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Abstract
The past several years have seen the accumulation of evidence demonstrating that tissue injury
induced by diverse toxicants is due not only to their direct effects on target tissues but also
indirectly to the actions of resident and infiltrating macrophages. These cells release an array of
mediators with cytotoxic, pro- and anti-inflammatory, angiogenic, fibrogenic, and mitogenic
activity, which function to fight infections, limit tissue injury, and promote wound healing.
However, following exposure to toxicants, macrophages can become hyperresponsive, resulting in
uncontrolled or dysregulated release of mediators that exacerbate acute tissue injury and/or
promote the development of chronic diseases such as fibrosis and cancer. Evidence suggests that
the diverse activity of macrophages is mediated by distinct subpopulations that develop in
response to signals within their microenvironment. Understanding the precise roles of these
different macrophage populations in the pathogenic response to toxicants is key to designing
effective treatments for minimizing tissue damage and chronic disease and for facilitating wound
repair.
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INTRODUCTION
The concept that macrophages accumulating in tissues in response to injury or infection can
contribute to disease pathogenesis was first proposed in the late nineteenth century by Eli
Metchnikoff. Considered one of the “fathers” of modern immunology, he described the
inflammatory response as a “salutary reaction against some injurious influence” and
postulated that “ferments” released by cells at the site of inflammation might be capable of
damaging host tissues (1). The past hundred years have seen the accumulation of evidence
supporting this concept in diverse target organs including the lung, liver, skin, kidney, and
brain. Thus in each of these tissues, a characteristic response to toxicants involves increased
numbers of “activated” macrophages at sites of injury along with enhanced production of
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cytotoxic and proinflammatory mediators. Additionally, in many experimental models,
agents that block macrophages abrogate tissue injury. More recent data have suggested that
macrophages also play an essential role in suppressing inflammation and initiating wound
repair, and that aberrations in these activities can lead to an exaggerated response to
toxicants and/or the development of fibrosis or cancer. Hence it appears that macrophages
can function as agents of defense or agents of destruction, either protecting the host from
toxins and pathogens or promoting tissue injury and chronic disease. Their specific response
depends on the toxicant, the exposure levels, and the nature of the inflammatory mediators
they encounter in the tissue microenvironment. In this review, the diverse functioning of
macrophages and their contribution to liver and lung toxicity is described.

MACROPHAGES
Macrophages are mononuclear phagocytes derived from monocytic precursors in the blood
and bone marrow. Once localized in tissues, macrophages acquire specialized functions
depending on the requirements of the tissue. Thus in the liver, resident macrophages (also
known as Kupffer cells) develop a high phagocytic capacity aimed at removing endotoxin
and other foreign materials from the portal circulation, whereas in the lung, alveolar
macrophages acquire the capacity to release large quantities of highly reactive cytotoxic
oxidants to destroy inhaled pathogens and xenobiotics. Macrophages are essential cellular
effectors of the innate immune response, ridding the body of worn-out cells and debris—as
well as viruses, bacteria, apoptotic cells, and some tumor cells—and mounting an
inflammatory response following injury or infection (2). Macrophages are also one of the
most active secretory cell types in the body, releasing a multitude of mediators that regulate
all aspects of host defense, inflammation, and homeostasis (Table 1). In addition, they are
considered professional antigen-presenting cells, one of the major cell types involved in
initiating specific immune responses of T lymphocytes.

Evidence suggests that the diverse biological activity of macrophages is mediated by
phenotypically distinct subpopulations of cells that develop in response to inflammatory
mediators they encounter in their microenvironment. Two major populations have been
characterized: classically activated M1 macrophages and alternatively activated M2
macrophages (see Figure 1). M1 macrophages are activated by type I cytokines [e.g.,
interferon-γ (IFNγ) and tumor necrosis factor α (TNFα)], or after recognition of pathogen-
associated molecular patterns or PAMPs [e.g., lipopolysaccharide (LPS), lipoproteins,
dsRNA, and lipoteichoic acid] and endogenous “danger” signals [e.g., heat shock proteins
and high-mobility group protein 1 (HMGB1)]. These cells exhibit potent microbicidal and
tumoricidal activity and release interleukin (IL)-12 and IL-23, promoting strong
proinflammatory Th1 immune responses. In addition, they exert antiproliferative and
cytotoxic activities, which result from the release of reactive oxygen species (ROS) and
reactive nitrogen species (RNS) and proinflammatory cytokines (e.g., TNFα, IL-1, IL-6).
The M1 population is thought to contribute to macrophage-mediated tissue injury (3–7). The
activity of M1 macrophages is balanced by M2 macrophages, which are primarily involved
in downregulating inflammation and initiating wound repair. This is accomplished through
the release of anti-inflammatory cytokines such as IL-4, IL-10, and IL-13. M2 macrophages
also contribute to the resolution of inflammation by phagocytizing apoptotic neutrophils and
synthesizing mediators important in tissue remodeling and angiogenesis, including
transforming growth factor β (TGFβ), vascular endothelial growth factor (VEGF), and
epidermal growth factor (EGF). M2 macrophages support Th2-associated effector functions
and play a key role in regulating T cell functioning. Because of their diverse functioning,
alternatively activated M2 macrophages have been further subdivided into subpopulations
termed M2a (activated by IL-4 and IL-13), M2b (activated by immune complexes in
combination with IL-1β or LPS), and M2c (activated by IL-10, TGFβ, or glucocorticoids). It
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should be noted, however, that classification of macrophages into two polarized states (M1
versus M2) oversimplifies the complex functional activity of these cells. Macrophage
activation is in fact a dynamic process; the same cells may initially take part in
proinflammatory and cytotoxic reactions and later participate in the resolution of
inflammation and wound healing (5, 8, 9). This illustrates the plasticity of macrophages and
their ability to modulate their responses as a consequence of a changing microenvironment
(5, 8, 10). To exemplify this more clearly, Mosser & Edwards (9) proposed an alternative
grouping of macrophages on the basis of three homeostatic functions of the cells: host-
defense macrophages, wound-healing macrophages, and regulatory macrophages that
“blend” together into various states of activation. Regardless of how they are classified,
dysregulation in the functioning of macrophages can have detrimental effects. Consequently,
hyperresponsive, classically activated macrophages can cause tissue damage, whereas
overactive macrophages involved in wound healing can promote fibrosis and exacerbate
cytotoxic and allergic responses. Similarly, uncontrolled activation of regulatory
macrophages can contribute to the progression of hyperplasia and, by releasing IL-10, can
predispose the host to infection. Specific examples of the consequences of these aberrant
macrophage activities in the pathogenesis of hepatotoxicity and pulmonary toxicity are
illustrated below.

