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Abstract
TERT-locus single nucleotide polymorphisms (SNPs) and leucocyte telomere measures are
reportedly associated with risks of multiple cancers. Using the iCOGs chip, we analysed ~480
TERT-locus SNPs in breast (n=103,991), ovarian (n=39,774) and BRCA1 mutation carrier
(11,705) cancer cases and controls. 53,724 participants have leucocyte telomere measures. Most
associations cluster into three independent peaks. Peak 1 SNP rs2736108 minor allele associates
with longer telomeres (P=5.8×10−7), reduced estrogen receptor negative (ER-negative)
(P=1.0×10−8) and BRCA1 mutation carrier (P=1.1×10−5) breast cancer risks, and altered
promoter-assay signal. Peak 2 SNP rs7705526 minor allele associates with longer telomeres
(P=2.3×10−14), increased low malignant potential ovarian cancer risk (P=1.3×10−15) and increased
promoter activity. Peak 3 SNPs rs10069690 and rs2242652 minor alleles increase ER-negative
(P=1.2×10−12) and BRCA1 mutation carrier (P=1.6×10−14) breast and invasive ovarian
(P=1.3×10−11) cancer risks, but not via altered telomere length. The cancer-risk alleles of
rs2242652 and rs10069690 respectively increase silencing and generate a truncated TERT splice-
variant.

Introduction
Chromosome ends are capped by telomeres, which protect them from inappropriate DNA
repair and maintain genomic integrity1. Telomeres consist of structural proteins2 combined
with many hundreds of hexanucleotide DNA repeats3,4, which are progressively shortened
by normal cell division5–7. Shortening restricts proliferation of normal somatic cells, but not
of cancer cells, which can maintain long telomeres, usually via telomerase8–10, and may
divide indefinitely. The TERT gene at 5p15.33 (see URLs) encodes the catalytic subunit of
telomerase reverse transcriptase, an important component of telomerase. Germline mutations
in TERT cause dyskeratosis congenita, a cancer susceptibility disorder characterized by
exceedingly short telomeres11. Although up to 80% of the variation of telomere length is
estimated to be due to heritable factors12,13, association studies on TERT SNPs and
differences in leucocyte telomere length have, to date, been inconclusive14–17. Furthermore,
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it is unclear whether telomere length, measured in leucocyte DNA, is predictive of cancer
risk: retrospective studies report that cancer patients, after diagnosis, have shorter telomeres
than unaffected controls18–21, but prospective studies, with DNA taken prior to diagnosis,
have been inconclusive19,22,23. SNPs at 5p15.33 are reported to be associated with risks of
several human cancers14–16,24–32, including certain subtypes of both ovarian33 and breast
cancers34.

Due to a common interest, SNPs surrounding the TERT locus were nominated by members
of each of the constituent COGS consortia. Consequently, the iCOGS chip design included a
combination of individual TERT gene candidate SNPs, as well as a more comprehensive set
to fine-scale map the entire locus, for shared use by all consortia. This study had three aims:
to assess SNPs across the TERT-locus for all detectable associations with mean telomere
length and breast and ovarian cancer subtypes; to fine-scale map this locus to identify
potentially-causal variants for the observed associations; and to evaluate the functional
effects of the strongest candidate causative variants.

Results
One hundred and ten SNPs at the 5p15.33 locus (Build 37 positions 1,227,693 – 1,361,969)
passed quality control tests (QC) in 103,991 breast cancer cases and controls from 52 Breast
Cancer Association Consortium (BCAC) studies, of which 41 studies (89,050 individuals)
were of European, nine were of Asian (12,893 individuals) and two were of African-
American ancestry (2,048 individuals). The same 110 SNPs passed QC in 11,705 BRCA1
mutation carriers of European ancestry, recruited by 45 studies from the Consortium of
Investigators of Modifiers of BRCA1/2 (CIMBA), while 108 SNPs passed QC in 44,308
ovarian cancer cases and controls from 43 Ovarian Cancer Association Consortium (OCAC)
studies. For OCAC, analysis was confined to the 39,774 European ancestry participants, of
whom 8,371 cases had invasive epithelial ovarian- and 986 had serous low malignant
potential (LMP) neoplasia. For all study participants, genotype-imputation, using the 110
genotyped SNPs together with the January 2012 release of the 1000 Genome Project
(1000GP)35–38 was used to increase coverage to ~480 SNPs (imputation r2>0.3, minor allele
frequency (MAF)>0.02) for each phenotype. Telomere length was initially measured in
control subjects from two BCAC studies (SEARCH and CCHS, combined n= 15,567) (see
Supplementary Information).

