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One of the most important features of spatial networks—such as
transportation networks, power grids, the Internet, and neural
networks—is the existence of a cost associated with the length of
links. Such a cost has a profound influence on the global structure
of these networks, which usually display a hierarchical spatial or-
ganization. The link between local constraints and large-scale
structure is not elucidated, however, and we introduce here a ge-
neric model for the growth of spatial networks based on the gen-
eral concept of cost–benefit analysis. This model depends essen-
tially on a single scale and produces a family of networks that
range from the star graph to the minimum spanning tree and are
characterized by a continuously varying exponent. We show that
spatial hierarchy emerges naturally, with structures composed of
various hubs controlling geographically separated service areas,
and appears as a large-scale consequence of local cost–benefit
considerations. Our model thus provides the basic building blocks
for a better understanding of the evolution of spatial networks
and their properties. We also find that, surprisingly, the average
detour is minimal in the intermediate regime as a result of a large
diversity in link lengths. Finally, we estimate the important param-
eters for various world railway networks and find that, remark-
ably, they all fall in this intermediate regime, suggesting that
spatial hierarchy is a crucial feature for these systems and proba-
bly possesses an important evolutionary advantage.

statistical physics | transportation systems | complex networks |
quantitative geography

Our societies rely on various networks for the distribution of
energy and information as well as for transportation of indi-

viduals. These networks shape the spatial organization of our soci-
eties, and their understanding is a key step toward theunderstanding
of thecharacteristics and theevolutionofour cities (1).Despite their
apparent diversity, these networks are all particular examples of
a broader class of networks—spatial networks, which are charac-
terized by the embedding of their nodes in space.As a consequence,
there is usually a cost associated with a link, leading to particular
structures that are now fairly well understood (2) thanks to the re-
cent availability of large sets of data. Nevertheless, the mechanisms
underlying the formationand temporal evolutionof spatial networks
have not been much studied. Different kinds of models aiming at
explaining the static characteristics of spatial networks have been
suggested previously in quantitative geography, transportation
economics, and physics (reviewed in ref. 3). Concerning the time
evolution of spatial networks, only a fewmodels exist to describe, in
particular, the growth of road and rail networks (4–8), but a general
framework is yet to be discovered.
The earliest attempts can be traced back to the economic ge-

ography community in the 1960s and 1970s [a fairly comprehen-
sive review of these studies can be found in the work of Hagget
and Chorley (9)]. However, due to the lack of available data and
computational power, the proposed models were based on in-
tuitive, heuristic rules and have not been studied thoroughly.
A more recent trend is that of optimization models. The

common point among all these models is that they try to re-

produce the topological features of existing networks, by con-
sidering the network as the realization of the optimum of a given
quantity (an overview is provided in section IV.E in ref. 2). For
instance, the hub-and-spoke models (10) reproduce correctly
with an optimization procedure the observed hierarchical orga-
nization of city pair relations. However, the vast majority of the
existing spatial networks do not seem to result from a global
optimization but, instead, from the progressive addition of nodes
and segments resulting from a local optimization. By modeling
(spatial) networks as resulting from a global optimization, one
overlooks the usually limited time horizon of planners and the
self-organization underlying their formation.
Self-organization of transportation networks has already been

studied in transportation engineering (11). Using an agent-based
model, including various economical ingredients, Levinson and
Yerra (5) modeled the emergence of the networks properties as
a degeneration process. Starting from an initial grid, traffic is
computed at each time step, and each edge computes its costs and
benefits accordingly, using any excess to improve its speed. After
several iterations, a hierarchy of roads emerges. Our approach is
very different: We start from nodes and do not specify any initial
network. Also, and most importantly, we deliberately do not
represent all the causal mechanisms at work in the system. In-
deed, the aim of our model is to understand the basic ingredients
for emergence of patterns that can be observed in various sys-
tems, and we thus focus on a single, very general economical
mechanism and its consequence on the large-scale properties of
the networks.
Concerning spatial networks, as is the case for many spatial

