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Some aspects of real-world road networks seem to have an ap-
proximate scale invariance property, motivating study of mathe-
matical models of randomnetworkswhose distributions are exactly
invariant under Euclidean scaling. This requires working in the
continuum plane, so making a precise definition is not trivial. We
introduce an axiomatization of a class of processes we call scale-
invariant random spatial networks, whose primitives are routes
between each pair of points in the plane. One concrete model,
based on minimum-time routes in a binary hierarchy of roads with
different speed limits, has been shown to satisfy the axioms, and
two other constructions (based on Poisson line processes and on
dynamic proximity graphs) are expected also to do so. We initiate
study of structure theory and summary statistics for general pro-
cesses in the class. Many questions arise in this setting via analogies
with diverse existing topics, from geodesics in first-passage perco-
lation to transit node-based route-finding algorithms.

We introduce and study a mathematical structure inspired by
road networks. Although not intended as literally realistic,

we do believe it raises and illustrates several interesting concep-
tual points and potential connections with other fields, summa-
rized in the final section. Details will appear in a long technical
paper (1). Here, we seek to explain in words rather than math-
ematical symbols.
Consider two differences between traditional paper maps and

modern online maps for roads, which will motivate two con-
ceptual features of our model. On paper, one needs different
maps for different scales—for the intercity network and for the
street network in one town. The usual simplified mathematical
models involve different mathematical objects at the two scales,
for instance representing cities as points for an intercity network
model (2). Online maps allow you to “zoom in” so that the
window you see covers less real-world area but shows more de-
tail, specifically (for our purpose) showing comparatively minor
roads that are not shown when you “zoom out” again. As a first
conceptual feature, we seek a mathematical model that repre-
sents roads consistently over all scales. Next, a paper map shows
roads, and the user then chooses a “route” between start and
destination. In contrast, a typical use of an online map is to enter
the start and destination address and receive a suggested route.
As a second conceptual feature, our model will treat routes as
the basic objects. That is, somewhat paradoxically, in our model
routes determine roads.
Returning to the image of zooming in and out, the key as-

sumption in our models is that statistical features of what we see
in the map inside a window do not depend on the real-world
width of the region being shown—on whether it is 5 miles or 500
miles. We call this property “scale invariance,” in accord with the
usual meaning of that phrase within physics. Of course, our
phrase “what we see” is very vague; we mean quantifiable aspects
of the road network, and this is best understood via examples of
quantifiable aspects described in the following section, and then
the mathematical definition in the subsequent section. Note
that scale invariance is not “scale-free network,” a phrase that
has become attached (3) to the quite different notion of
a (usually nonspatial) network in which the proportion di of
vertices with i edges scales for large i as di ≈ i−γ for some γ. Our
title reads “true scale invariance” to emphasize the distinction.

More precisely, the property is “statistical” scale invariance, and
two analogies with classical subjects may be helpful. Modeling
English text as “random” seems ridiculous at first sight—authors
are not monkeys on typewriters. However, the Shannon theory of
“information” (4) (better described as “data compression”) does
assume randomness in a certain sense, called “stationarity” or
“translation invariance.” Roughly, the assumption is that the
frequency of any particular word such as “the” does not vary in
different parts of a text. Such an assumption is intuitively plau-
sible and is very different from any sort of explicit dice-throwing
model of pure randomness. Analogously, roads are designed rather
than arising from some explicit random mechanism, but this does
not contradict the possibility that statistical properties of road
networks are similar in different locations and on different scales.
So, just as information theory imagines the actual text of Pride
and Prejudice as if it were a realization from some translation-
invariant random process, we will imagine the actual road net-
work of the United States as if it were a realization from some
random process with certain invariance properties.
A second analogy is with the “Wiener process,” a mathemati-

cal model in topics as diverse as physical Brownian motion, stock
prices, and heavily-loaded queues. The mathematical model is
exactly scale invariant (as explained and illustrated in a dynamic
simulation in ref. 5) even though the real-world entities it models
cannot be scale invariant at very small scales. Analogously, the
exact scale invariance of our models is unrealistic at very small
scales—we do not really have an arbitrarily dense collection of
arbitrarily minor roads—but this is not an obstacle to interpreting
the models over realistic distances.