Figure 1 shows Manhattan plots of the genotyped and well-imputed SNPs for the seven
phenotypes analyzed: mean telomere length (a), overall breast cancer (b), breast cancer in
BRCA1 carriers (c), estrogen receptor negative (ER-negative) breast cancer (d), estrogen
receptor positive (ER-positive) breast cancer (e), serous LMP ovarian cancer (f) and serous
invasive ovarian cancer (g). Conditional analyses within each of these phenotypes revealed
multiple independent SNP associations each for telomere length, overall breast cancer, ER-
negative breast cancer and overall breast cancer risk in BRCA1 mutation carriers, but only
one peak each for ER-positive breast cancer, serous LMP and invasive ovarian cancer
(Table 1). Full results of all these SNP analyses are given in Supplementary Tables 1–3. All
associations are consistent with a log-additive model.

Associations with telomere length
SNPs in two distinct regions (hereafter denoted Peaks 1 and 2) are strongly associated with
telomere length (Tables 1 and 2; Fig.1, panel a; Supplementary Fig.1, panel a). Imputed
SNP rs7705526 (Peak 2, position 1285974, TERT intron 2) has the largest effect with a
change in relative telomere length of 1.026-fold per-allele (95%CI 1.019–1.033,
P=2.3×10−14, conditional P=2.5×10−11). We confirmed this finding in an additional 20,512
women and 17,645 men from a third study (CGPS) genotyped for rs7726159 (the best

Bojesen et al. Page 10

Nat Genet. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



directly-genotyped SNP; r2=0.83 with rs7705526). From a joint analysis of all 53,724
individuals, the change in relative telomere length is 1.020-fold per-allele (95%CI 1.016–
1.023, P=7.5×10−28). A second, independent association was observed with rs2736108
(Peak 1, position 1297488, TERT promoter) with a per-allele change in relative telomere
length of 1.017-fold (95%CI 1.010–1.024, P=5.8×10−7, conditional P=4.0×10−4) (Fig.1,
panel a; Supplementary Fig.1, panel a; Tables 1 and 2). SNPs rs7705526 and rs2736108 are
only weakly correlated (r2=0.04 in Europeans). Weak associations between Peak 3 SNPs
and telomere length became non-significant after adjustment for Peak 2 SNP rs7705526
(data not shown).

Associations with breast cancer risk
We identified SNPs associated with breast cancer risk (P<10−4) in three distinct regions in
BCAC studies and two in CIMBA BRCA1 mutation carriers. No significant (P<10−4)
evidence for heterogeneity among odds ratios (OR) or hazard ratios (HR) between studies
for any of the top SNPs was observed (Supplementary Fig.6). The strongest association with
overall breast cancer risk in BCAC is with Peak 1 SNP rs3215401 (Fig.1, panel b;
Supplementary Fig.1, panel b; Tables 1 and 2). There is also good evidence for an
association with SNPs in Peak 2 and weaker evidence for an additional SNP, outside the
three main association peaks, to be independently associated with breast cancer risk
(Supplementary Table 1; Table 1). The most strongly-associated SNPs in BRCA1 mutation
carriers are located in introns 2–4 (hereafter denoted Peak 3) including rs10069690 (Fig.1,
panel c; Supplementary Fig.2, panel c; Tables 1 and 2) and rs2242652 (correlation with
rs10069690, r2= 0.70). The latter SNP also exhibits the strongest association with ER-
negative breast cancer in BCAC (Fig. 1, panel d; Supplementary Fig. 1, panel d; Tables 1
and 2), but shows little evidence of association with ER-positive breast cancer (Table 2).
Stepwise regression analysis in CIMBA studies indicated two independent associations with
breast cancer risk in BRCA1 mutation carriers (conditional P=5×10−5 for rs2736108 in Peak
1; P=4.8×10−13 for rs10069690 in Peak 3). A very similar pattern was observed for ER-
negative breast cancer in BCAC (conditional P=6×10−6 for rs3215401 in Peak 1 and
P=4.3×10−9 for rs2242652 in Peak 3; Table 1). The most strongly associated SNP with ER-
positive breast cancer is rs2736107 in Peak 1 (Fig.1, panel e; Supplementary Fig.2, panel e;
Tables 1 and 2). Weak associations between the key SNPs and risk for BRCA2 mutation
carriers are also observed, but the sample size is too small to draw definitive conclusions
(data not shown).