MACROPHAGES AND INFLAMMATORY MEDIATORS IN HEPATOTOXICITY
The liver contains the largest population (80–90%) of macrophages in the body. Located
within the hepatic sinusoids, resident liver macrophages (Kupffer cells) are well positioned
to rid the body of foreign substances that they encounter in the portal circulation, primarily
through the process of phagocytosis. Kupffer cells possess several types of receptors that
facilitate this activity: Fc, C3, and CRIg receptors; scavenger receptors; pattern-recognition
receptors such as Toll-like receptor (TLR)-4; and CD14 (reviewed in References 7 and 11).
Kupffer cells are among the most active secretory cells in the body. They release a myriad of
different products with inflammatory, growth-promoting, and regulatory activity (Table 1).
They also express major histocompatibility complex (MHC) class II antigens, CD40 and
CD80, thereby acting as antigen-presenting cells for the initiation of specific T lymphocyte
responses, and they are responsible for the induction of immunological tolerance in the liver.

Kupffer cells are active participants in inflammatory responses to liver damage. They
rapidly accumulate at sites of injury in response to locally generated chemokines. Once
localized at these sites, they phagocytize damaged cells and debris and release cytotoxic/
proinflammatory mediators. Kupffer cells also elaborate chemokines, contributing to the
recruitment of additional inflammatory macrophages into the tissue. Some of the earliest
evidence that macrophages might contribute to toxicity was based on observations that there
are increased numbers of these cells in the liver following exposure of animals to
hepatotoxicants (reviewed in References 7 and 11). In addition, their specific location within
the liver lobule varies with the toxicant and directly correlates with areas that subsequently
exhibit damage. For example, after administration of acetaminophen, carbon tetrachloride,
or thioacetamide, all of which induce centrilobular hepatic necrosis, macrophages are
observed in these regions of the liver (11–14). In contrast, macrophages that localize in the
liver following endotoxin, phenobarbital, Corynebacterium parvum, or galactosamine
treatment of rodents are scattered in clusters throughout the liver lobule, which is consistent
with the patterns of injury observed after exposure to these toxicants (11, 15–17). Further
evidence for a role of macrophages in hepatotoxicity comes from findings that they are
morphologically and functionally “activated” following hepatotoxicant exposure. Thus these
cells, which consist of resident Kupffer cells and newly infiltrated macrophages, appear
larger and more stellate than cells from control animals, are highly vacuolated, and display
an increased cytoplasmic:nuclear ratio (13, 15, 17, 18). Additionally, they release increased

Laskin et al. Page 3

Annu Rev Pharmacol Toxicol. Author manuscript; available in PMC 2013 June 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



quantities of cytotoxic, matrix-degrading, and proinflammatory mediators that have been
implicated in hepatotoxicity (see below).

Direct evidence supporting a role for macrophages in hepatotoxicity is based on
observations that tissue injury is correlated with their functional status. Hence, when liver
macrophage cytotoxic/inflammatory activity is blocked with hydrocortisone or synthetic
steroids, hepatotoxicity induced by acetaminophen and carbon tetrachloride is ameliorated
(19, 20). Similarly, the accumulation of macrophages in the liver and subsequent toxicity of
these xenobiotics is abrogated in rodents by pretreatment with macrophage inhibitors such
as gadolinium chloride or dextran sulfate (21–25). Protection against early damage induced
by acetaminophen has also been reported in animals depleted of macrophages by
pretreatment with liposome-encapsulated dichloromethylene diphosphonate (clodronate)
(26). Both gadolinium chloride and clodronate liposomes also prevent liver damage induced
by allyl alcohol, ethanol, endotoxin, thioacetamide, cadmium chloride, and
diethyldithiocarbamate (27–32). Additional support for macrophage involvement in the
pathogenesis of liver injury comes from findings that activation of these cells can augment
tissue damage induced by hepatotoxicants. In these studies, pretreatment of rodents with
agents such as LPS or polyinosinic-polycytidylic acid, which induce a marked accumulation
of activated macrophages in the liver, results in an exaggerated hepatotoxic response to
agents such as acetaminophen and galactosamine (33–35).

