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Formation and normal function of 
neuronal synapses are intimately 

dependent on the delivery to and removal 
of biological materials from synapses by 
the intracellular transport machinery. 
Indeed, defects in intracellular trans-
port contribute to the development and 
aggravation of neurodegenerative disor-
ders. Despite its importance, regulatory 
mechanisms underlying this machin-
ery remain poorly defined. We recently 
uncovered a phosphorylation-regulated 
mechanism that controls FEZ1-mediated 
Kinesin-1 based delivery of Stx1 into neu-
ronal axons. Using C. elegans as a model 
organism to investigate transport defects, 
we show that FEZ1 mutations resulted in 
abnormal Stx1 aggregation in neuronal 
cell bodies and axons. This phenom-
enon closely resembles transport defects 
observed in neurodegenerative disorders. 
Importantly, diminished transport due 
to mutations of FEZ1 and Kinesin-1 
were concomitant with increased accu-
mulation of autophagosomes. Here, we 
discuss the significance of our findings 
in a broader context in relation to regula-
tion of Kinesin-mediated transport and 
neurodegenerative disorders.

Introduction

The neuronal cellular architecture with its 
numerous extended processes and exten-
sive branching has evolved exquisitely to 
support its function as an integrator and 
transducer of inter-neuronal signaling.1 
The proper function of this intricate cellu-
lar network (and indeed even the viability 
of the neuron itself) is sustained by a simi-
larly fascinating system of intracellular 
transport machinery that serves to move 
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organelles and biological raw materials 
from one part of the neuron to another.2 
The Kinesin superfamily of proteins is 
predominately responsible for anterograde 
transport of these cargoes in neuronal 
axons. An unresolved dilemma for this 
transport machinery is how the limited set 
of Kinesin members is capable of adapt-
ing to the large diversity of intracellular 
cargo. While Kinesins have been shown to 
bind to cargo directly, most appear to bind 
indirectly via a growing array of Kinesin 
adapters.3 Nevertheless, detailed under-
standing of mechanisms regulating and 
coordinating cargo recognition, cargo-
motor complex formation and activation 
of the motor protein remains elusive.4

FEZ1 as a New Motor  
Adaptor for Presynaptic Cargo

We recently reported that fasciculation 
and elongation protein zeta 1 (FEZ1/
UNC-76) binds the neuronal SNARE 
protein Syntaxin 1A (Stx1/UNC-64) 
and Munc18/UNC-18, two presynaptic 
proteins involved in the control of syn-
aptic vesicle exocytosis.5 FEZ1 was previ-
ously shown to function as a Kinesin-1/
UNC-116 adaptor and we wondered if it 
might also function in the axonal deliv-
ery of these presynaptic proteins. Since 
the presence of FEZ2, a close homolog 
of FEZ1, in mammals might complicate 
functional analysis of the interactions, we 
instead opted to use Caenorhabditis ele-
gans, a model organism that is easily ame-
nable to genetic manipulations and in 
vivo imaging. Satisfyingly, we were able 
to successfully correlate the biochemical 
findings with their in vivo function in  
the worm.
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Kinesin-1 transport complex. Indeed, 
Munc18 was suggested to play a protec-
tive function during the synthesis and 
maturation of Stx1 by preventing export 
of spurious SNARE complexes from the 
Golgi.10 Interestingly, binding of Stx1 to 
FEZ1 appears to be constitutive whereas 
phosphorylation of FEZ1 is required for 
Munc18 binding. This suggests that the 
motor itself is unable to recognize the 
quality of the cargo in the absence of 
bound Munc18. The inability to form a 
functional Stx1/FEZ1/Kinesin-1 trans-
port complex without Munc18 would 
explain why the cargo becomes trapped at 
the Golgi.

Supporting this notion, we observe that 
Stx1 and FEZ1 strongly co-localizes at 
Golgi sites when a Munc18 mutant unable 
to bind Stx1 was expressed in mam-
malian cells. In comparison, both pro-
teins redistribute correctly to the plasma 
membrane when wild-type Munc18 was 
used (unpublished observations). Taken 
together, we postulate that presentation 

Munc18 a Regulator of  
Cargo-Motor Complex Formation?

