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Huntington’s disease (HD†) is an autosomal dominant genetic disorder that specifically
causes neurodegeneration of striatal neurons, resulting in a triad of symptoms that includes
emotional, cognitive, and motor disturbances. The HD mutation causes a polyglutamine re-
peat expansion within the N-terminal of the huntingtin (Htt) protein. This expansion causes
aggregate formation within the cytosol and nucleus due to the presence of misfolded mu-
tant Htt, as well as altered interactions with Htt’s multiple binding partners, and changes in
post-translational Htt modifications. The present review charts efforts toward a therapy that
delays age of onset or slows symptom progression in patients affected by HD, as there is
currently no effective treatment. Although silencing Htt expression appears promising as a
disease modifying treatment, it should be attempted with caution in light of Htt’s essential
roles in neural maintenance and development. Other therapeutic targets include those that
boost aggregate dissolution, target excitotoxicity and metabolic issues, and supplement
growth factors.

The CliniCal PresenTaTion of
hunTingTon’s Disease

Huntington’s disease (HD) is a fatal

neurodegenerative disorder affecting five

to eight per 100,000 persons of European

descent [1]. In 1872, a 22-year-old Ameri-

can neurologist published the first complete

description of the disease [2]. George Hunt-

ington accurately characterized HD as a ge-

netic condition and described the clinical

presentation of HD as a triad of motor,

emotional, and cognitive disturbances. The

hallmark symptom of HD is the presence
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of involuntary movements, called chorea

[3]. Symptom onset typically occurs in

midlife and the disease progresses over the

next 15 to 20 years [4]. 

In George Huntington’s day, diagnosis of

HD could be tricky, relying heavily upon fam-

ily history, but also upon postmortem brain

analysis, where several pathological features

are observed in Huntington’s diseased brains.

There is overall atrophy, with marked cell loss

in the striatum (caudate/putamen), and globus

pallidus, with corresponding ventricular en-

largement and gliosis [4] (Figure 1). Cortical

pyramidal neuron degeneration also occurs,

particularly in association areas of the tempo-

ral, frontal, and parietal lobes [5]. Within the

HD striatum, the selective progressive loss of

GABA-ergic projection neurons (called

medium spiny neurons) results in choreic

symptoms [6]. The medium spiny neurons re-

ceive robust cortical glutamatergic inputs [7],

implicating excitotoxicity — a calcium-medi-

ated pathological process that damages or kills

cells by overstimulation of glutamate recep-

tors — in the selective neuronal death seen in

HD. 

Back in 1872, George Huntington was

able to categorize HD as a genetic condition.

We now know that HD is an autosomal

dominant disease, meaning that each off-

spring of an affected individual has a 50 per-

cent chance of inheriting the disease, the

disease does not skip a generation, and

males and females are equally at risk [8].

One mutated gene is sufficient to cause the

disease, regardless of the presence of a nor-

mal gene inherited from the other parent [9],

and, in fact, homozygous individuals do not

appear to differ significantly from heterozy-

gotes in terms of age of onset or symptom

severity [10]. 

The MoleCular Biology of
The HD gene

The effort to find the HD gene is a re-

markable story of collaboration between

many researchers amid the earliest efforts of

gene sequencing and cloning. Using genetic

markers to probe specific American and

Venezuelan kindreds, the gene responsible

for the HD mutation was mapped to the tip

of chromosome 4 [11]. By 1993, the Hunt-

ington’s Disease Collaborative Research

Group isolated the HD mutation to a large

gene (IT15, also called the HD gene) that en-

coded a 348 kDa novel protein [12]. The

protein product, termed huntingtin (Htt), is

the sole product expressed by this gene se-

quence. Expansion of a normally occurring

glutamine (CAG) repeat within the Htt pro-

tein results in an extended N-terminal do-

main [13]. The average size of CAG repeats

is 16 to 20 in the normal population and >36

in the affected population [14]. Htt gluta-

mine repeat lengths between 27-35 are in the
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figure 1. striatal pathology in huntington’s disease. Huntington’s disease (HD)

causes overall cortical atrophy and selective cell death of the medium spiny neurons in the

striatum, with corresponding enlargement of the lateral ventrical, as evidenced by coronal

autopsy sections from a 54-year-old male HD patient (a) and a 47-year-old female HD pa-

tient (b).



high normal range, but may elongate in fu-

ture generations due to the unstable nature

of the expansion; polyglutamine (polyQ) re-

peat lengths between 36 and 39 result in re-

duced penetrance, with delayed or no

symptom onset [15].