Recent studies have focused on analysis of the phenotype of the macrophage population
involved in promoting the hepatotoxic response. The fact that these cells release cytotoxic
mediators such as ROS, RNS, proteolytic enzymes, and proinflammatory cytokines suggests
that they are classically activated M1 macrophages. This is consistent with findings that
TNFα, a prototypical M1 inducer, is rapidly upregulated in the liver following
hepatotoxicant exposure (14, 36–40). Furthermore, specific depletion or inhibition of M1
macrophages correlates with protection against liver injury induced by diverse
hepatotoxicants (21, 23, 25, 26, 30, 31, 41, 42).

Accumulating experimental data suggest that alternatively activated M2 macrophages also
contribute to hepatotoxicity. As indicated above, these macrophages are important in
downregulating the inflammatory response and initiating wound repair. Following
hepatotoxicant exposure, expression of the M2 macrophage chemokine MCP-1 [monocyte
chemotactic protein-1, also known as chemokine (C-C motif) ligand 2] and its receptor
CCR2 [chemokine (C-C motif) receptor 2] is upregulated in the liver, as is expression of the
M2-inducing cytokines IL-4, IL-10, and IL-13 (3, 6, 37, 43–46). This correlates with
increased numbers of macrophages expressing M2 markers including arginase, STK/RON
(stem cell–derived tyrosine kinase/recepteur d’origine nantais), Ym1, and/or Fizz1 at sites of
injury (47, 48). Production of anti-inflammatory and mitogenic proteins, such as TGFβ and
VEGF, is also increased (3, 36–38, 44–47, 49–52). These data support a protective function
of M2 macrophages in acute liver injury. Additional support comes from findings that
administration of the M2 inducer IL-10 or IL-13 protects mice from acetaminophen-induced
hepatotoxicity and lethal endotoxemia, whereas transgenic mice lacking the gene for CCR2,
IL-10, IL-13, or IL-4 plus IL-10 and wild-type mice treated with anti-IL-13 antibodies are
hypersensitive to hepatotoxicants (6, 7, 45, 46, 50, 51, 53). The fact that the exaggerated
hepatotoxicity is associated with increased production of cytotoxic/proinflammatory
mediators—including ROS and RNS, IFNγ, and TNFα—suggests that prolonged M1
macrophage activity plays a key role in the pathogenic response.

It is well established that liver macrophages also contribute to the development of hepatic
fibrosis, the end stage of chronic liver disease (54). These cells release TGFβ and other
mediators that activate hepatic stellate cells, and they stimulate the production of

Laskin et al. Page 4

Annu Rev Pharmacol Toxicol. Author manuscript; available in PMC 2013 June 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



extracellular matrix proteins. The observation that macrophage production of profibrotic
cytokines is upregulated by IL-4 and IL-13 indicates that alternatively activated M2
macrophages are involved in this process. This is supported by studies demonstrating that
M2 macrophage accumulation in the liver and the development of fibrosis is dependent on
MCP-1/CCR2 (43, 55). Thus it appears that prolonged hyperactivity of M2 macrophages in
the liver can also lead to pathologic responses.

One approach to a better understanding of the role of M1 and M2 macrophages in response
to hepatotoxicants has been to use agents that specifically block their activity. Most common
are gadolinium chloride, which suppresses M1 cells, and clodronate liposomes, which
deplete tissues of M2 macrophages (reviewed in Reference 7). The fact that acetaminophen-
induced hepatotoxicity is suppressed in animals pretreated with gadolinium chloride but
exacerbated when they are administered clodronate liposomes demonstrates the dual role of
macrophages in hepatotoxic responses (3, 21, 22, 49). Providing additional support for this
idea are studies using conditional knockout mice. These studies showed that carbon
tetrachloride–induced fibrosis is ameliorated when macrophages are depleted during the
initial inflammatory injury, whereas loss of these cells during recovery leads to a failure of
resolution and the development of fibrosis (56).

MACROPHAGES AND INFLAMMATORY MEDIATORS IN PULMONARY
TOXICITY

The lung is continuously exposed to the external environment. As a consequence, it is
particularly sensitive to the adverse effects of inhaled gases, acid aerosols, and particles. The
specific pathologic response depends on the nature of the toxic agent and the dose and
duration of exposure. The lung is also sensitive to systemically administered drugs such as
bleomycin and nitrogen mustard, as well as radiation, which cause acute injury and
pneumonitis followed by pulmonary fibrosis. Macrophages are located throughout the lung,
most prominently in the alveoli and interstitium, where they function as the first line of
defense against xenobiotics. Lung macrophages possess receptors for complement; receptors
for the Fc portion of IgG, IgA, and IgE; TLRs; and other pattern-recognition receptors. In
addition, they can phagocytize a variety of foreign substances, although this activity is not as
well developed as in Kupffer cells (57). Like other tissue macrophages, alveolar and
interstitial macrophages respond to injury by mounting an inflammatory response and
releasing ROS and RNS, proteases, proinflammatory lipids, and cytokines aimed at
protecting the host. However, as observed in the liver, excessive or uncontrolled release of
these mediators by macrophages can promote lung damage. In this regard, macrophages
have been implicated in lung injury induced by a number of pulmonary toxicants and have
been shown to play a role in the pathogenesis of a variety of lung diseases, including chronic
obstructive pulmonary disease (COPD), asthma, and acute respiratory distress syndrome
(Table 1 and Reference 58).