Understanding Scale Invariance
To what extent is scale invariance observed in the real road net-
work? Here, we briefly compare some real data with two predic-
tions based on scale invariance. Consider two city centers. The
distance by road will be somewhat longer—maybe 10% or 30%
longer—than straight-line distance. Fig. 1 shows, for each pair
of cities from the largest 200 US cities, this “relative excess”
R (vertical axis) and the normalized distance between cities
(horizontal axis).
These data show that the average excess is about 18% through-

out the range of distances, whereas the spread of this excess de-
creases noticeably as distance increases. This is consistent with
previous related published data surveyed in ref. 6 and with many
possible theoretical models for intercity networks (7). Now the
prediction of scale invariance is that, for the road distance Dr
between two “typical” points at (straight line) distance r, the
probability distribution of Dr=r does not depend on r. In other
words, in a scatter diagram like Fig. 1 for typical points one
would see a similar distribution in each vertical strip. What does
“typical” mean? Within our mathematical models, the assumed
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translation invariance and rotation invariance imply that the
statistical properties of the random network are the same rela-
tive to each pair of prespecified points at distance r. For real data
for the US network, we just pick uniformly at random two points
at distance r to define Dr; the randomness arises from this sam-
pling, analogous to the randomness in opinion polls arising from
random sampling of voters. However, of course the centers of
large cities are not typical points relative to the road network,
which is designed to have fairly direct links between large cities.
We suspect that data for truly random points would show a pat-
tern somewhat more similar to that predicted by scale invariance,
but we leave this for future study.
Most recent studies of road networks in the physics literature

(e.g., ref. 8 on urban networks) have sought to work within the
“scale-free” paradigm by studying numbers of intersections of a
given road with other roads (interpretable as degree in a dual
graph), rather than directly formalizing spatial scale invariance
as we do. The only directly relevant published data we know, in
ref. 9, studies proportions of route length, within distance-r routes,
spent on the ith longest road segment in the route (identifying
roads by their highway number designation). In the United States,
the averages of these ordered proportions are found to be around

ð0:40; 0:20; 0:13; 0:08; 0:05Þ as r varies over a range of medium-to-
large distances. That these proportions do not vary with r is an-
other prediction of scale invariance, as observed in ref. 9, section 4.

Class of Scale-Invariant Random Spatial Network Models
Here, we outline the mathematical definition of a class of models
we call “scale-invariant random spatial networks” (SIRSNs). See
ref. 1 for details.
We need to work in the continuum plane (in order for exact

scale invariance to be possible; compare theWiener process). For
a realization of a SIRSN, imagine an idealization of an online
mapping service that, for each pair of points ðz; z′Þ in the plane,
will specify a route rðz; z′Þ between z and z′. These routes, for
different points, are required to satisfy several intuitively obvious
consistency conditions [e.g., if y is in the route rðz; z′Þ, then that
route is the concatenation of routes rðz; yÞ and rðy; z′Þ], which we
will not list here. So given a finite number of points ðz1; . . . ; zkÞ we
get a “spanning subnetwork” spanðz1; . . . ; zkÞ, consisting of the
union of the routes rðzi; zjÞ. Fig. 2 shows a schematic. The full
network itself is hard to envisage—there are routes specified
between (almost) every pair of points—but we envisage it as a
limit of subnetworks on increasingly dense collections of points.
We study random such networks, and the statistical properties

we impose are (i) translation and rotation invariance and (ii)
scale invariance.
To elaborate the latter, consider the “scale by c” map z=

ðx; yÞ→ cz= ðcx; cyÞ on the plane. Scale invariance of routes is the
property that the distribution of the subnetwork spanðcz1; . . . ;
czkÞ on scaled points is the same as that obtained after scaling by
c the original subnetwork spanðz1; . . . ; zkÞ. Because the model is
defined entirely in terms of routes, one can immediately deduce
scaling relationships for other quantities we shall consider.
It is important to note that these are the only assumptions

(aside from assuming finiteness of the three statistics described
below) we make for a SIRSN. In particular, we do not assume
that a notion of a major road–minor road spectrum is given, al-
though such a notion will soon be derived from our assumptions.
Also, real-world routes are typically chosen as the optimal route
under some criterion (e.g., estimated journey time), but we do not
assume any such optimality.
We next define three numerical statistics ½ED1; ℓ; pð1Þ� associ-

ated with a SISRN model, and our final technical assumption is
that all three are finite. As before, write D1 for the length of the
route between two random points at (straight line) distance 1.
We require that its expectation ED1 is finite; this prevents
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Fig. 1. Scatter diagram of relative excess route lengths R between each pair
from the 200 largest US cities. The horizontal scale is distance, normalized
so that there is on average one city per unit area. The two lines show un-
weighted and population-weighted average excess, as a function of nor-
malized distance. Each average is around 18% at all distances.