The fact that HD is an inherited muta-

tion with an expanded CAG repeat in the

coding region of a gene lumps it into a cat-

egory with eight more otherwise unrelated

disorders, including dentatorubropalli-

doluysian atrophy (DRPLA), spinobulbar

muscular atrophy (Kennedy’s disease), and

several spinocerebellar ataxias, including

type-1 (SCA1) and type-3 (SCA3 or

Machado-Joseph disease) [16]. In these dis-

orders, mutant alleles encode a protein with

a corresponding number of polyQ repeats

[13]. Each of these triplet repeat disorders

demonstrate a progressive neurological phe-

notype in specific brain regions. The age of

disease onset is inversely proportional to the

number of CAG repeats — the longer the

polyQ stretch, the earlier the individual will

experience symptoms. 

The dominant pattern of heredity dis-

played by HD focused immediate research

efforts on a gain-of-function model. Re-

searchers thought that Htt would be prefer-

entially expressed in the areas most severely

affected in HD, namely the striatum and cor-

tex. But Htt is highly expressed in the entire

brain and testis, predominately in neurons,

as well as in glial cells [17]. Within the cell,

Htt is a mostly cytoplasmic protein that is

also found at low levels in the nucleus [18].

Once the HD gene was isolated, re-

searchers were able to clone it and insert a

mutated form into animals. Animal models

catapulted the HD field forward. Htt is a

highly conserved protein, and models of HD

have been constructed in animals as diverse

as C. elegans, D. melanogaster, and ze-

brafish [19] (Table 1). In 1995, targeted Htt

disruption confirmed a gain-of-function

model in HD [20-22], and in 1996, re-

searchers in Gillian Bates’ lab showed that

expression of an expanded Htt exon 1 alone

was sufficient to induce a progressive neu-

rological phenotype in mice [23]. 

Expression of mutant Htt in the animal

models revealed a distinctive cellular phe-

notype — intranuclear inclusions and cyto-

plasmic aggregates that were mirrored in

HD human patients [24] (Figure 2A). Ag-

gregation was found in many brain areas and

therefore could not explain the vulnerability

of the striatum. The aggregates in dystrophic

neurites were found in presymptomatic pa-

tients; however, the presence of intranuclear

inclusions appeared to coincide with the

onset of HD symptoms [25]. 

A theory about HD pathogenesis

emerged, strongly based on the data gleaned

from the animal models. Functional subunits

of the proteosome, ubiquitin, and heat shock

proteins [24,26,27] are localized to polyQ

disease inclusions, suggesting a cellular

clearance effort (Figure 2B and 2C). If mu-

tant Htt is resistant to proteolysis, then pro-

tein turnover is delayed. The concentration

of protein increases with time, leading to ag-
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figure 2. aggregate formation in a 140 polyQ knock-in mouse model of hD. in a

model of HD made by inserting a chimeric mouse/human exon 1 with 140 CAG repeats

into mice, inclusions and aggregates can be seen in the striatum and cortex using the

EM48 antibody (a), which is specific for the N-terminal region of the mutant huntingtin pro-

tein. These bodies also contain ubiquitin (b), with colocalization of the two proteins (c).
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Table 1. animal Models of hD.

Model

Mouse R6/1 

R6/2

Drosophila

Zebrafish

Mouse 

N171-82Q

Conditional

mouse

Mouse Hdh

Q150 

Mouse yAC

128 

Mouse Hdh

Q140 

Transgenic

Rat 

Mouse 

BAC-HD 

Rhesus

Macaque

Monkey 

Rat 

BACHD

Construct/ 

Promoter

Human Htt promoter;

~1.9kb fragment of 

5´ human HD gene

GAL4-uAS system-

using eye-specific P

element expression

vector pGMR; human

HD exon 1

Expanded N-terminal

fragment of Htt protein

fused with GFP

N-terminal 171 amino

acids of human Htt;

mouse prion promoter

TetO regulatable;

Chimeric

mouse/human exon 1.

Replace the endoge-

nous

polyQ with expanded

polyQ; mouse Hdh

promoter

yAC expressing full-

length human Htt;

human HD promoter

Replace mouse Htt

exon 1 with expanded

chimeric mouse/

human exon 1; mouse

Hdh promoter

A truncated Htt frag-

ment; endogenous rat

promoter

Full-length human Htt;

human HD promoter

Human HD exon 1

fused to GFP; Human

polyubiquitin-C pro-

moter

Human full-length HD

genomic sequence;

human HD promoter

PolyQ

length

115

144

75 or

120

102

82

94

150

128

140

51

97

84

97

age of

onset

5 m

2 m

2 or 10

days

24 h

post fer-

tilization

5 m

4.5 m

4 m

3 m

12 m

Adult

onset

3 m

Birth to

1 week

Early

onset

Pathology

intranuclear and neuropil

aggregates throughout

the brain; global brain at-

rophy; minimal cell death

Late-onset progressive

neurodegeneration de-

pendent on repeat

length; nuclear accumu-

lation but no inclusions

increase in apoptotic

cells, inclusions in non-

apoptotic cells

inclusions in striatum,

cortex, hippocampus

and amygdala; striatal 

degeneration

Nuclear/cytoplasmic ag-

gregates in striatum, cor-

tex, and hippocampus;

striatal degeneration;

gliosis

Nuclear inclusions in

striatum; striatal gliosis

inclusions in striatum;

neuron loss in striatum.

