest that WRM-1 maintains
the scaffold function of the ancestral
β-catenin, becoming a subunit for the
LIT-1 kinase complex, which has only

become apparent due to the unique set
of experimental conditions afforded by
C. elegans: (1) Subfunctionalization of
the β-catenins has occurred to a point
where WRM-1, during wildtype develop-
ment, may retain only this function; (2)
the invariant C. elegans cell lineage which
permits live analysis of a precisely defined
Wnt signal event at single-cell resolution
(i.e., one can distinguish responding vs.
non-responding sister cells) over multiple
cell divisions; and (3) the developmental
readout of the reception of that Wnt
signal by a single cell is dramatic (normal
gut or no gut), rapid, and genetically
tractable.

“You have made your way from worm
to man, and much in you is still worm.”
—Friedrich Nietzsche

And So…
What Might this all Mean?

The β-catenin evolutionary history pre-
sented here is, of course, highly specula-
tive. However, the addition of complete
genome sequences from organisms that are
informative regarding the evolutionary
relationship between protostomes (e.g.,
worms, arthropods, mollusks) and deuter-
ostomes (echinoderms and chordates)
should lead to a clearer understanding of
the evolutionary history of the β-catenin
genes.

Wnt signal strength not only plays a
critical role during development, but, if
deregulated, can contribute to embryonic
defects and a number of human cancers.
The key pathway changes associated with
cancer lead to aberrant stabilization of β-
catenin and hyperstimulation of Wnt

pathway target genes. We argue here that
studies in C. elegans suggest that in
response to reductions in β-catenin levels,
the worm may compensate by lowering
nuclear TCF levels in order to maintain
a balanced Wnt signal in the presence of
a limiting amount of coactivator and a
relative preponderance of corepressor (a
form of dosage compensation). Can verte-
brates/humans also modify Wnt signal
strength through modification of nuclear
TCF levels? There is evidence that certain
human tumor cell lines exhibit selective
export from the nucleus of particular
TCF/LEFs, perhaps in an attempt to
rebalance the Wnt signal strength by
varying the β-catenin to TCF ratio within
the nucleus.59,60 In the face of aberrantly
high β-catenin levels as a result of pro-
oncogenic mutations in APC or β-catenin
itself, dialing down the level of nuclear
TCF available would lead to a reduction
in Wnt signal strength. In addition, there
is a clear relationship in mammals between
loss of cell-cell adhesion and the trans-
formed phenotype (which includes un-
controlled growth and increased cell
migration/metastasis).61 Increased expres-
sion of cadherins can repress the trans-
formed phenotype, presumably by binding
β-catenin and sequestering it from the
nucleus.62,63 These studies suggest that
there is a very dynamic equilibrium
between the different sub-cellular pools
of β-catenin. The study of this homeo-
static regulation of Wnt signal strength
has been predominated to date by
analysis of β-catenin levels. We believe
that our understanding of Wnt signaling
in mammalian development and tumor-
igenesis can be enhanced by a more careful
analysis of the possible role of TCF level
modulation.
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