Fig. 2. Schematic for the subnetwork of a SIRSN on seven points (●).
Fig. 3. First stage of the construction in model 1. Line thickness indi-
cates speed.
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fractal-like routes. Second, take a set of points of density 1 per
unit area in the infinite plane (one could take the vertices of
a unit-spaced square grid, but for technical reasons it is more
convenient to take a Poisson point process of density 1). Write ℓ
for the average length per unit area of the subnetwork spanning
these points. We require that ℓ<∞; this disallows the “complete”
network in which each route rðz1; z2Þ is the straight-line segment
between those endpoints. Finally, take 0< r<∞. For each route
rðz1; z2Þ, imagine deleting the parts of the route that are within
distance r of either z1 or z2, leaving a subroute rrðz1; z2Þ; then take
the union of rrðz1; z2Þ over all pairs ðz1; z2Þ. Call the union EðrÞ
and let pðrÞ be its length per unit area. Scale invariance implies
a scaling relationship pðrÞ= pð1Þ=r and we require pð1Þ<∞.
This last fact provides a first glimpse of how structure emerges

from the assumption of scale invariance. There are several pos-
sible real-world measures of “size” of a road segment, quantifying
the minor road to major road spectrum—e.g., number of lanes;
level in a highway classification system; traffic volume. We do not
specify any such notion of size in specifying a SIRSN model, but
then within a specified model we can define “size” of a short road
segment as the largest r such that the segment is in EðrÞ, that is the
largest r such that the segment is in the route between some two
points at distance >r from the segment. So we can interpret EðrÞ
as the network of roads of size at least r. This provides another
interpretation of the whole network as the r→ 0 limit of EðrÞ. It
also makes a quantitative connection with the zoom-in image for
online maps. Explicitly, if the real-world network were scale in-
variant, then a map of a real-world square region of side L,
presented in a unit square on your screen, could be drawn to
show roads of size ≥aL, and the average length (of lines in-
dicating roads on the map) you would see on the screen would
be L2pðaLÞ=L= pð1Þ=a, independent of the scale L.

Three Examples of SIRSNs
It is important to remember that SIRSN does not refer to a par-
ticular model but to the class of models satisfying the conditions
specified above. Analogous to the class of stationary processes

featuring in classical information theory, one expects there to be
many different SIRSN models, and we indicate three construc-
tions below. These involve defining routes as the “optimal” route
in some sense. Because we must work in the continuum there are
great technical difficulties in proving rigorously that optimal
routes are unique, and in fact this has only been proved (1) for
the first construction.

1. Lattice-Based Model. Start with a square grid of roads, but im-
pose a “binary hierarchy of speeds”: on a road meeting an axis at
ð2i+ 1Þ2s, one can travel at speed γ−s for a parameter 1=2< γ < 1
(Fig. 3). Define the route between grid points to be a shortest-
time path.
The key point of this construction is that given a minimum cost

path from z1 = ðx1; y1Þ to z2 = ðx2; y2Þ, scaling by 2 gives a mini-
mum cost path from 2z1 to 2z2. So we are starting with a deter-
ministic construction that is invariant under scaling by 2. Aside
from the (technically hard) issue of uniqueness of routes, “soft”
arguments extend this construction to a scale-invariant network
on the plane, via the following steps: (i) The construction is con-
sistent under binary refinement of the lattice, so taking limits
defines routes between points in the continuum. (ii) One can
force translation invariance by applying a large-spread random
translation. (iii) One can force rotation invariance by applying
a random rotation. (iv) Because the construction is invariant
under scaling by 2, applying a suitable random scaling gives full
scaling invariance.
Intuitively, this construction seems like cheating, because in a

realization one sees the lattice structure, but it does satisfy the
formal conditions. Fig. 4 shows a realization of routes within this
model (before the rotation step is applied). Fig. 5 shows simu-
lation estimates of the three statistics ½ED1; ℓ; pð1Þ� as functions
of the model parameter γ. Qualitatively, when γ is near 1, routes
tend to stay within the rectangle defined by starting and ending
points as corners; as γ decreases, routes exploit faster roads
outside the rectangle, resulting in longer routes but a less
dense network.