Nuclear and neuropil

inclusions in striatum,

cortex, nucleus

accumbens, and olfac-

tory tubercle

Neurological pheno-

types, intracellular inclu-

sions, striatal shrinkage

Synaptic dysfunction;

cortical and striatal

atrophy

Neuronal inclusions

Cortical and striatal ag-

gregates; neuropil ag-

gregates appear earlier

than inclusions; reduced

dopamine receptor bind-

ing was detectable by in

vivo imaging

Behavioral 

Phenotype

Tremors and gait

abnormalities; ro-

tarod deficit; clasp-

ing behavior;

learning deficit

Expression restricted

to eyes

increase in embry-

onic lethality or in

embryos with abnor-

mal morphology

Tremors and gait

abnormalities; ro-

tarod deficit; loss of

coordination; hypoki-

nesis

Clasping behavior,

tremor, decreased

grooming

Clasping behavior;

gait abnormalities;

rotarod deficit; hy-

poactivity

Rotarod deficit;

clasping; gait

abnormalities; cir-

cling behavior

increased locomotor

activity and rearing

at 1 month, followed

by hypoactivity and

gait abnormalities 

Progressive motor

dysfunction

Rotarod deficit

Dystonia, chorea

Robust, early onset

and progressive

motor deficits and

anxiety-related

symptoms

year

1996

[23]

1998

[19]

1998

[134]

1999

[135]

2000

[60]

2001

[136]

2003

[137]

2003

[138]

2003

[139]

2008

[140]

2008

[141]

2012

[142]

HD, human huntingtin gene; Hdh, mouse huntingtin gene; m, months of age; GAL4-uAS system, Transgenic flies expressing GAL4, a

yeast transcriptional activator, are crossed with uAS-transgenic flies, carrying a gene of interest inserted downstream of the uAS (up-

stream activating sequence); yAC, yeast artificial chromosome; BAC, bacteria artificial chromosome; GFP, green fluorescent protein



gregation. The aggregates draw other pro-

teins in (including normal Htt), sequestering

them and rendering them useless [28]. Key

cellular components, such as neurofila-

ments, are disrupted by aggregate formation

[29]. The cell then becomes dysfunctional,

dies, and the patient becomes symptomatic.

PhysiologiCal MoDifiers

Due to its large size, the tertiary struc-

ture of Htt remains unknown, but the struc-

ture of several of its protein domains has

been described. Analysis of Htt protein com-

position revealed a glutamine-rich region

followed by a proline-rich domain, several

caspase cleavage sites, and three sets of

HEAT repeats (Htt, elongation factor 3, the

PR65/A subunit of protein phosphatase 2A

and the lipid kinase Tor) (Figure 3) [30-32].

The polyQ stretch, being the subject of in-

tense speculation, is not found in all organ-

isms that express an Htt homolog. The

polyQ stretch is absent in the N-terminal in

Drosophila and Ciona (sea squirt), main-

tained at 4 glutamines in fish, birds, and am-

phibians, and expanded to its longest stretch

in humans [33]. Deletion of Htt’s polyQ

stretch in mice causes neurological conse-

quences and alterations in energy homeosta-

sis in adults, but its absence does not appear

to overtly impact development [34]. Loss of

the entire Htt protein results in embryonic

lethality in mice due to organization defects

in the extra-embryonic tissues [22,35].

The Htt proline-rich region is found

only in mammals [33], and although it may

contribute to the solubility of the protein

[36], deletion of the proline-rich domain in

mice does not appear to significantly affect

Htt’s normal function [37]. In contrast, the

large majority of the HEAT repeats are pres-

ent throughout all the homologs, including

insects [33]. HEAT repeat proteins are typi-

cally very large, function as part of protein

complexes, and are often involved in cyto-

plasmic transport processes [30]. The con-

served nature of the HEAT repeats in Htt is

perhaps our best clue to Htt’s normal func-

tion, as their presence indicates a propensity

to interact with other proteins, and suggests

Htt is a type of scaffold on which other pro-

teins can assemble. 

The presence of accumulated misfolded

proteins classifies HD as a conformational

disease and groups it with a diverse brain

disorders such as prion encephalopathies,

Alzheimer’s disease, and Parkinson’s dis-

ease, although the aggregation sites differ

[38]. Direct evidence for misfolded mutant

Htt lies in the fact that certain antibodies are

able to distinguish between the mutant and

normal forms of the protein [28].