structures, there is a strong path dependency. In other words, the
properties of a network at a certain time can be explained by the
particular historical path leading to it. It thus seems reasonable
to model spatial networks in an iterative way. Some iterative
models, following ideas for understanding power laws in the In-
ternet (12) and describing the growth of transportation networks
(4, 6, 7), can be found in the literature. In these models, the
graphs are constructed via an iterative greedy optimization of
geometrical quantities. However, we believe that the topological
and geometrical properties of networks are consequences of the
underlying processes at stake. At best, geometrical and topolog-
ical quantities can be a proxy for other, more fundamental
properties; for instance, it will be clear in what follows that the
length of an edge can be taken as a proxy for the cost associated
with the existence of that edge. Finding those underlying pro-
cesses is a key step toward a general framework within which the
properties of networks can be understood and, hopefully,
predicted.
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In this respect, cost–benefit analysis (CBA) provides a system-
atic method to evaluate the economical soundness of a project.
It allows one to appreciate whether the costs of a decision will
outweigh its benefits, and therefore to evaluate quantitatively its
feasibility and/or suitability. CBA has only been officially used to
assess transport investments since 1960 (13). However, the con-
cept comes across as so intuitive in our profit-driven economies
that it seems reasonable to wonder whether CBA is at the core of
the emergent features of our societies, such as distribution and
transportation systems. If the temporal evolution of spatial net-
works is rarely studied, arguments mentioning the costs and
benefits related to such networks are almost absent from the
physics literature [the study by Popovi�c et al. (14) is a notable
exception, although they do not consider the time evolution of
the network]. However, we find it intuitively appealing that in an
iterative model, the formation of a new link should, at least lo-
cally, correspond to a CBA. We therefore propose here a simple
CBA framework for the formation and evolution of spatial net-
works. Our main goal within this approach is to understand the
basic processes behind the self-organization of spatial networks
that lead to the emergence of their large-scale properties.

Theoretical Formulation
We consider here the simple case in which all the nodes are
distributed uniformly in the plane (a detailed description of the
algorithm is provided in Materials and Methods). For a rail net-
work, the nodes would correspond to cities and the network
grows by adding edges between cities iteratively; the edges are
added sequentially to the graph, as a result of a CBA, until all the
nodes are connected (4). For the sake of simplicity, we limit
ourselves to the growth of trees, which allows us to focus on the
emergence of large-scale structures due to the cost–benefit in-
gredient alone. Furthermore, we consider that all the actors
involved in the building process are perfectly rational, and
therefore that the most profitable edge is built at each step. More
precisely, at each time step, we build the link connecting a new
node i to a node j that already belongs to the network, such that
the following quantity is maximum:

Rij =Bij −Cij: [1]

The quantity Bij is the expected benefit associated with the con-
struction of the edge between node i and node j, and Cij is the
expected cost associated with such a construction. Eq. 1 defines
the general framework of our model, and we now discuss specific
forms of Rij. In the case of transportation networks, the cost will
essentially correspond to some maintenance cost and will typically
be proportional to the Euclidean distance dij between i and j.
We thus write:

Cij = κdij; [2]

where κ represents the cost of a line per unit of length per unit of
time. Benefits are more difficult to assess. For rail networks, a
simple yet reasonable assumption is to write the benefits in terms
of distance and expected traffic Tij between cities i and j:

Bij = ηTijdij; [3]

where η represents the benefits per passenger per unit of length. We
have to estimate the expected traffic between two cities, and for this,
we will follow the common and simple assumption used in the trans-
portation literature of having the so-called “gravity law” (15, 16):

Tij = k
Mi  Mj

daij
; [4]

where MiðjÞ is the population of city iðjÞ and k is the rate associ-
ated with the process. We will choose here a value of the exponent

a> 1 (a< 1 would correspond to an unrealistic situation in which
the benefits associated with passenger traffic would increase with
the distance). This parameter a determines the range at which a
given city attracts traffic, regardless of the density of cities. The
accuracy and relevance of this gravity law are still controversial,
and improvements have recently been proposed (17, 18). How-
ever, it has the advantage of being simple and being able to cap-
ture the essence of the traffic phenomenon: the decrease of the
traffic with distance and the increase with population. Within
these assumptions, the cost–benefit budget R′ij =Rij=η now reads:

