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special focus REVIEW review

Innate effector cells are important components of T helper cell-
mediated immunity, which can be classified into Type-1, Type-
2, Type-9, Type-17 and Type-22 immunity (see review in refs. 1 
and 2). Innate effector cells include innate lymphoid cells (ILCs) 
and innate myeloid cells (IMCs). ILCs can be further divided 
into ILC1, ILC2, ILC17 and ILC22 subsets (Fig. 1).3 We pro-
pose to call Th2 cytokine-producing eosinophils, basophils and 
mast cells as Type-2 innate myeloid cells (IMC2). A cytokine 
or a specific growth factor has been reported to be critical in 
the development and function of many types of hematopoietic 
cells. For example, erythropoietin is needed for erythrocyte dif-
ferentiation,4,5 IL-5 is imperative for eosinophil differentiation,6 
M-CSF is critical for monocyte differentiation7 and thrombo-
poietin is crucial for megakaryocyte differentiation.8 In this 
review, we focus on the role of cytokine signaling in the differ-
entiation of innate effector cells.
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Innate effector cells, including innate effector cells of myeloid 
and lymphoid lineages, are crucial components of various 
types of immune responses. Bone marrow progenitors 
differentiate into many subsets of innate effector cells after 
receiving instructional signals often provided by cytokines. 
Signal transducer and activator of transcription (STATs) 
have been shown to be essential in the differentiation of 
various types of innate effector cells. In this review, we focus 
specifically on the differentiation of innate effector cells, 
particularly the role of cytokine signaling in the differentiation 
of innate effector cells.
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Stem Cells and Progenitors in Hematopoiesis

Innate effector cells originate from various hematopoietic pro-
genitors in the bone marrow, where a hematopoietic hierarchy is 
located. Long-term repopulating hematopoietic stem cells (HSC) 
are at the top of the hematopoietic hierarchy. These cells possess 
the capacity for self-renewal and the potential to give rise to all 
types of blood cells. Long-term HSCs can generate short-term 
repopulating HSCs, which then give rise to multiple potential 
progenitors (MPPs). MPPs, in turn, can give rise to common 
lymphoid progenitors (CLP) and common myeloid progenitors 
(CMPs). CMPs can differentiate into granulocyte-monocyte 
progenitors (GMPs).9 GMPs give rise to eosinophil lineage-
restricted progenitors (EoPs),10 basophil lineage-restricted pro-
genitors (BaPs),11 neutrophils and macrophages (Fig. 2).

Differentiation of Type-2 Innate Myeloid Cells

The origin of basophils and mast cells. Basophils and mast 
cells share many common characteristics, such as the expres-
sion of a high affinity immunoglobulin E (IgE) receptor (FcεR), 
and contain many of the same granules.12,13 These two types of 
cells also show noticeable differences. For instance, basophils 
circulate in the blood stream, whereas mast cells reside in tis-
sue. Mature basophils do not proliferate and have a short life of 
approximately 60 h,14 whereas mature mast cells are proliferative 
and possess a much longer life span of up to several months.15 
Functionally, both basophils and mast cells are the key effectors 
in Type-2 immunity, which is responsible for mediating aller-
gic disease and provides protection against parasitic infections. 
Accumulated evidence supports that basophils play non-redun-
dant roles in immune regulation, protective immunity, allergies 
and autoimmunity.16 The recent success of using anti-IgE anti-
body to treat various allergic disorders in humans supports the 
importance of both FcεR-expressing basophils and mast cells in 
human diseases.17,18 Thus, a more comprehensive understanding 
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basophil differentiation, a default theory, which states that ter-
minal differentiation of basophils can occur without a specific 
factor, has been proposed.26 Nevertheless, we found that STAT5 
was critical in basophil differentiation. The STAT family consists 
of seven members—STAT1, STAT2, STAT3, STAT4, STAT5A, 
STAT5B and STAT6. STATs can be activated by JAK kinases 
through phosphorylation of their tyrosine residues.27,28 Cytokines 
mainly use the JAK-STAT pathway to exert their biological func-
tions. STAT5 can be activated by many cytokines and growth 
factors that are important in the development of both lymphoid 
and myeloid cells.27,29-31 Using radiation chimera mice recon-
stituted with STAT5-deficient fetal liver cells, we found that 
STAT5-deficient stem cells failed to differentiate into basophils.32 
Recently, we verified this finding by using inducible conditional 
STAT5 knockout mice (submitted for publication). Because 
STAT5 is a signaling molecule whose activation is most likely 
triggered by an external factor, our analysis supports the exis-
tence of an external factor that instructs basophil development.