A misfolding of the mutant Htt protein

due to the extended N-terminal could alter

protein function, as the polyQ stretch may
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figure 3. huntingtin Protein Domains (adapted from Zuccato 2010). Huntingtin (Htt) is a

large protein (352 KDa) with several highly conserved protein domains. The N-terminus

contains the polyglutamine (polyQ) stretch that causes Huntington’s disease when elon-

gated, as well as a proline rich region (PRR). There are three sets of HEAT repeats (Htt,

elongation factor 3, the PR65/A subunit of protein phosphatase 2A and the lipid kinase

Tor) that stretch throughout a large portion of the protein. Several cleavage sites have

been identified in Htt, concentrated between amino acids 400-600, as well as a nuclear lo-

calization signal (NLS) toward the C-terminus. Htt also is subject to multiple forms of post-

translational modifications, including acetylation, phosphorylation, palmitoylation,

sumoylation and ubiquitination, which can be altered in the presence of the expanded al-

lele. 
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Table 2. huntingtin interacting Proteins [39,143-145].

name

Transcription

CA150

CBP

CtBP

HyP-A, B

HyP-C

NCOR

NF-ĸB

SP1

TAFii130

TBP

P53

REST-NRSE

Trafficking and 

endocytosis

HAP1

HiP1

HiP14

PACSiN1

Phosphatidylethanolamine

Pi(3,4,5)P3

PSD-905

signaling

Calmodulin

CiP-4

FiP2 (HyP-L)

GRb2

iP31

SH3GL3

RasGAP

Metabolism

Cystathionine b-synthase

GAPDH

gp78

HiP2

Protein synthesis

Gnb211

Myo5a

Rps6

Prkra

Protein function

Transcription activator

Transcription activator

Transcription repressor

RNA splicing factors

Transcription factor

Transcription repressor

Transcription factor

Transcription activator

Transcription activator

Basal transcription factor

Transcription factor

Trascription suppressor

Trafficking, endocytosis

Endocytosis, pro-apoptotic

Trafficking, endocytosis

Endocytosis

Phospholipids

Synaptic scaffolding

Calcium-binding regulatory protein

Cdc42-related signaling

GTPase Rab8 interactor

Growth factor signaling

Calcium release channel

Endocytosis and vesicle recycling

Ras GTPase-activating protein

Generation of cysteine

Glycolitic enzyme

ER membrane-anchored ubiquitin

ligase

ubiquitin-conjugated enzyme

Translation (indirect,) ribosomal

protein

RNA transport to spines

Translation (direct), Ribosomal protein

Translation (indirect), PKR regulation

htt binding region

unknown

Amino acids 1-588

unknown

Polyproline

Polyproline

Amino acids 1-171

HEAT repeats

Amino acids 1-171

Amino acids 1-480

unknown

Polyproline

Amino acids 1-548

Amino acids 1-230

Amino acids 1-540

Amino acids 1-550

Polyproline

Amino acids 171-287

unknown

unknown

Amino acids 1-152

Amino acids 1-550

Polyproline

Amino acids 1-158

Polyproline

Polyproline

Amino acids 1-171

Polyproline

HEAT repeats 2/3

Amino acids 1-540

unknown

unknown

unknown

unknown

influence of

mu hTT

None

Enhances

Decreases

Enhances

Enhances

Enhances

unknown

Enhances

None

unknown

None

Decreases

Enhances

Decreases

Decreases

Enhances

Enhances

Decreases

Enhances

Enhances

unknown

unknown

Enhances

Enhances

unknown

None

Enhances

Enhances

None

Decreases

Decreases

Decreases

Decreases

Abbreviations: CA150, co-activator 150; CBP, (cAMP-response element binding protein) binding protein; CiP-4,

cdc42-interacting protein 4; Co-iP, co-immunoprecipitation; CtBP, C-terminal-binding protein; FiP2, for 14.7K inter-

acting protein; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; Gnb2l1, guanine nucleotide-binding protein (G

protein) polypeptide 2-like 1; gp78, glycoprotein 78; GRB2, growth factor receptor-binding protein 2; GST, glu-

tathione S-transferase; HAP1, htt-associated protein 1; HiP, htt-interacting protein; HyP, htt-yeast partner; iP31, in-

ositol (1,4,5)-trisphosphate receptor type 1; Myo5a, myosin V;A NCOR, nuclear receptor co-repressor; NF-kB,

nuclear factor-kB transcription factor; PACSiN1, protein kinase C and casein kinase substrate in neurons 1;

[Pi(3,4,5)P3] phosphoinositol, (Pi) 3,4-bisphosphate, Pi 3,5-bisphosphate, and Pi 3,4,5-triphosphate; PKR, double-

stranded RNA-activated protein kinase; Prkra, interferon inducible double-stranded RNA-dependent protein kinase

activator A; PSD- 95, postsynaptic density 95; RasGAP, Ras GTPase-activating protein; REST–NRSE, the repres-

sor element-1 transcription factor–the neuron restrictive silencer element; Rps6, ribosomal protein S6; SH3GL3,

SH3-containing GRB2-like protein 3; SP1, specificity protein-1; TAFii130, TBP-associated factor; TBP, TATA box

binding protein.



present itself or nearby Htt domains in a

more or less provocative way to potential

binding partners. Indeed, an assessment of

the changes in mutant Htt’s protein interac-

tions shows that HD has elements of loss-

of-function occurring at the same time as

gain-of-function, both perturbing normal Htt

functions and gaining deleterious new cel-

lular activities [39]. These altered binding

partner relationships are all potential thera-

peutic targets. 