Intriguingly, the intracellular distribution 
of Munc18/UNC-18 appears unaffected 
by disruptions to the FEZ1/Kinesin-1 
motor. This indicates that the bulk of 
Munc18 might be transported indepen-
dently of Stx1. Previous studies have 
shown that the plasma membrane trans-
location of Stx1 is tightly dependent on 
co-expression of Munc18. Indeed, Stx1 
is largely confined to ER or Golgi com-
partments in non-neuronal cell lines over-
expressing Stx1 or in PC12 cells where 
expression of Munc18 has been abrogated 
(Fig. 1B).6-9 The lack of a UNC-18 trans-
port defective phenotype in both unc-76 
and unc-116 mutants raises the intriguing 
possibility that Munc18/UNC-18 might 
not be a cargo for the FEZ1/Kinesin-1 
motor complex. So why does FEZ1 con-
currently bind Munc18?

A possible explanation is that Munc18 
regulates the formation of the Stx1/FEZ1/

Examination of neurons revealed axo-
nal transport abnormalities in unc-76 and 
unc-116 mutants as manifested by the 
appearance of UNC-64 aggregates in cell 
bodies as well as axons. Importantly, re-
expression of FEZ1 or UNC-76 alone in 
unc-76 mutants was sufficient to restore 
wild-type axonal distribution of UNC-
64 in these animals. We further deter-
mined by mass spectrometric analyses 
that FEZ1 expressed in mammalian cells 
is phosphorylated at multiple serine sites. 
Subsequent biochemical analyses demon-
strated that FEZ1’s interaction with both 
Munc18 and Kinesin-1 is tightly regulated 
by its phosphorylation. Significantly, re-
expression of a phosphorylation-defective 
mutant of FEZ1 (FEZ1 S58A) failed to 
restore wild-type axonal distribution of 
UNC-64 in unc-76 mutants. The com-
bined data from the biochemical and 
functional experiments strongly indicated 
that FEZ1/UNC-76 functions as a motor 
adaptor bridging presynaptic cargo and 
Kinesin-1/UNC-116 (Fig. 1A).

Figure 1. FEZ1/UNC-76 serves as a motor adaptor for presynaptic cargo. (A) Kinesin-1/UNC-116 binds Stx1/UNC-64-containing transport vesicles via 
the adaptor FEZ1/UNC-76 forming a complex with Stx1/UNC-64 and Munc18/UNC-18. Dephosphorylation of FEZ1/UNC-76 releases the cargo from the 
motor. (B) In the absence of Munc18/UNC-18, Stx1/UNC-64 is not efficiently transported to the synapse. (C) Defects in adaptor function may result in 
transport abnormalities leading to cargo degradation and neurodegeneration.
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binds Huntingtin. Mutant Huntingtin 
is known to inhibit fast axonal transport 
by activating JNK3 which, in turn, phos-
phorylates Kinesin-1 and reduces its abil-
ity to bind microtubules.21,22 Considering 
that disrupting FEZ1 function in neurons 
also affects intracellular transport of other 
synaptic proteins and mitochondria, it is 
conceivable that perturbations of FEZ1 
function will have a broader impact on 
intracellular transport defects.20,23,24

Using electron microscopy, we observed 
the appearance of autophagosomes in 
axonal processes of unc-76 and unc-116 
mutants. This is in excellent agreement 
with recent reports from animal models 
of ND where reduced motor function 
is associated with increased autophagic 
vesicles and the onset of neuron degen-
eration.25,26 Conceivably, motor defects 
generate stranded cargo that is removed 
by autophagy. These studies suggest that 
a buildup of such cargo may eventually 
overwhelm the autophagic apparatus. As 
FEZ1 is also known to regulate autophagy, 
it is possible that FEZ1 may be involved in 
targeting the stranded cargo for autopha-
gic degradation.27

Outlook

A growing amount of studies place FEZ1 
as a hub protein connecting several bio-
logical processes pertinent to neurodegen-
erative diseases. It will be interesting to see 
if FEZ1 functions as a master orchestrator 
of neuronal growth and homeostasis by 
balancing kinesin-based delivery of cargo 
with autophagy.
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