Despite the finding that IL-3 is not required for basophil differ-
entiation, it has been shown that IL-3 is a potent factor in expand-
ing basophils. Evidence supports that IL-3, produced primarily by 
CD4+ T cells,33-35 is pivotal in expanding basophils. In vitro, IL-3 
has been demonstrated to induce basophil differentiation and to 
enhance acute IL-4 production in mouse basophils.36-38 Galli and 
colleagues reported that mice lacking IL-3 both failed to show 

of the basophil and mast cell developmental pathway is of high 
significance.

The origin of basophils and mast cells has been a long-stand-
ing, unsolved and important issue in hematology. By using col-
ony formation assays, two groups have claimed that basophils 
develop from a common basophil and eosinophil progenitor.19,20 
Whether basophils and mast cells are derived from a common 
progenitor remains a controversial issue in hematology. Galli and 
colleagues found mast cell lineage-restricted progenitors (MCPs) 
in the bone marrow and concluded that MCPs are derived from 
MPPs instead of CMPs or GMPs.21 On the other hand, Akashi 
and colleagues showed that both basophils and mast cells were 
derived from CMPs and GMPs;22 they further showed that baso-
phil/mast cell progenitors (BMCPs) found in the spleen, but not 
in the bone marrow, gave rise to both basophils and mast cells.11 
However, whether BMCPs truly are authentic bi-potential baso-
phil/mast cell progenitors has been challenged by a recent study, 
in which Galli and colleagues demonstrated that BMCPs only 
gave rise to mast cells.23

STAT5 signaling is essential in basophil differentiation and 
expansion. It remains unclear which growth factor is required for 
basophil differentiation. It has been reported that neither IL-3 
nor TSLP are required for basophil development.24,25 We also 
found that IL-4 is not required for basophils development (data 
not shown). Due to the absence of a specific factor identified for 

Figure 1. Lineage relationship of innate myeloid cells and innate lymphoid cells. Cytokines and transcription factors that specify cell fate of a particular 
subset of innate myeloid cells or innate lymphoid cells are illustrated. Ba/Mc bi-potent, common basophils and mast cell progenitors; eo, eosinophils; 
ba, basophils; mc, mast cells; lymph, all lymphocytes. The rest of abbreviations are given in the text.
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via a still unknown kinase, it is reasonable to assume that STAT5 
signaling is required for TSLP-induced basophil expansion.

Molecular regulation of basophil differentiation. STAT5,32 
Runx1,23 GATA241 and C/EBPα42 have all been implicated as 
the imperative players in basophil differentiation. The order of 
expression of GATA2 and C/EBPα has also been suggested as 
the crucial determinant in basophil fate vs. eosinophil cell fate.42 
If GATA2 expression precedes C/EBPα expression at the GMP 
stage, GATA2 together with C/EBPα will drive basophil differ-
entiation. Conversely, if C/EBPα expression precedes GATA2 
expression at the GMP stage, then both C/EBPα and GATA2 
will drive eosinophil differentiation.42 However, it remains 
unknown which of the aforementioned factors is the master 
determinant for basophil cell fate.

Both basophils and mast cells are rich sources of cytokines. 
One of the major characteristics of basophils, as compared with 
mast cells, is their ability to produce a large quantity of IL-4. 
STAT6 and GATA3 are critical regulators of Il4 gene expression 
in CD4+ T cells.43 We profiled mRNA expression of known Th2 
transcription factors as well as transcription factors that are pivotal 
for basophil development, such as GATA3, RBPJ, c-Maf, JunB, 
C/EBPα, GATA1 and GATA2. We found that C/EBPα was 
highly expressed in basophils, but not in Th2 cells.44 Our results 
showed that in response to IgE cross-linking, C/EBPα activated 
Il4-promoter-driven luciferase-reporter gene transcription, but 

increased numbers of basophils and failed to expel nematode 
Strongyloides.24 We report that administrating the IL-3 complex 
(IL-3 plus anti-IL-3 antibody) in vivo greatly facilitates the differ-
entiation of GMPs into BaPs and increases the number of BMCPs 
in the spleen.32 Binding of cytokine to a respective anti-cytokine 
antibody that does not interfere with the ability of the cytokine to 
bind its receptor has been documented to increase the effective-
ness of the particular cytokine in vivo, namely by increasing the 
half-life of the bound cytokine.39 We showed that GMPs, but not 
CMPs, expressed low levels of IL-3 receptor. IL-3 receptor expres-
sion was dramatically upregulated on BaPs, but not on EoPs. We 
showed that about 38% of BMCPs expressed the IL-3 receptor.32 
The IL-3 receptor expression patterns might explain why IL-3 
specifically expanded basophils in vivo. We further demonstrated 
that basophil expansion—specifically induced by the IL-3 com-
plex—depended on STAT5 signaling.32