Being a large protein, Htt has numerous

binding partners, including transcription co-

activators [40], co-repressors [41], and

apoptosis-related kinases [42]. Htt’s normal

function may impact many cellular

processes, including signal transduction, en-

docytosis, cytoskeletal structure, transcrip-

tion and axonal transport [43-45], and in the

presence of the expanded polyQ stretch, the

interactions with binding partners can be in-

creased or decreased (Table 2). Interestingly,

expression of the N-terminal section of mu-

tant Htt is enough to cause neuronal degen-

eration, but is not sufficient to maintain Htt’s

axonal transport functions [46].

Htt was the first neurodegenerative dis-

ease protein to be identified as a caspase

substrate [47]. Htt can be cleaved by cas-

pases (including caspase-2 [48] and caspase-

3 [47]), calpain [49], and the matrix

metalloproteinase MMP-10 [50] at a re-

gional “hot spot” within Htt between 400

and 600 amino acids, resulting in N-termi-

nal Htt fragments that are small enough to

passively translocate into the nucleus. Once

inside the nucleus, the mutant Htt cleavage

product can form nuclear inclusions that re-

cruit transcription factors, and soluble mu-

tant Htt can aberrantly repress transcription

itself [18].

Proteolytic processing is likely an im-

portant initial step in pathogenesis, since ex-

pressing the smaller Htt truncation product

results in greater cell toxicity than express-

ing the entire mutant htt protein [51,52] and

inhibition of cleavage can lessen neurotoxi-

city in animal models [53]. Htt contains a

strictly conserved nuclear export signal that

is cleaved away in HD [54], and nuclear tar-

geting of mutant Htt increases toxicity [55],

so devising a way to keep mutant Htt out of

the nucleus could be beneficially therapeu-

tic.

In addition to cleavage, Htt is normally

subject to several types of post-translational

modifications, including acetylation, phos-

phorylation, methylation, sumoylation, and

ubiquitination, which can be altered in the

presence of the expanded allele [56]. For ex-

ample, Htt phosphorylation at serine 421

promotes anterograde transport within the

neuron, but this function is impaired in the

presence of the mutant allele [57]. Htt phos-

phorylation at serines 13 and 16 can protect

against expanded polyQ toxicity [58], and

increasing or mimicking phosphorylation at

these sites is currently an area of therapeutic

investigation.

BioCheMiCal MoDifiers

Although the certainty of a genetic di-

agnosis can be daunting for affected patients

and their families, early genetic testing of in-

dividuals at risk for an autosomal dominant

disorder would allow ample time for a po-

tential therapy to be administered [59].

However, with no available treatment, and

with more than 10 potential disease-modi-

fying drugs showing no significant differ-

ence in clinical trials [58], many at-risk

individuals choose not to find out their ge-

netic status. 

In 2000, the first regulatable mouse

model of HD showed that it is possible to re-

verse aggregate formation and disease

symptoms after they have manifested [60],

which gave researchers hope that a potential

therapy could even be effective in sympto-

matic patients. The cumulative damage hy-

pothesis states that in neurodegenerative

disease, neurons are slowly overwhelmed by

accumulated damage (such as that caused by

oxidative stress or toxic protein accumula-

tion), and those neurons become increas-

ingly committed to an apoptotic future. On

the contrary, the “one-hit” biochemical

model of several inherited diseases, includ-

ing HD, uses statistical analysis to argue

against the cumulative damage hypothesis

[61]. The “one-hit” model proposes that a
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single catastrophic intracellular event results

in neuronal death. At any one time, each

neuron is at constant risk of cell death,

which implies that treatment administered at

any disease stage should be beneficial. 

In animal models, we can delay the dis-

ease process and even reverse it — we can

dismantle aggregates and rescue phenotypes

[60,62-65]. Theoretically, if we can do it in

animals, in humans we should be able to ad-

minister a small molecule drug to keep pre-

symptomatic patients healthy or to restore

proper neuronal function at any stage of the

disease, as long as the neurons are still pres-

ent. However, the post-mitotic nature of

neurons, combined with difficulties crossing

the blood brain barrier, pose substantial hur-

dles to effectively reaching the striatal tar-

get cells. Recent advances in transforming

adipose-derived stem cells derived from HD

patient into pluripotent stem cells (that can

be transformed into neurons) should assist

with elucidating disease mechanisms and

hasten the testing of small molecule thera-

pies [66].