R′ij = k
MiMj

d  a−1ij
−  βdij; [5]

where β= κ
η represents the relative importance of the cost with

regard to the benefits. We will assume that populations are
power law-distributed with exponent 1+ μ (with μ≈ 1:1 for cities;
Materials and Methods), and the model thus depends essen-
tially on the two parameters a and β (a detailed description
of parameters used in this paper is provided in Materials and
Methods). In the following, we will be working with fixed values
of μ and a. The exact values we choose, however, are not impor-
tant (as long as they are chosen in a given range, as discussed in
the previous section and in Materials and Methods) because the
obtained graphs would have the same qualitative properties.

Results
Typical Scale. The average population is M, and the typical in-
tercity distance is given by ℓ1 ∼ 1=

ffiffiffi
ρ

p
, where ρ=N=L2 denotes the

city density (L is the typical size of the whole system). The
two terms of Eq. 5 are thus of the same order for β= β*, de-
fined as:

β* = kM
2
ρa=2: [6]

In the theoretical discussion that follows, we will take k= 1 for
simplicity (but it should not be forgotten in empirical discussions).
Another way of interpreting β*, which makes it more practical to
estimate from empirical data (Discussion), is to say that it is of the
order of the average traffic per unit time:

β* = hTi: [7]

From Eq. 6, we can guess the existence of two different re-
gimes depending on the value of β:

i) β � β*: The cost term is negligible compared with the benefits
term. Each connected city has its own influence zone depending
on its population, and the new cities will tend to connect to the
most influential city. In the case where a≈ 1, every city con-
nects to the most populated cities and we obtain a star graph
constituted of one single hub connected to all other cities.

ii) β � β*: The benefits term is negligible compared with the cost
term. All new cities will connect sequentially to their closest
neighbor. Our algorithm is then equivalent to an implementa-
tion of Prim’s algorithm (19), and the resulting graph is a
minimum spanning tree (MST).

The intermediate regime β ’ β* needs to be elucidated, how-
ever. In particular, we have to study if there is a transition or a
crossover between the two extreme network structures, and if we
have a crossover, what the network structure is in the intermediate
regime. In the following, we answer these questions by simulating
the growth of these spatial networks.

Crossover Between the Star Graph and the MST. Fig. 1 shows three
graphs obtained for the same set of cities for three different
values of β=β* (a= 1:1, μ= 1:1), confirming our discussion about
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the two extreme regimes in the previous section. A visual in-
spection seems to show that a different type of graph appears for
β∼ β*, which suggests the existence of a crossover between the
star graph and the MST. This graph is reminiscent of the hub-
and-spoke structure that has been used to describe the inter-
actions between city pairs (11, 20). However, in contrast to the
rest of the literature about hub-and-spoke models, we show that
this structure is not necessarily the result of a global optimiza-
tion: indeed, it emerges here as the result of the autoorganiza-
tion of the system.
The MST is characterized by a peaked degree distribution,

whereas the star graph’s degree distribution is bimodal, and we
therefore choose to monitor the crossover with the Gini coefficient
for the degrees defined as in the study by Dixon et al. (21):

Gk =
1

2N2k

XN

i;j= 1

���ki − kj
���; [8]

where k is the average degree of the network. The Gini coeffi-
cient is in ½0; 1�, and if all the degrees are equal, it is easy to see
that G= 0. On the other hand, if all the nodes but one are of
degree 1 (as in the star graph), a simple calculation shows that
G= 1=2. Fig. 2B displays the evolution of the Gini coefficient vs.
β=β* (for different values of β* obtained by changing the value
of a, μ, and N). This plot shows a smooth variation of the Gini
coefficient pointing to a crossover between a star graph and the
MST, as one could expect from the plots in Fig. 1. (Also, we note
that for given values of a and μ, all the plots collapse on the same
curve, regardless of the number N of nodes. However, for differ-
ent values of a or μ, we obtain different curves.)
Another important difference between the star graph and the

MST lies in how the total length of the graph scales with its
number of nodes. Indeed, in the case of the star graph, all the
nodes are connected to the same node and the typical edge
length is L, the typical size of the system the nodes are enclosed
in. We thus obtain:

Ltot ∼L N: [9]

On the other hand, for the MST, each node is connected
roughly to its nearest neighbor at a distance typically given by
ℓ1 ∼L=

ffiffiffiffi
N

p
, leading to:

Ltot ∼L 
ffiffiffiffi
N

p
: [10]

More generally, we expect a scaling of the form Ltot ∼Nτ, and
in Fig. 2A, we show the variation of the exponent τ vs. β. For
β= 0, we have τ= 1:0, and we recover the behavior Ltot ∝N
typical of a star graph. In the limit β � β*, we also recover
the scaling Ltot ∝

ffiffiffiffi
N

p
, typical of an MST. For intermediate val-

ues, we observe an exponent that varies continuously in the range
½0:5; 1:0�. This rather surprising behavior is rooted in the het-
erogeneity of degrees, and in the following, we will show that we
can understand this behavior as resulting from the hierarchical
structure of the graphs in the intermediate regime.
It is interesting to note that a scaling with an exponent 1=2<

τ< 1 has been observed (2, 22) for the total number ℓT of miles
driven by the population (of size P) of city scales: ℓT ∝Pβ with
β= 0:66. Understanding the origin of those intermediate num-
bers might thus also give us insights into important features of
traffic in urban areas and the structure of cities.
It thus seems that from the point of view of interesting quan-

tities, such as the Gini coefficient or the exponent τ, there is no
sign of a critical value for β and we are in presence of a crossover
rather than a transition.

Spatial Hierarchy and Scaling. The graph corresponding to the in-
termediate regime β≈ β* depicted in Fig. 1 exhibits a particular
structure corresponding to a hierarchical organization, as is ob-
served in many complex networks (23). Inspired from the obser-
vation of networks in the regime β=β* ∼ 1, we define a particular
type of hierarchy, which we call spatial hierarchy, as follows. A
network will be said to be spatially hierarchical if:

i) We have a hierarchical network of hubs that connect to nodes
less and less far away as one goes down the hierarchy.

ii) Hubs belonging to the same hierarchy level have their own
influence zone clearly separated from those of others. In

Fig. 1. Graphs obtained with our algorithm for the
same set of cities (nodes) for three different values of
β* (a= 1:1, μ= 1:1, 400 cities). We show a star graph,
where the most populated node is the hub (Left), and
we recover the MST (Right).

A B

Fig. 2. (A) Exponent τ vs. β. For β � β*, we recover
the star graph exponent τ= 1, and for the other
extreme β � β*, we recover the MST exponent
τ= 1=2. In the intermediate range, we observe
a continuously varying exponent suggesting a non-
trivial structure. The shaded area represents the SD
of τ. (Inset) To illustrate how we determined the
value of τ, we represent Ltot vs. N for two different
values of β. The power law fit of these curves gives τ.
(B) Evolution of the Gini coefficient (Eq. 8) with
β=β* for different values of β*. The shaded area
represents the SD of the Gini coefficient.
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addition, the influence zones of a given level are included in
the influence zones of the previous level.

The relevance of this concept of hierarchy in the present con-
text can be qualitatively assessed in Fig. S1, where we represent
the influence zones by colored circles, with the colors corre-
sponding to different hierarchical levels. To go beyond this sim-
ple qualitative description of the structure, we provide in the
following sections quantitative proof that networks in the regime
β=β* exhibit spatial hierarchy.
Distance between hierarchical levels.We propose here a quantitative
characterization of part i in the definition of spatial hierarchy.
The first step is to identify the root of the network, which allows
us to characterize a hierarchical level naturally by means of its
topological distance to the root. We choose the most populated
node as the root (which will be the largest hub for β � β*), and
we can now measure various quantities as a function of the level
in the hierarchy. In Fig. 3, we plot the average Euclidean dis-
tance d between the different hierarchical levels as a function
of the topological distance from the root node (for the sake of
clarity, we also draw the corresponding graphs next to these
plots). For reasonably small values of β=β* (i.e., when the graph
is not far from being a star graph), the average distance between
levels decreases as we go further away from the root node. This