Experimental evidence supporting a role for macrophages in pulmonary toxicity is similar to
that described above for hepatotoxicity. Accordingly, increased numbers of macrophages are
observed in the lung and/or airways following toxicant exposure (59–64). In addition, these
cells are rapidly activated to release cytotoxic and proinflammatory mediators. For example,
following exposure of animals to ozone, particulate matter, bleomycin, sulfur mustard, or
radiation, alveolar macrophages generate increased quantities of ROS, RNS, IL-1, TNFα,
proteases, and bioactive lipids, which have the capacity to induce or amplify tissue injury
(Table 1 and References 59–61, 63–69). Additionally, as observed in the liver, pulmonary
damage induced by a number of these toxicants is ameliorated or prevented by blocking
macrophages or macrophage-derived inflammatory mediators. In this regard, the use of anti-
inflammatory steroids can ameliorate lung damage induced by ozone, silica, bleomycin, and
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sulfur mustard (70–74). Protection against lung injury has also been described in ozone-
treated rats rendered leukopenic with cyclophosphamide, and in silica-treated rats depleted
of alveolar macrophages via clodronate liposomes (75, 76). Similarly, macrophage
accumulation in the lung and toxicity induced by ozone are inhibited by pretreatment of rats
with gadolinium chloride, which, as indicated above, blocks M1 macrophage activation (7,
60). Acute lung injury and expression of inducible nitric oxide synthase (NOS-2) induced by
bleomycin are also abrogated in CCR4-deficient mice, which do not generate M1
macrophages (4). Similar protective effects have been described in IL-18 knockout mice,
which also display defective M1 development (77). Production of inflammatory mediators
and lung injury induced by endotoxin are also reduced in knockout mice lacking the gene for
CD40, a cell surface receptor required for M1 macrophage activation and NOS-2 expression
(78). Conversely, mice lacking CCR2 are hypersensitive to hyperoxia-induced acute lung
injury due to defects in M2 macrophage recruitment and tissue repair (79). The importance
of classically activated M1 macrophages in the pathogenesis of lung injury is also supported
by findings that direct activation of these cells can augment tissue damage. Hence,
pretreatment of rats with macrophage activators such as Bacillus Calmette-Guérin or LPS
enhances acute lung injury induced by endotoxin or radiation, as well as bleomycin-induced
tissue damage and consequent pulmonary fibrosis (67, 80, 81).

Pulmonary injury that is induced following inhalation of mineral dusts such as asbestos and
silica is characterized by acute injury followed by fibrosis. Lung macrophages are known to
produce mediators involved in initiation and perpetuation of inflammation, as well as in
mesenchymal cell transformation and fibrosis induced by these agents (5, 9, 82). Inhaled
silica particles and asbestos fibers are phagocytized by alveolar macrophages via the
MARCO (macrophage receptor with a collagenous structure) receptor (83). However,
because these inert particles cannot be digested, macrophages rupture, releasing chemokines
and proteases that amplify the inflammatory response and tissue injury. Recent data suggest
that this response is dependent on the Nalp3 inflammasome, a cytosolic multiprotein
platform responsible for activation of the inflammatory response (84). Alveolar
macrophages activated by silica particles have also been reported to release chemotactic
factors and mitogens for lung fibroblasts and to release TGFβ, thus promoting the
development of lung fibrosis (85). A similar contribution of macrophages and inflammatory
mediators to lung fibrosis has been described following exposure of animals to bleomycin
and radiation (86, 87).

In the lung, as in the liver, macrophage phenotype appears to be important in terms of the
precise contribution of these cells to disease pathogenesis. Whereas acute lung injury
involves a prolonged or exaggerated response of classically activated M1 cells and defective
M2 macrophage–mediated repair (described above), the development of chronic diseases
such as fibrosis and cancer is a consequence of hyperresponsive, alternatively activated M2
cells. For example, in an experimental model of silicosis, markers of alternatively activated
M2 macrophages including arginase-1, Fizz1, Ym1/2, and mannose receptor are upregulated
in the lung (88, 89). Interestingly, this occurred within three days of silica exposure,
suggesting that these cells participate in early events leading to fibrosis. A skewing toward
M2 macrophage phenotype has also been described in patients with idiopathic pulmonary
fibrosis, COPD, and cystic fibrosis, and in experimental models of bleomycin-induced
pulmonary fibrosis (86, 90). A role of M2 macrophages in the development of chronic lung
disease is most clearly evident from findings that pulmonary fibrosis is exacerbated in
animals that overexpress IL-10 or IL-13 (91, 92) but reduced in animals that are (a) treated
with serum amyloid P, which inhibits the development of M2 macrophages in the lung (86);
(b) deficient in the M2 chemokine CCR2 (93) or deficient in IL-4 (89); or (c) administered
anti-CCL2/MCP-1 gene therapy (94). Interestingly, the M1 macrophage marker NOS-2 and
the M1-associated chemokine CXCL10/IP10 increase in M2-suppressed animals,
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demonstrating that alternatively activated macrophages are important in suppressing M1
activity and that a balance in the activity of these cells dictates the outcome of the toxic
response. These findings are in accord with reports that the development of fibrosis in a
granulomatous lung disease model is associated with upregulation of the M2 marker
arginase, and that administration of IL-12 results in overexpression of NOS-2 and reduced
fibrosis (95).