One such small molecule under investi-

gation aims to inhibit histone deacetylases

(HDACs). Truncated mutant Htt can inhibit,

mislocalize, and degrade acetyltransferases,

which are enzymes that normally modify

proteins to increase gene activity [67]. This

interaction is mediated through the proline

rich domain, as well as the polyQ stretch,

and results in reduced levels of acetylated

histones [68]. HDACs are able to reverse

this reduction and reduce lethality in animal

models of HD, even after symptom onset, so

HDAC inhibitors are another potential treat-

ment, as they can influence not only gene

transcription but also potentially alleviate

endoplasmic reticulum stress or modulate

chaperone activity [67]. 

The HD phenotype could conceivably

be delayed by preventing aggregate forma-

tion and/or increasing aggregate clearance

by targeting proteosome function, increas-

ing ubiquitination, or increasing autophagy.

Eukaryotic cells have two pathways for

clearance — under normal circumstances,

the ubiquitin/proteosome system functions

at high levels, whereas the autophagy/lyso-

some system maintains low activity levels

[69]. If mutant Htt overwhelms the ubiqui-

tin/proteosome system in HD, the neuron

will then induce autophagy for protein clear-

ance [70]. 

Indeed, the autophagic response is one

of the first neuronal responses to mutant Htt

[71] and is predominately responsible for

clearing the cytoplasmic aggregates [72].

Polymorphisms in autophagy-related genes

contribute to the age of onset in HD [73].

Remarkably, Htt may normally regulate

mechanisms of protein degradation that are

ultimately involved in its own clearance

[74], and in the disease process, expression

of Htt with a deleted polyQ tract in a 140Q/+

knock-in mouse model can upregulate au-

tophagic markers and increase lifespan [65].

Unlike the cytoplasmic aggregates, HD nu-

clear inclusions appear to be cleared using

the ubiquitin/proteosome system instead

[69], making both the autophagic and the

ubiquitin/proteosome systems attractive

therapeutic targets. 

MoDulaTing exCiToToxiCiTy
anD MeTaBolisM

Excitotoxicity has been implicated in

the selective neuronal death seen in HD

[75]. There is an intimate relationship be-

tween cellular metabolism and excitotoxic-

ity. Although implicated in HD several

ways, the strongest evidence that mitochon-

dria are involved in HD pathogenesis is the

fact that administration of the mitochondr-

ial toxin 3-nitropropionic acid (3-NP) can

mimic HD characteristics [76], including se-

lective cell death in the striatum, cognitive

impairment, and the development of motor

symptoms in a non-human primate model

[77].

Both creatine and coenzyme Q10 ad-

ministration reduce reactive oxygen species

to address the metabolic defects in HD. Cre-

atine is involved with energy buffering and

the connection between energy production

and consumption within the cell. When

orally administered in a HD mouse model,

creatine improves survival and delays atro-

phy and aggregate formation [78]. Coen-
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zyme Q10 is an antioxidant, as well as an es-

sential part of the electron transport chain.

Coenzyme Q10 can alleviate symptoms, ex-

tend survival time, and slow striatal atrophy

in a mouse model of HD [76]. Unfortu-

nately, limited efficacy of these agents has

been observed in HD patients; however, the

optimal therapeutic dose may have been un-

derestimated and higher dose administration

is under investigation [73]. Another meta-

bolic therapeutic target is the P2X receptor,

part of the signaling machinery mediating

ATP responses to neurodegenerative stres-

sors [79]. 

Growth factors and cytokines play a

role in HD pathology and may particularly

modulate the effects of excitotoxicity. Trans-

forming growth factor β1 (TGF-β1) is re-

duced in cortical neurons of HD patients and

mouse models [80], so supplementation is a

possibility, or perhaps TGF-β1 could be a

useful biomarker for disease progression. 

Retroviral administration of ciliary neu-

rotrophic factor (CNTF) can alter the neu-

ronal degeneration and prevent deficits in an

excitotoxic HD rat model [81,82]. Bilateral

striatal implantations of CNTF releasing

cells into a primate model of HD at symp-

tom onset protects neurons from further de-

generation, as well as offering cognitive and

motor improvement [83]. Peripheral admin-

istration of CNTF is not well tolerated due to

side effects, but implantation of CNTF-re-

leasing cells remains a possibility [84]. A

phase I study implanting a device with a

semi-permeable membrane encapsulating a

cell line engineered to synthesize CNTF in

HD patients showed that administration

within the ventricle is safe and feasible;

however, the technique needs improvement,

as CNTF levels were low in many patients

and there were varying cell survival num-

bers within capsules after removal [85].