STAT5 signaling is most likely involved in TSLP-induced 
basophil expansion. One report showed that daily intraperitoneal 
injection of recombinant TSLP for 4–7 consecutive days resulted 
in a 2- to 4-fold increase in basophil numbers in the blood and 
spleen.40 A second report noted a more modest increase (50 to 
100%) in basophil numbers after TSLP injection.23 It was fur-
ther demonstrated that TSLP stimulated BaP proliferation and 
mature basophil survival.40 Compared with IL-3, TSLP is less 
potent in basophil expansion. Because TSLP activated STAT5 

Figure 2. Differentiation of hematopoietic cells. ProB, pro B cells; ProT, pro T cells; MEP, megakaryocyte progenitor. The rest of abbreviations are given 
in the text.
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related to differentiation status of mast cells. Finally, IL-4 and 
IL-10 has also been shown to be an important regulator in mast 
cell homeostasis. IL-4 and IL-10-induced apoptosis was coupled 
with decreased expression of bcl-x(L) and bcl-2. While this pro-
cess occurred independent of the Fas pathway, IL-4 and IL-10 
greatly sensitized mast cells to Fas-mediated death.55,56

It is likely that STATs need to cooperate with other transcrip-
tion factors to promote mast cell functions. In our study, we 
found a novel population of GMPs that contain highly enriched 
common basophil and mast cell progenitors. We note that STAT5 
signaling is imperative in directing the novel basophil/mast cell 
progenitors into both basophils and mast cells. We further dem-
onstrate that GATA2 is a downstream molecule of STAT5 and is 
essential in both basophil and mast cell differentiation (unpub-
lished data). It has been reported that GATA2 and STAT5 can 
form a complex and regulate target gene transcription in can-
cer cells.57 However, whether GATA2 and STAT5 cooperate in 
mast cell is unknown. STAT3 has been demonstrated to enhance 
MITF activity in melanocyte and mast cell indirectly by taking 
away PIAS3 from MITF.58,59 MITF is found to associate with 
PIAS3. When melanocytes and mast cells were activated through 
gp130 or c-Kit receptor, STAT3 competed for PIAS3 and MITF 
was free from PIAS3.

Eosinophil differentiation. Eosinophils can cause tissue dam-
age by releasing inflammatory mediators, such as major basic 
protein, eosinophil cationic protein, eosinophil peroxidase and 
eosinophil-derived neurotoxin, from their granules.60 Eosinophils 
are also an excellent source of inflammatory cytokines.61 The 
importance of IL-4-producing eosinophils in generating protec-
tive immunity against parasitic infection has been recently estab-
lished.62 In the parasitic model, the generation, expansion and 
maintenance of IL-4-producing eosinophils have been found to 
be essential for expelling helminth infection.62 We also reported 
that eosinophils produced the majority of Th2 cytokines in the 
late-phase response to allergic airway inflammation.63 We have 
further demonstrated that IL-4 directed bone marrow progenitor 
cells to differentiate into eosinophil-like cells capable of produc-
ing IL-4, IL-5 and IL-13.63,64

IL-5 is a critical factor for eosinophil differentiation, activa-
tion, survival and recruitment to the sites of inflammation.65 IL-5 
exerts its functions through stimulating the IL-5Rα-chain and 
a common β-chain, shared by IL-3 and GM-CSF. Stimulation 
of the IL-5R activates multiple signaling pathways, including 
the JAK-STAT pathway. IL-5 induces phosphorylation of JAK2, 
STAT1 and STAT5.66,67 STAT5A and STAT5B exhibit 95% 
homology in amino acid sequences.68 Deficiency in both the 
Stat5a and Stat5b genes resulted in a reduction in the number of 
IL-5-induced eosinophil colonies.69