MACROPHAGE-DERIVED PROINFLAMMATORY/CYTOTOXIC MEDIATORS
IMPLICATED IN TISSUE INJURY

Macrophages classically activated by LPS and Th1 cytokines are known to synthesize and
release a myriad of molecules with proinflammatory and cytotoxic activity. Among the more
prominent mediators that have been implicated in tissue injury are ROS and RNS, proteases,
and proinflammatory lipid mediators and cytokines. These most likely act in concert to
promote tissue damage.

Reactive Oxygen and Nitrogen Species
ROS and RNS, including superoxide anion, hydrogen peroxide, hydroxyl radical, nitric
oxide, and peroxynitrite, are generated via enzyme-catalyzed reactions and during
mitochondrial respiration. At low levels and under physiologic conditions, ROS and RNS
function to regulate cell signaling molecules important in maintaining tissue homeostasis. In
contrast, ROS and RNS produced in larger quantities by activated macrophages during acute
inflammatory responses are key to the destruction of invading pathogens and foreign
materials. However, when ROS and RNS are generated in excessive quantities or without
control, oxidative and nitrosative stress can ensue, leading to tissue injury. Lipids, proteins,
and DNA are targets for modification by ROS/RNS with diverse pathologic consequences,
including altered functioning, necrosis, and apoptosis. Oxidative/nitrosative stress can also
lead to activation of redox-sensitive transcription factors such as nuclear factor κB (NF-κB)
and activator protein 1 (AP-1), amplifying the inflammatory response and tissue injury.

Macrophages generate superoxide anion via membrane-associated NADPH oxidases. This
radical rapidly dismutates to hydrogen peroxide, which, in the presence of transition metals,
forms hydroxyl radicals. These macrophage-derived ROS have been directly implicated in
the pathogenesis of tissue injury induced by a number of diverse pulmonary and hepatic
toxicants (Table 1). Macrophages that accumulate in target tissues following toxicant
exposure produce increased amounts of ROS (13, 15, 17, 29, 59–61, 65, 66, 96, 97).
Moreover, stimulation of these cells to produce additional oxidants augments tissue injury.
For example, in rats administered large doses of vitamin A, which activates macrophages in
the liver to produce ROS, tissue injury induced by hepatotoxicants such as endotoxin and
carbon tetrachloride is exacerbated (98, 99). Conversely, hepatotoxicity induced by
galactosamine and 1,2-dichlorobenzene, as well as carbon tetrachloride and vitamin A, is
abrogated by methyl palmitate, an effective inhibitor of oxidative metabolism in liver
macrophages (33, 98, 100). Additionally, increasing levels of antioxidants by administration
of macrophage activators such as LPS or IL-1 protect against lung injury induced by
hyperoxia, and ozone and liver injury induced by acetaminophen and carbon tetrachloride
(11, 62, 101, 102). Protection is also observed after systemic administration of antioxidants
to rodents, as well as in mice overexpressing antioxidant enzymes such as superoxide
dismutase (SOD) or catalase, which reduce oxidative stress in macrophages (38, 63, 103–
107).

RNS are generated in macrophages via NOS-2, an enzyme that catalyzes the oxidation of L-
arginine to nitric oxide and citrulline. Nitric oxide reacts rapidly with superoxide anion to
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form peroxynitrite, a relatively long-lived cytotoxic oxidant (108). NOS-2 is upregulated in
macrophages in response to inflammatory mediators such as LPS and Th1 cytokines and is
highly expressed by classically activated M1 macrophages (2, 7, 109). Excessive production
of RNS by macrophages has been described in the liver and lung after exposure to diverse
hepatic and pulmonary toxicants (Table 1). Experimentally, administration of NOS-2
inhibitors or peroxynitrite scavengers reduces tissue damage induced by many of these
toxicants (12, 110–112). Moreover, mice with a targeted disruption of the NOS-2 gene or
mice that overexpress SOD, which cannot generate peroxynitrite, are protected from tissue
injury induced by toxicants such as ozone, particulate matter, asbestos, silica, bleomycin,
nitrogen mustard, acetaminophen, carbon tetrachloride, and alcohol (37, 59, 111, 113–115).
These findings demonstrate that RNS derived from NOS-2 can contribute directly to
toxicity.

Proteases
Classically activated macrophages release a variety of proteolytic enzymes that can act
directly on cells and tissues and induce damage. These include neutral proteases (e.g.,
elastase, gelatinase, matrix metalloproteinases, collagenase, and plasminogen activator) and
acid hydrolases (e.g., proteases, lipases, cathepsins, ribonucleases, phosphatases, and
glycosidases) as well as lysozyme. The extent of injury induced by proteases depends on the
amounts of antiproteases generated in the tissue that counteract their activity. Pulmonary
diseases such as emphysema are characterized by excessive macrophage protease activity,
and protease inhibitors have been used therapeutically to mitigate disease pathology (116).
Toxicant exposure is associated with increased activity of various proteases in both the liver
and the lung (117–120). Administration of protease inhibitors such as ilomastat or
doxycyclin abrogates tissue injury in a number of experimental models, demonstrating the
importance of these proteolytic enzymes in the pathogenic response (121–123).