confirms the idea that the graphs for β=β* ’ 1 exhibit a spatial
hierarchy in which nodes from different levels are getting closer
and closer to each other as we go down the hierarchy. Eventually,
as β=β* becomes larger than 1, the distance between consecutive
levels just fluctuates around ℓ1 ∼ 1=

ffiffiffi
ρ

p
, the average distance be-

tween nearest neighbors for a Poisson process, which indicates
the absence of hierarchy in the network.
Geographical separation of hubs zones. We now discuss part ii of the
definition of spatial hierarchy, that is, how the hubs are located
in space. Indeed, another property that we can expect from
spatially hierarchical graphs is that of geographical separation, as
defined in SI Text. We define a separation index (a definition is
provided in SI Text) which quantifies the separation between the
respective influence zones of hubs belonging to the same level
(see Fig. S2). The separation index is equal to 1 if the nodes’
influence zones do not overlap at all, and it is 0 if they perfectly
overlap. We plot this quantity averaged over the all the graph’s
levels for different values of β=β* in Fig. S3. One can observe on
this graph that the separation index reaches values above 0.90
when β=β* ≥ 1, which means that the corresponding graphs in-
deed have a structure with hubs controlling geographically well-
separated regions. Obviously, the choice of the shape of the
influence zone (which is chosen here to be a disk; SI Text) has
a strong impact on the results, but the same qualitative behavior
will be obtained for any type of convex shapes.
In conclusion, the graphs produced by our model in the regime

β=β* satisfy the two points of the definition. They exhibit a spa-
tially hierarchical structure, characterized by a distance ordering
and geographical separation of hubs. In this regime, we saw ear-
lier that we have specific, nontrivial properties, such as Ltot scaling
with an exponent depending continuously on β=β* . Using a sim-
ple toy model defined by a fractal tree (see Fig. S4), we can show
that the spatial hierarchy can explain this varying exponent for the
regime β=β* ∼ 1 (details are provided in SI Text, Understanding
the Scaling with a Toy Model).

Efficiency. Most transportation networks are not obtained by a
global optimization but result from the addition of various,
successive layers. The question of the efficiency of these self-
organized systems is therefore not trivial and deserves some in-
vestigation. The model considered here allows us to test the
effect of various parameters and how efficient a self-organized
system can be. In particular, we would like to characterize the
efficiency of the system for various values of β. For this, we can
assume that the construction cost per unit length is fixed (i.e., the
factor η in Eq. 2 is constant), and because β= η

κ, a change of value
for β is equivalent to a change in the benefits per passenger per
unit of length.
A first natural measure of how optimal the network is can

be given by its total cost proportional to the total length Ltot:
The shorter a network is, the better it is for the company in
terms of building and maintenance costs. In our model, the
behavior of the total cost is simple and expected: For small
values of β=β* , the obtained networks correspond to a situation
in which the users are charged a lot compared with the main-
tenance cost and the network is very long ðLtot ∝NÞ. In the
opposite case, when β=β* � 1, the main concern in building
this network is concentrated on construction cost and the net-
work has the smallest total length possible (for a given set
of nodes).
The cost is not enough to determine how efficient the network

is from the users’ point of view, however: A very-low-cost net-
work might indeed be very inefficient. A simple measure of ef-
ficiency is then given by the amount of detour needed to go from
one point to another. In other words, a network is efficient if the
shortest path on the network for most pairs of nodes is very close
to a straight line. The detour index for a pair of nodes ði; jÞ is
conveniently measured by Dði; jÞ=dði; jÞ, where Dði; jÞ is the length
of the shortest route between i and j, and dði; jÞ is the Euclidean
distance between i and j. To have detailed information about

Fig. 3. Average distance between the successive hierarchy levels for dif-
ferent values of β=β* (Left), next to the corresponding graphs (Right). The
most populated node is taken as the root node.
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the network, we use the quantity introduced by Aldous and
Shun (24):