Our studies demonstrated that IL-4 and IL-5, but not IL-13 
or IL-25, directed bone marrow progenitors to differentiate into 
effector cells that produce Th2 cytokines.64 We further dem-
onstrated that IL-5-driven differentiation depended on STAT5 
signaling.64 In addition to STAT5, we found that Erk1 and the 
transcription factor GATA1 are also critical in regulating Il4 
gene expression in eosinophils (unpublished data).

not other known Th2 or mast cell enhancers, in a basophil-like 
cell line. We found that the DNA binding domain of C/EBPα 
and two C/EBPα-binding sites (-44 to -36, and -87 to -79) in 
the Il4 promoter were required for activating the Il4 promoter. 
Additionally, our analysis revealed that a mutation in the nuclear 
factor of activated T cells (NFAT)-binding sites in the Il4 pro-
moter also negated C/EBPα-driven Il4 promoter-luciferase activ-
ity. Taken together, these findings within our study demonstrate 
that C/EBPα directly regulates Il4 gene transcription.44

We examined the role of STAT5 in IL-4 production by 
mature basophils and found that induced deletion of STAT5 in 
mature basophils had little to no effect on Il4 mRNA expres-
sion or IL-4 protein expression (unpublished data). Thus, it 
appears that the requirement for STAT5 in basophil differen-
tiation and the requirement for STAT5 in basophil activation 
differ. Rather, we found that the PI3K pathway and calcineurin 
were essential in C/EBPα-driven Il4 promoter-luciferase activ-
ity.44 Further research is underway to elucidate pathways lead-
ing to the activation of transcription of Type-2 cytokine genes 
in basophils.

Other regulatory regions that confer basophil-specific IL-4 
expression have not yet been identified. Using the transgenic 
approach, Kubo and colleagues tested the regulatory regions 
known to regulate Il4 gene expression in Th2 cells and demon-
strated that a 4 kb long HS4 element, together with a 5' enhancer 
[-863 to -5,448 base pair (bp)] and the Il4 promoter (-64 to -827 
bp), conferred basophil-specific GFP expression.45 Paradoxically, 
this study shows that HS4—a recognized silencer of Il4 gene tran-
scription in Th2 cells46—is an enhancer for Il4 gene transcription 
in basophils. A different set of regulatory regions implies that a 
different set of transcription factors is used to confer basophil-
specific Il4 gene expression.45 A comprehensive examination of 
histone modifications surrounding the Il4 gene in basophils is 
needed to further understand how the Il4 gene is regulated in 
basophils.

Mast cell differentiation. Several cytokines have been shown 
to regulate mast cell differentiation, survival and function. SCF 
and IL-3 are critical factors for mast cell development and both 
cytokines can activate STAT5. A series of experiments have 
established important roles of STAT5 in mast cell development 
and survival. In STAT5 deficient mice, mast cells were normal at 
birth, but were undetectable 12 weeks after birth.47,48 There was 
a marked decrease in histamine and leukotriene B

4
 production 

in STAT5-deficient mast cells. The reduction was the result of 
altered post-transcriptional control of cytokine mRNA stability 
in the absence of STAT5.48

IL-10, a suppressive cytokine produced mainly by regulatory 
T cells, inhibited mast cell functions by downregulating IgE 
receptor (FcεRIα) expression and signaling through a STAT3-
dependent manner.49,50 Like IL-10, IL-4 also inhibited BMMC 
growth and FcεRIα expression on mouse mast cells.51 But unlike 
IL-10, IL-4 depended on STAT6 signaling for its function.52 
Paradoxically, IL-4 enhances FcεRIα expression on human 
mast cells.53,54 Explanation for the discrepancy in IL-4 effects 
on mouse and human mast cells is not yet available. It may be 
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chain and RORγt (encoded by the Rorc gene) are critical for 
the differentiation of ILC17 (Fig. 1).78 IL-7 is known to acti-
vate STAT5. IL-23 has been shown to activate STAT1, STAT2, 
STAT4 and STAT5.81 Which STATs are crucial for ILC17 dif-
ferentiation and function also remains to be investigated.