Brain-derived growth factor (BDNF) is

a neurotrophic factor speculated to play a

role in neuronal development and survival

[86], and BDNF can prevent cell death in

excitotoxic models of HD [87]. One of nor-

mal Htt’s regular jobs in the cell is to bind up

transcriptional repressors (such as REST–

NSFR [the repressor element-1 transcription

factor–the neuron restrictive silencer ele-

ment]) in the cytoplasm. Mutant Htt does a

poor job of binding to the repressors, result-

ing inhibition of target genes, including

brain-derived neurotrophic factor (BDNF)

[73]. Not surprisingly, a 53 percent to 82

percent reduction in BDNF expression was

found in the striatum of HD patients upon

autopsy [88]. Enrollment was recently com-

pleted for a phase 2/3 clinical trial investi-

gating cysteamine bitartrate delayed-release

capsules (RP103) for HD in France, follow-

ing results showing that cysteamine in-

creases BDNF levels in rodents and primate

models of HD [89].

Glial cells play a major role in local

trophin availability, and astrocytes are able

to both respond to and produce BDNF [90].

Efforts can be made to increase gene prod-

ucts like BDNF, for example, astrocytes en-

gineered to overexpress BDNF are being

explored as a potential gene therapy in a ro-

dent model of HD [91].

a role for asTroCyTes in hD

Recently, the research focus on HD

neuronal dysfunction has expanded to in-

clude a possible glial role in pathogenesis.

Glial cells do express Htt [17] and original

pathology work showed marked gliosis as a

disease marker, becoming more widespread

as the disease progresses [92]. Mouse mod-

els expressing mutant Htt show glial nuclear

aggregates [93], and specific astrocytic ex-

pression of 160Q N-terminal mutant Htt

fragments can induce neurological symp-

toms in mice [94]. Interestingly, mouse stem

cells expressing no Htt are much more likely

to differentiate into glial cells than cells ex-

pressing Htt with 20, 50, 111 or 140 polyQ

repeats, even when treated with the same in

vitro neural differentiation protocol [95].

Neurons are dependent on astrocytes

metabolically and cooperate very closely

with astrocytes when it comes to circum-

venting glutamate-mediated excitotoxicity

[96], so investigating this relationship in HD

seems reasonable. Nearly 80 percent of glu-

tamate is removed from the synapse by the

astrocytic transporters glutamate transporter
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1 (GLT1) and glutamate-aspartate trans-

porter (GLAST) [97]. Interestingly, knock-

outs of either of these glial glutamate

transporters results in excess extracellular

glutamate levels and a progressive motor

phenotype [98]. If the GLT1 transporters are

nonfunctional or missing, neuronal damage

due to glutamate over-stimulation is likely

to occur [99,100], and indeed, decreased

mRNA levels for GLT1 are found in HD

[101].

Astrocytes are also responsible for sup-

plying adult neurons with cholesterol [102],

a key ingredient for normal synaptogenesis

and neurotransmitter release [103,104].

Cholesterol biosynthesis is reduced in astro-

cytes isolated from HD mouse models [105],

though Htt’s involvement in cholesterol

homeostasis remains to be fully elucidated.

Since astrocytes are very sensitive to cues in

the environment surrounding the neurons,

they may also be affected by increased cili-

ogenesis caused by mutant Htt [106]. The

non-motile cilia have a sensory role in reg-

ulating signaling pathways, such as hedge-

hog and PDGF-α [106]. The restoration of

normal ciliary function — though certainly

not a complete treatment — could be a po-

tential therapeutic target. 

geneTiC MoDifiers

Early investigations showed that a gene

closely linked to the HD gene may modify

age of onset [107]. Targeting cis-regulatory

elements to delay the appearance of symp-

toms is a strategy that remains to be eluci-

dated, as the exact nature of these regulatory

elements are still unknown. However, se-

quence variations in the PPARGC1A gene

encoding PGC-1α (involved in mitochondr-

ial function), as well as polymorphisms in

PGC1α’s downstream targets, can exert

modifying effects on the age of onset in HD

[108]. Subtypes of N-methyl D-aspartate re-

ceptor genes (GRIN2A and GRIN2B) may

also modify age of onset [109].

The length of Htt’s polyQ stretch in the

normal allele does not influence when HD

symptoms first appear [110], which suggests

that strategies to decrease Htt expression it-

self may be effective. This proposal is more

complicated than simply ridding the cell of

a benign protein that has turned noxious.

The development of knockout and condi-

tional knockout mouse models demonstrate

that Htt is essential for early embryogenesis

[20-22] and spermatogenesis [111]. Rather

than seeing a decrease in Htt expression fol-

lowing execution of its critical role in em-

bryogenesis, postnatal Htt expression levels

actually rise in the adult [112]. Htt plays a

critical role in the development of proper

neuronal connections and apoptosis [113],

and it is not yet known if lack of Htt expres-

sion as an adult would be benign. 

Existing literature suggests that Htt loss

of function may comprise essential neu-

rodevelopment programs, including neu-

ronal organization through a pivotal role in

mitotic spindle orientation [114] and neu-

ronal maturation via its role in ciliogenesis

[115]. Htt itself has antiapoptotic properties

[116], and depletion of wild type Htt has

been found not just in mouse models of HD,

but also in models of neurodegeneration sec-

ondary to ischemia and traumatic brain in-

jury [117]. Eliminating expression without

a complete understanding of Htt’s normal

cellular function could confound the plight

of already sick neurons.