Proinflammatory Lipid Mediators
Macrophages activated by proinflammatory cytokines and LPS synthesize a variety of
bioactive lipids including prostaglandins and leukotrienes, which promote inflammation and
contribute to tissue injury. These two types of eicosanoids are derived from membrane-
bound arachidonic acid via the actions of cyclooxygenase (COX) and lipoxygenase (LOX),
respectively. Increased expression of COX-2, the major enzyme isoform mediating
macrophage prostanoid production, and release of proinflammatory prostaglandins such as
PGE2 have been observed in the lung following exposure of animals to pulmonary toxicants
and in the liver after administration of hepatotoxicants (64, 124–127). Moreover, COX-2
inhibitors prevent injury to the lung and liver in a number of these models (128–131).
Proinflammatory leukotrienes generated via LOXs are also known to be involved in the
pathogenesis of immune and inflammatory diseases including asthma (132, 133). One
example is leukotriene B4, which is a potent neutrophil chemoattractant that stimulates
production of macrophage IL-1, TNFα, and hydrogen peroxide. Leukotriene B4 has been
reported to be elevated in the lung and liver after toxicant exposure (132, 134, 135). In
addition, LOX inhibitors or antagonists afford protection against injury in several
experimental models; similar protection is observed in 5-LOX knockout mice (130, 132,
134, 136–139).

Another macrophage-derived lipid inflammatory mediator implicated in tissue injury is
platelet activating factor (PAF) (140, 141). PAF is thought to act in a paracrine and
autocrine manner to amplify and propagate early stages of the inflammatory response. PAF
released from macrophages stimulates phagocyte chemotaxis and oxidative metabolism
(141, 142). In the lung, PAF mediates ozone-induced airway inflammation, microvascular
leakage, and edema (143, 144). In animal models, ozone inhalation upregulates functional
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PAF receptors on alveolar macrophages, which may represent an important mechanism by
which these cells become activated and contribute to tissue injury (145). Endotoxemia is
also associated with increased production of PAF in both the lung and the liver (140, 146).
The findings that administration of PAF inhibitors or receptor antagonists reduce tissue
injury induced by endotoxin, acetaminophen, carbon tetrachloride, and bleomycin suggest
that PAF participates in pathogenic processes associated with exposure to these toxins (140,
144, 147, 148).

Proinflammatory Cytokines and Chemokines
Macrophages release a number of proinflammatory cytokines with pathogenic potential.
Most notable are TNFα and IL-1. These early-response cytokines are rapidly released at
sites of injury, where they function to initiate and amplify inflammatory responses. TNFα
and IL-1 upregulate adhesion molecules and stimulate the endothelium to produce
chemokines, thus directly promoting the accumulation of inflammatory cells in tissues.
TNFα also sensitizes neutrophils and macrophages to produce ROS and RNS, and, along
with IL-1, it induces the release of proinflammatory mediators including IL-6, PAF,
prostaglandins, matrix metalloproteinase, and various chemokines from macrophages and
other cell types (149, 150). TNFα is unique among inflammatory cytokines because it also
has the capacity to directly induce cytotoxicity and apoptosis. Tissue injury induced by
various lung and liver toxicants is characterized by excessive production of TNFα and/or
IL-1 by macrophages (14, 37, 38, 40, 44, 46, 68, 126, 127, 151–157). Moreover,
administration of antibodies to these cytokines or cytokine receptor antagonists prevents the
development of pulmonary lesions and fibrosis induced by bleomycin and silica, as well as
hepatotoxicity induced by acetaminophen, galactosamine, endotoxin, cadmium chloride, and
carbon tetrachloride (40, 153, 154, 158–161). Similarly, protective effects against lung
injury induced by radiation, ozone, or silica and liver injury as a result of exposure to carbon
tetrachloride are observed in transgenic mice lacking IL-1, TNFα, or the latter’s major
proinflammatory receptor, TNFR1 (40, 157, 162–164). These data demonstrate that TNFα
and IL-1 are indeed critical mediators of macrophage-induced tissue injury.

Activated macrophages also release chemokines, an important group of proinflammatory
cytokines that recruit leukocytes to sites of injury. Two major structurally distinct groups of
chemokines have been characterized: C-C chemokines, which induce migration and
activation of macrophages/monocytes and lymphocytes, and C-X-C chemokines, which are
primarily neutrophil chemoattractants and activators. Continuous local release of
chemokines at sites of injury is thought to mediate the ongoing migration of effector cells
into inflammatory lesions. Both C-C and C-X-C chemokines have been implicated in tissue
injury and disease pathogenesis, but experimental data suggest that their roles in toxicity are
distinct. Thus whereas C-X-C chemokines induce neutrophilic inflammation that promotes
tissue injury, C-C chemokines attract protective macrophages that exhibit anti-inflammatory
and wound-healing activity. In this regard, treatment of rodents with neutralizing antibodies
against CXCR2 (CINC) has been reported to protect them from acute lung and liver injury
induced by toxicants, whereas toxicity is unaltered by CCL2 (MCP-1) or CCL5 (RANTES)
antibodies and exacerbated in MCP-1 (CCL2) and CCR2 knockout mice (3, 6, 53, 165, 166).