Differentiation of type-22 innate lymphoid cells. An innate 
counterpart of Th22 has also been identified.82 ILC22 shares 
some characteristics with LTi cells and NK cells.80,83-86 These cells 
are distinct from conventional NK cells as they do not possess an 
ability to kill target cells. Phenotypically, they can be defined as 
CD56+ NKp46+.3 ILC22 cells are primarily located at mucosal 
sites in both mice and humans. These cells produce IL-22 and lit-
tle, if any, IFN-γ. IL-23 can regulate IL-22 production by ILC22 
cells in both mice84-86 and humans.83 Cytokines of the common 
γ chain family (IL-2, IL-7 and IL-15) can also activate prolifera-
tion and cytokine production by ILC22 cells.83,87 Combination 
of IL-12 and IL-18 can also enhance IL-22 production by these 
cells.88 RORγT-deficient mice do not have ILC22.84-86 The 
ligand-dependent transcription factor aryl hydrocarbon receptor 
(AhR) also has a critical role in regulating IL-22 production by 
mouse T cells89 and human T cells (Fig. 1).90 The exact involve-
ment of STAT signaling requires further study.

Concluding Remarks

STATs play critical roles in the differentiation of Type-2 innate 
effectors of myeloid lineages. However, it is less clear if STAT is 
involved in the differentiation of innate lymphoid cells. Further 
study of molecules downstream to STAT and STAT co-activators 
will facilitate our understanding of the mechanisms by which 
STATs direct the differentiation of innate effectors and confer 
immune functions to innate effectors. Advanced knowledge will 
lead to more effective interventions and more successful strategies 
in developing preventions.
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Differentiation of Innate Lymphoid Cells

Differentiation of type-2 innate lymphoid cells. Recently, a 
novel type of innate lymphoid cell capable of producing a large 
amount of IL-13 and IL-5 in response to IL-25, IL-33 and para-
sitic infection has been identified.70,71 They can be identified by 
flow cytometry as Lin- Sca-1+, c-Kit+ (high) or - (low), ST2+, IL-7R+, 
IL17BR+, CD25+ and CD44+.70-72 Although ILC2 express stem 
cell/progenitor markers, they represent terminally differentiated 
effector cells, i.e., they do not possess progenitor activity. The 
precursor of ILC2 (ILC2P) has been identified.73,74 It has been 
proposed that ILC2P cells are derived from lymphoid primed 
multipotent progenitors (LMPPs), which are thought to be 
upstream progenitors of CLPs (Fig. 1).75 IL-7, common γ chain, 
retinoic-acid-related orphan receptor (ROR) α and GATA3 have 
been demonstrated to be critical in the differentiation of ILC2 
(Fig. 1).74,76 Another population of IL-25-elicited Lin- Sca-1+ cells 
in gut-associated lymphoid tissue, named multi-potent progeni-
tor (MPPtype2), has also been reported.77 MPPtype2 contained two 
types of cells: one was phenotypically defined as Lin- cKit+ IL-4/
GFP- (Il4/Gfp gene reporter mice were used) and the other was 
defined as Lin- c-Kit+ IL-4/GFP+. Lin- c-Kit+ IL-4/GFP+ cells 
gave rise to mast cells, whereas Lin- c-Kit+ IL-4/GFP- cells gave 
rise to basophils, mast cells and myeloid cells. Cytokine and the 
master transcription factor that regulate MPPtype2 differentiation 
have not been identified.

IL-25, IL-33 and TSLP all induce IL-5 and IL-13 production 
by ILC2 cells. STAT5 signaling has been implicated in the pro-
duction of IL-5 and IL-13 because both IL-7 and TSLP are the 
known activators of STAT5. IL-25 has been shown to activate the 
NFκB pathway. Which STATs are crucial to ILC2 differentia-
tion and function remains to be documented.

Differentiation of type-17 innate lymphoid cells. The innate 
counterpart of Th17 cells has been identified in the colon. Type-
17 Innate Lymphoid Cells (ILC17) are CD4-CD117-NKp46- 
Thy1hi and Sca-1+ Lin- cells, which distinguishes them from 
CD4+CD117+ lymphoid tissue inducer (LTi) cells and NKp46+ 
ILC Type 22 cells. These cells express IL-23 receptor, ROR-γt 
and T-bet.78,79 They produce IL-17, IFN-γ and IL-22 in response 
to IL-23 stimulation. ILC17 are responsible for the pathological 
changes induced by Helicobacter hepaticus infection.78,79 ILC17 
has also been found in humans. They appear to be an overlapping 
population of cells with LTi cells.3,80 The precursor of ILC17 has 
not been identified. It has been reported that IL-7, common γ  
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