The HD gene can be silenced in vivo

using RNA strategies (small interfering

RNA [siRNA] or short hairpin RNA

[shRNA]) or by antisense oligonucleotides

(ASO). Temporally sensitive administration

of RNA therapy could reduce Htt production

in HD gene carriers and potentially elimi-

nate Htt protein in adult tissues. However,

practical applications of these therapies

struggle to find the best routes of adminis-

tration, due to the blood brain barrier, and

the appropriate cells to target, as we know

that HD is not solely a striatal specific dis-

ease [118]. In addition, gene suppression

strategies must be carefully designed to

avoid off-target effects and dosage control. 

Small-scale siRNA knockdown experi-

ments in monkeys [119] and mice using

siRNA [120] appear promising; however, in

the process of eliminating Htt protein ex-

pression, wild-type Htt protein expression is
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often decreased as well. Continuous partial

suppression of both forms of Htt expression

in rodent models decreases neuropathology,

reduces symptoms, and prolongs survival,

even when wild-type Htt was also elimi-

nated [121,122]. To selectively target just

the mutant Htt allele, RNA strategies can

capitalize on the presence of the expanded

polyQ [123] or on the presence of single nu-

cleotide polymorphisms (SNPs) associated

with the presence of the expanded polyQ al-

lele [124] as targets. The recent achievement

of an allele-selective siRNA in an HD

mouse model may make the siRNA tech-

nique the most effective way forward for Htt

silencing efforts [125]. 

But can these knockdown techniques be

translated effectively from mice to humans?

Recently, a convection-enhanced delivery

system delivered 7 days of a siRNA treat-

ment to the much larger non-human primate

brain and was able to decrease Htt expres-

sion effectively throughout the striatum, re-

moving a technical delivery hurdle for

human therapy translation [126]. Still more

promising, favorable results from a phase 1

trial that used siRNA to block the expression

of SOD1 in familial forms of Amyotrophic

Lateral Sclerosis (ALS) were presented at the

2012 American Academy of Neurology An-

nual Meeting. In humans affected with HD,

neurons are able to sustain the expression of

mutant Htt for many years before aggregates

form and neurodegeneration begins. It may

be that a brief elimination of mutant Htt syn-

thesis is all a neuron needs to get a better

handle on clearing the mutant Htt from the

cell and to keep symptoms at bay. 

hunTingTin as a DeveloPMenTal
DisorDer

Although HD patients are usually not

symptomatic until mid-life, abnormal brain

development may contribute to HD patho-

physiology. Affected patients often experi-

ence weight loss that pre-dates motor

abnormalities [127], and brain scans reveal

enlarged cortex size [128] and decreased in-

tracranial volume [127] in presymptomatic

patients, which suggests abnormalities in

neural development. Presymptomatic chil-

dren carrying the HD expansion have lower

body mass index (BMI) and head circum-

ference than controls, suggesting defects

with energy regulation and brain growth are

present 30+ years before overt symptoms

would normally appear [129]. 

These findings group HD into yet an-

other disease category (with disorders such

as schizophrenia, familial Alzheimer’s dis-

ease, and SCA-1), where abnormal devel-

opment sets the stage for a later stressor,

resulting in cell death [130]. The evidence

for very early disease manifestation, in com-

bination with Htt’s essential roles in early

development, brings HD full circle from a

neurodegenerative disease to a developmen-

tal disease with cellular homeostasis defects

that predispose neurons to die in mid-life

[131]. 

Htt, as a fairly social protein within the

cell, may have multiple roles to play during

development and during adulthood, and dif-

ferent protein domains may be essential at

distinct time points [132]. Even normal vari-

ations in the size of the Htt polyQ stretch are

associated with differences in brain meas-

urements in the pallidum, with longer repeat

lengths associated with more grey matter in

normal individuals [133]. More research is

needed to discover the normal functions of

Htt at multiple stages in development.

Thinking about HD as a type of develop-

mental disorder opens the door for very

early intervention targets, and yet pointedly

introduces the issue of responsible genetic

testing of juveniles with no available cure.

ConClusion

It has been more than a century since

the first description of the disease was pub-

lished. With the advent of molecular genet-

ics techniques, we now are able to view a

blueprint of each individual’s DNA. In a few

short decades, HD diagnosis became as easy

as a blood test. But Htt turns out to have

multiple roles within the cell, and the HD

story has been far more complex than most

imagined. Many of the original pioneering

HD researchers are still working on this dis-
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ease, and the hope is that a physician will be

able to hand patients an effective treatment

along with an HD diagnosis. The HD gene

was the first to be mapped; perhaps it will

also be the first neurodegenerative disease

to be cured.
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