ϕðdÞ= 1
NðdÞ

X

i;j=

dði;jÞ= d

Dði; jÞ
dði; jÞ ; [11]

where the normalization NðdÞ is the number of pairs with
dði; jÞ= d. We plot this “detour function” for several values of
β=β* in Fig. 4A. For β=β* � 1, the function ϕðdÞ takes high
values for small d and low values for large d, meaning that the
corresponding networks are very inefficient for relatively close
nodes, although being very efficient for distant nodes. On the
other hand, for β=β* � 1, we see that the MST is very efficient
for neighboring nodes but less efficient than the star graph for
long distances. Surprisingly, the graphs for β=β* ∼ 1 exhibit
a nontrivial behavior: For small distances, the detour is not as
good as for the MST but not as bad as for the star graph, and for
long distances, it is the opposite. To make this statement more
precise, we compute the average of ϕðdÞ over d (a quantity that
has a clear meaning for trees; objections to the use of hϕðdÞi as a
good efficiency measure in general are reviewed in ref. 24) and
plot it as a function of β=β* . The results are shown in Fig. 4B and
confirm this surprising behavior in the intermediate regime: We
observe a minimum for β=β* ∼ 1. In other words, there exists
a nontrivial value of β (i.e., a value of the benefits per passenger
per unit of length) for which the network is optimal from the
point of view of the users.
The existence of such an optimum is far from obvious, and to

gain more understanding about this phenomenon, we plot the
Gini coefficient Gl relative to the length of the edges between
nodes in Fig. 5. We observe that the Gini coefficient peaks
around β=β* = 1, which means that in this regime, the diversity
in terms of edge length is the highest. The large diversity of

lengths explains why the network is most efficient in this regime:
Indeed, long links are needed to cover large distances, whereas
smaller links are needed to reach all the nodes efficiently. It is
interesting to note that this argument is similar to the one
proposed by Kleinberg (25) to explain the existence of an opti-
mal delivery time in small-world networks.

Discussion
We have presented a model of a growing spatial network based
on a CBA. This model allows us to discuss the effect of a local
optimization on the large-scale properties of these networks. First,
we showed that the graphs exhibit a crossover between the star
graph and the MST when the relative importance of the cost
increases. This crossover is characterized by a continuously vary-
ing exponent that could give some hints about other quantities
observed in cities, such as the total length traveled by the pop-
ulation. Second, we showed that the model predicts the emer-
gence of a spatial hierarchical structure in the intermediate regime,
where costs and benefits are of the same order of magnitude. We
showed that this spatial hierarchy can explain the nontrivial be-
havior of the total length vs. the number of nodes. Finally, this
model shows that in the intermediate regime, the vast diversity of
links lengths entails a large efficiency, an aspect that could of
primary importance for practical applications.
An interesting playground for this model is given by railways,

and we can estimate the value of β=β* for these systems. In some
cases, we were able to extract the data from various sources (par-
ticularly financial reports of railway companies), and the results
are shown in Table 1. We estimate β for different real-world net-
works, including some of the oldest railway systems, using its def-
inition (total maintenance costs per year divided by the total length
and by the average ticket price per kilometer). To estimate β*,
we use Eq. 7 in the following way:

β*’Ttot

Ltot
; [12]

where Ttot is the total traveled length (in passengers per kilo-
meters per year) and Ltot is the total length of the network under
consideration. Remarkably, the computed values for the ratio
β=β* shown in Table 1 are all of the order of 1 (ranging from
0.20 to 1.56). In the framework of this model, this result shows
that all these systems are in the regime where the networks
possess the property of a spatial hierarchy, suggesting it is a cru-
cial feature for real-world networks. We note that in our model,
the value of β=β* is given exogenously, and it would be extremely
interesting to understand how we could construct a model leading
to this value in an endogenous way.
There are also several directions that seem interesting. First,

various forms of cost and benefits functions could be investigated
to model specific networks. In particular, there are several choices
that can be taken for the expected traffic. In this paper, we limit

A

B

Fig. 4. (A) Detour function ϕðdÞ vs. the relative distance between nodes for
different values of β=β* . (B) Average detour index hϕi for several realiza-
tions of the graphs as a function of β=β* . The shaded area represents the SD
of hϕi. This plot shows that there is a minimum for this quantity in the in-
termediate regime β∼ β*.