MACROPHAGE-DERIVED MEDIATORS INVOLVED IN SUPPRESSING
INFLAMMATION AND INITIATING WOUND REPAIR

As described above, evidence suggests that alternatively activated M2 macrophages play a
role in the resolution of inflammation and in initiation of tissue repair. This activity is
mediated by anti-inflammatory cytokines (e.g., IL-4, IL-10, IL-13), bioactive lipids (e.g.,
15d-PGJ2, lipoxins, resolvin), and growth factors (e.g., TGFβ, VEGF) (5, 167, 168).
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Overproduction of these mediators may, however, contribute to increased susceptibility to
infections and the development of chronic diseases.

Anti-Inflammatory Lipid Mediators
The resolution of inflammation and initiation of wound healing is an active process that
involves decreased generation of proinflammatory mediators and clearance of cytotoxic/
proinflammatory cells, including classically activated M1 macrophages, from sites of injury.
Evidence suggests that lipid mediators, in particular lipoxins and 15d-PGJ2, are important in
this process. Production of these bioactive lipids occurs at later stages of the inflammatory
response and may be due, in part, to a COX-2- and PGE2-mediated phenotypic switch in the
activity of macrophages from the generation of proinflammatory to anti-inflammatory
mediators (169). 15d-PGJ2 is a metabolite of PGD2. In addition to stimulating apoptosis and
facilitating neutrophil clearance, 15d-PGJ2 upregulates expression of cytoprotective proteins
and antioxidant enzymes, including cytosolic heat-shock proteins and heme oxygenase-1
(170). The biologic activities of 15d-PGJ2 are mediated, in large part, by binding to
peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated transcription
factor that suppresses inflammatory mediator production (171). PPARγ has been identified
in a variety of cell types, including macrophages, and it plays an important role in recruiting
alternatively activated macrophages into injured tissue (171). Another group of lipid
mediators with anti-inflammatory activity are lipoxins such as lipoxin A4 and lipoxin B4.
Derived from arachidonic acid via 15-LOX and 5-LOX, lipoxins promote the resolution of
inflammation (169). Thus they inhibit neutrophil diapedesis into inflamed tissues, as well as
proinflammatory cytokine production and activation of the proinflammatory transcription
factor NF-κB (172). Lipoxin A4 also stimulates macrophage chemotaxis and phagocytic
activity, which are important in inflammatory neutrophil clearance. Lipoxins have been
shown to play a key role in the resolution of acute lung injury, and defects in the
biosynthesis of lipoxin A4 promote the development of asthma (173).

Recent studies have identified a novel group of lipid mediators derived from omega-3
polyun-saturated essential fatty acids that are also important in resolution of inflammation
(169). These include E-series resolvins (RvE1, RvE2), D-series resolvins (RvD1, RvD2), the
protectins neuroprotectin D1 (NPD1) and protectin D1 (PD1), and the aspirin-triggered
epimeric forms of resolvins. Resolvins and protectins appear at earlier times during the
inflammatory response, suppress neutrophil chemotaxis and oxidative metabolism, and
stimulate macrophage phagocytosis of apoptotic neutrophils (174). In addition, PD1 has
been reported to reduce production of TNFα and IFNγ, suggesting that it induces M2
macrophage activation. Studies indicate that resolvins and protectins display potent
protective actions in the lung and liver against toxicants (169, 175).

Anti-Inflammatory Cytokines and Growth Factors
Anti-inflammatory cytokines such as IL-4, IL-10, and IL-13 are generated by macrophages
and other cell types in the lung and liver following toxicant exposure (37, 44, 49–51, 176–
178). These cytokines facilitate the recovery of tissues from acute injury, inhibiting the
production of proinflammatory cytokines and stimulating the generation of extracellular
matrix proteins, in part by inducing alternative M2 macrophage activation. That these
cytokines are important in toxicity is supported by findings that administration of IL-13
protects mice from lethal endotoxemia and that anti-IL-13 antibodies significantly decrease
survival rate (45). Similarly, in mice treated with IL-10, hepatotoxicity is ameliorated,
whereas it is exacerbated in IL-10 knockout mice treated with carbon tetrachloride or
acetaminophen (50, 51).
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Alternatively activated macrophages also generate a variety of growth factors such as TGFβ,
VEGF, and EGF, which are key to angiogenesis, tissue regeneration, and repair. However,
release of these mediators must be carefully controlled, as excessive production can lead to
pathologies such as fibrosis and cancer. TGFβ is a mediator of fibrosis, stimulating
production of extracellular matrix proteins, and is generated in large amounts by
alternatively activated macrophages following exposure to toxicants (179–181). Evidence
for a role of this M2-derived growth factor in the fibrogenic process comes from findings
that the development of fibrosis is prevented in CCR2 knockout mice and in mice treated
with the Kupffer cell inhibitor methyl palmitate, and that this is directly correlated with
decreased TGFβ production (43, 182). A profibrogenic role for M2-derived TGFβ is further
supported by reports that silica-induced pulmonary fibrosis and carbon tetrachloride–
induced hepatic fibrosis are significantly reduced in IL-10 knockout mice but augmented in
IL-10-overexpressing animals, and that this correlates with tissue levels of TGFβ (91, 182,
183).