2. Using Randomly Oriented Lines. A variant of the first construction
is to start with a Poisson line process (10) of roads and assign
speeds to these roads in the appropriate scale-invariant way.
Continue with denser and denser lines with lower and lower
speeds, and as before define routes as shortest-time paths. This is
more elegant in that it automatically has the desired invariance
properties, which had to be “forced” in the first construction.

3. Dynamic Proximity Graphs. Create random points in the plane
sequentially; for each new point ξ, create new edges as line seg-
ments from ξ to each existing point ξ′ for which the disk with
diameter ðξ; ξ′Þ contains no third existing point. Continue with
denser and denser points, and define routes as shortest-length
paths. From the property that the rule for creating edges depends
only on relative distances to nearby points, one can deduce scale
invariance for the limiting network. Fig. 6 shows the first stage of
the construction, the “main roads” analogous to those in Fig. 3.

Fig. 4. The spanning subnetwork (within a rectangular window) on sam-
pled points (■) in a discrete approximation to model 1.
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Future Work: Connections and Analogies
This article describes a mathematical structure, and let us con-
clude by indicating what aspects we find interesting for future
development. As already mentioned, at the technical level the
most pressing issue is to make rigorous proofs of the (intuitively
rather obvious) “uniqueness” of optimal routes in the second and
third constructions above, and it would be interesting to find con-
ceptually different constructions. Also as technical mathematics,
a start is made in ref. 1 on developing some theory of SIRSNs
from the axiomatic setup. One aspect of this involves infinite
“geodesics,” paths containing arbitrarily long routes. In some-
what analogous continuum models of first-passage percolation
(11), it is an open problem to prove that no doubly infinite
geodesics exists, but for SIRSNs this is an easy consequence of
scale invariance.
There is substantial mathematical literature over the last de-

cade concerning infinite discrete random networks in the plane
arising as limits of finite graphs chosen uniformly over isomorphism
classes of triangulations or quadrangulations on n vertices. The
recent paper (12) studies scaling limits in that context, giving a
model of “continuum network” with very different properties
from the models in the paper.

A question with more applied flavor (discussed for intercity
networks in ref. 2) concerns networks that make an optimal
trade-off between notions of cost and benefit. For SIRSNs, a
broad question is what values of the triple ½ED1; ℓ; pð1Þ� are pos-
sible; more specifically, what is the optimal trade-off between
ED1 (benefit) and ℓ (cost), both of which we want to make small.
Lower bounds on what is possible, obtained via stochastic geom-
etry methods, are given in ref. 1.
Our work has indirect connections with some actual algo-

rithms used by automobile global positioning system devices to
find routes. One key idea (13) is that there is a set of about
10,000 major road intersections in the United States (they write
“transit nodes”) with the property that, unless the start and
destination points are close, the shortest route goes via some
transit node near the start and some transit node near the des-
tination. Given such a set, one can precompute shortest routes
and route lengths between each pair of transit nodes, and then
answer a query by using the classical algorithm to calculate
route lengths from starting (and from destination) point to each
nearby transit node, and finally minimize over pairs of such
transit nodes. In a “worst-case” analysis of such schemes (14),
define “highway dimension” h* as maxrhðrÞ, where hðrÞ is the
smallest integer such that, for every ball of radius 4r, there exists
a set of hðrÞ vertices such that every shortest route of length >r
within the ball passes through some vertex in the set. They
analyze algorithms exploiting transit nodes and other structure,
giving performance bounds involving h and number of vertices
and network diameter. However, note that, in order for h* to be
usefully small, we would need hðrÞ not to vary greatly with r, and
this is an aspect of approximate scale invariance. How one might
repeat such analyses in terms of SIRSN models of the road
network is outlined in ref. 1, and here it is the statistic pð1Þ that is
relevant to algorithm performance. Indeed, the way we defined
the network EðrÞ in terms of routes is closely related to the no-
tion of “reach” in the algorithmic literature (15).
Relevant data on the statistics of real road networks are scat-

tered through the literature of transportation economics and
urban economics. In the latter setting, our ED1 is called “circu-
ity.” See ref. 6 for an introduction to this literature, and for data
on circuity of commute distances in different metropolitan areas
showing that circuity tends to decrease with commute distance.
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Fig. 6. First stage of a dynamic proximity graph construction.
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