Fig. 5. Evolution of the Gini coefficient for the length vs. β=β* (for differ-
ent values of β*). The shaded area represents the SD.
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ourselves to estimate the traffic as direct traffic from a node i to
a node j, but it is likely that part of the traffic will come from
other nodes. To take this into account, we think that the fol-
lowing extensions are probably interesting:

i) A given city (denoted by 0 with population M0) plays a par-
ticular role in the network (e.g., the capital city in a relatively
small country). In that case, it is beneficial to be close to that
city through the network, and we write:

Rð1Þ
ij = ð1− λÞMiMj

da−1ij
+ λ 

MiM0�
D0j + dij

�a−1 − β  dij; [13]

where λ∈ ½0; 1� is a coefficient weighing the relative impor-
tance of the traffic coming from the particular city.

ii) The most general case in which all the network-induced traffic
is taken into account. We then consider:

Rð2Þ
ij =

X

k≠i

MiMk�
Dkj + dij

�a−1 − β  dij: [14]

Other ingredients, such as the presence of different rail com-
panies or the difference between a state-planned network and a
network built by private actors, could easily be implemented, and
the corresponding models could possibly lead to interesting results.
More importantly, we limit ourselves here to trees to focus on the

large-scale consequences of the cost–benefit mechanism. Further
studies are needed to uncover the mechanisms of formation of

loops in growing spatial networks, and we believe that the model
presented here might represent a suitable modeling framework.
Finally, it seems plausible that the general cost–benefit frame-

work introduced at the beginning of this article could be applied
to the modeling of systems other than transportation networks.
We believe it captures the fundamental features of a spatial net-
work while being versatile enough to model the growth of a great
diversity of systems shaped by space.

Materials and Methods
Simulations. The simulation starts by distributing nodes uniformly in a square.
We then attribute to each node a random population distributed according
to the power law:

PMðxÞ= μ

xμ+1
: [15]

The choice of this distribution is motivated by Zipf’s empirical results on city
populations (26) (which motivates the choice μ= 1:1 in our simulations) but
also because we can go from a peaked to a broad distribution by tuning the
value of μ. Indeed, for μ> 2, both the first and second moments of this distri-
bution exist and the distribution can be considered as peaked. In contrast, for
1< μ< 2, only the first moment converges and the distribution is broad.

Once the set of nodes is generated, we choose a random node as the root
and add nodes recursively until all the nodes belong to the graph. At each
time step, the nodes belonging to the graph constitute the set of “inactive”
nodes and the other, not yet connected nodes constitute the “active” nodes.
At each time step, we connect an active node to an inactive node, such that
their value of R defined in Eq. 5 is maximum.
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Table 1. Empirical estimates for β and β*

Country

Total distance traveled,
passengers per kilometer

per year
Total length,
kilometers

β*, passengers
per year

Maintenance cost,
Euros per year

Average ticket price,
Euros per kilometer

β, passengers
per year

β=β*

France 88:1  109 29; 901 2:94  106 2:10  109 0.12 5:85  105 0.20
Germany 79:2  109 37; 679 2:10  106 7:50  109 0.30 6:60  105 0.32
India 978:5  109 65; 000 1:51  107 3:00  109 0.01 4:61  106 0.31
Italy 40:6  109 24; 179 1:68  106 4:30  109 0.20 8:89  105 0.53
Spain 22:7  109 15; 064 1:51  106 3:16  109 0.11 1:91  106 1.26
Switzerland 18:0  109 5; 063 3:55  106 2:03  109 0.17 2:36  106 0.66
United Kingdom 62:7  109 16; 321 3:84  106 12:00  109 0.16 4:59  106 1.19
United States 17:2  109 226; 427 7:59  104 2:96  109 0.11 1:18  105 1.56

This table gives the total ride distance (in kilometers), the total network length (in kilometers), the total annual maintenance expenditure (in Euros per
year), and the average ticket price (in Euros per kilometer). All the given values correspond to the year 2011. From these data, we compute the empirical
values of β and β*, as well as their ratio (data obtained from various sources, such as financial reports of railway companies).
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