MODEL FOR THE ROLE OF MACROPHAGES IN TISSUE INJURY AND
REPAIR

On the basis of accumulated experimental data, a model for the role of macrophages in
tissue injury and repair has been developed (Figure 1). According to this model,
macrophages responding to tissue injury are activated by inflammatory signals in their
microenvironment and develop into classically activated M1 macrophages, which release
mediators important in host defense, or alternatively activated M2 macrophages, which
generate products that downregulate inflammation and initiate wound repair. An imbalance
in the activity of these macrophages populations, which can occur following toxicant
exposure, leads to excessive production of proinflammatory mediators and cytotoxicity/
tissue injury if the balance is tipped toward M1 macrophages, and fibrosis/cancer if it is
tipped toward M2 macrophages.

CONCLUSIONS
As critical cellular components of nonspecific host defense, macrophages represent the
primary system not only for protecting tissues from invading pathogens and toxicants but
also for initiating the resolution of inflammation and wound healing. It is becoming
increasingly apparent that these diverse functions are accomplished by different macrophage
subpopulations, some of which are capable of cytotoxicity (classically activated
macrophages), whereas others function to suppress inflammation and initiate wound repair
(alternatively activated macrophages). The biological activity of macrophages is mediated
by cytokines, oxidants, lipid mediators, and growth factors released by the different types of
macrophages. Under homeostatic conditions, macrophage activation and release of these
inflammatory mediators is carefully regulated. However, in response to toxicants, control
mechanisms may be compromised, leading to disproportionate macrophage activity and
excessive release of cytotoxic, proinflammatory, and fibrogenic products that promote tissue
injury and chronic disease pathogenesis. Understanding the nature of these mediators and
the relative contributions of differently activated macrophage populations to host defense
against toxicants may lead to the development of better and more efficacious approaches for
treating and/or preventing tissue injury and chronic disease.
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Glossary

TNF tumor necrosis factor

LPS lipopolysaccharide

IL interleukin

ROS reactive oxygen species

RNS reactive nitrogen species

TGF transforming growth factor

SOD superoxide dismutase

COX cyclooxygenase

LOX lipoxygenase

PAF platelet activating factor
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Figure 1.
Model for the role of classically and alternatively activated macrophages in tissue injury and
repair. Abbreviations: EGF, epidermal growth factor; IFNγ, interferon-γ; IL, interleukin;
LPS, lipopolysaccharide; RNS, reactive nitrogen species; ROS, reactive oxygen species;
TGFβ, transforming growth factor β; TNFα, tumor necrosis factor α; VEGF, vascular
endothelial growth factor.
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Table 1

Mediators released by classically (M1) and alternatively (M2) activated macrophages implicated in liver and
lung injury and repair

M1 mediators

Toxicant

Liver Lung

Reactive oxygen species Endotoxin (17, 18) Ozone (59–61, 63, 64, 101)

Acetaminophen (6, 13, 104) Radiation (65)

Phenobarbital (15) Bleomycin (66)

Carbon tetrachloride (97, 98) Silica (84)

1,2-Dichlorobenzene (100)

Reactive nitrogen species Endotoxin (47, 184) Ozone (59, 61–64, 101)

Acetaminophen (12, 25, 44) Radiation (65, 112)

Carbon tetrachloride (40) Bleomycin (66, 111, 113)

Ethanol (114) Silica (115)

Proteases Endotoxin (118) Bleomycin (93)

Acetaminophen (37, 44) Endotoxin (78)

Carbon tetrachloride (134) Sulfur mustard (69, 121)

Thioacetamide (120) Particulate matter (117)

Bioactive lipids Endotoxin (47, 136, 140) Ozone (59, 64, 131, 138, 145)

Acetaminophen (127, 128) Silica (124, 125)

Carbon tetrachloride (97, 126, 130, 134, 148) Sulfur mustard (69)

Proinflammatory cytokines (TNFα, IL-1β, chemokines) Endotoxin (47) Ozone (60, 63, 64, 68)

Acetaminophen (3, 6, 37, 38, 44, 127) Radiation (162)

Carbon tetrachloride (14, 40, 43, 126, 158) Silica (85)

Galactosamine (153) Particulate matter (113, 176)

Cadmium (154) Endotoxin (78)

Asbestos (155, 156)

M2 mediators

IL-10 Endotoxin (47) Ozone (63, 64)

Acetaminophen (37, 38, 44, 49, 50) Silica (91)

Carbon tetrachloride (51) Endotoxin (178)

IL-4 Acetaminophen (38) Radiation (87)

Concanavalin-A (42) Silica (89)

Endotoxin (178)

Hyperoxia (177)

IL-13 Endotoxin (45) Endotoxin (178)

Acetaminophen (46) Hyperoxia (177)

Diesel exhaust (176)

Annu Rev Pharmacol Toxicol. Author manuscript; available in PMC 2013 June 03.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Laskin et al. Page 25

M1 mediators

Toxicant

Liver Lung

TGFβ Endotoxin (185) Bleomycin (179)

Acetaminophen (38) Radiation (180)

Carbon tetrachloride (43, 126, 182) Asbestos (186)

Thioacetamide (181)

Abbreviations: IL, interleukin; TGFβ, transforming growth factor β; TNFα, tumor necrosis factor α.
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