Associations with ovarian cancer risk
The strongest association observed for risk of LMP ovarian cancer is with Peak 2 SNP
rs7705526 and this is the only SNP retained in the stepwise regression analysis (Fig.1, panel
f; Supplementary Fig.1, panel f; Table 1 and 2). The strongest observed association for
serous invasive ovarian cancer is with Peak 3 SNP rs10069690 (Fig.1, panel g;
Supplementary Fig.1, panel g; Tables 1 and 2). No other independent associations were
observed for serous invasive ovarian cancer (Table 1). We also analysed SNP associations
with endometrioid, mucinous, clear cell invasive and mucinous LMP ovarian cancers but
found no associations at P<10−4 (Supplementary Table 4). We attempted analysis of
invasive serous ovarian cancer stratified by grade, but again statistical power was low
(Supplementary Fig.2).

Three main peaks of association within the TERT locus
The above results indicate that the majority of observed associations with all seven tested
phenotypes fall into association Peaks 1–3. Correlated SNPs in the TERT promoter (Peak 1)
are associated with telomere length, ER-positive breast cancer, ER-negative breast cancer
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and breast cancer in BRCA1 mutation carriers. SNPs in Peak 2, spanning TERT introns 2–4,
are independently associated with telomere length, overall breast cancer and serous LMP
ovarian cancer. Finally, SNPs in Peak 3, also spanning TERT introns 2–4, display strong
associations with ER-negative breast cancer, breast cancer risk for BRCA1 mutation carriers
and serous invasive ovarian cancer, but not with telomere length (Tables 1 and 2). Although
Peaks 2 and 3 overlap physically, they define distinct sets of SNPs that are only partially
correlated (e.g. correlation between rs10069690 and rs7705526; r2=0.33; Fig.2). Some SNP-
phenotype associations in Peak 2 are clearly weaker than those in Peak 3 (e.g. with ER-
negative breast cancer) and become non- significant after adjustment for SNP rs2242652 in
Peak 3. Conversely, the associations with telomere length and serous LMP ovarian cancer
are stronger for SNPs in Peak 2, indicating that the associations in Peaks 2 and 3 are not
being driven by the same causal variants.

The strongest candidates for causation within each peak were identified by computing
likelihood ratios; the SNPs listed in Tables 1 and 2 are those that cannot be excluded at a
likelihood ratio of >1:100 fold compared to the top hit in the peak. The power to exclude
SNPs differs between phenotypes; in Peak 1, all but seven SNPs can be excluded from being
causal for relative telomere length, breast cancer risk in BRCA1 mutation carriers and ER-
negative risk, but an additional SNP can be excluded for ER-positive breast cancer risk
(Table 2). In Peak 2, the greatest power is for the telomere length phenotype, where all but
three SNPs can be excluded, whilst five or six remain for cancer risk. For Peak 3, three
putative causal SNPs remain for ER-negative breast cancer risk, two for serous invasive
ovarian cancer risk and just one for breast cancer risk in BRCA1 carriers. Results in each
peak are compatible with a single causative variant being responsible for the multiple
phenotype associations (n.b. in Peak 3, SNPs rs2242652 and rs10069690 are equally
compatible with being the single causal variant). However the possibilities of different
causal variants being responsible for different phenotypes, or of the associations being due
to haplotype effects, cannot be ruled out.

Asian and African studies
We tested all SNPs (n=341) with MAF >0.02 and imputation r2>0.3 for association with
breast cancer in the nine BCAC Asian studies (comprising 6,269 cases and 6,624 controls)
but none reached formal levels of significance. Furthermore none of the European top SNPs
displayed more than borderline levels of significance in Asians (Supplementary Table 5).
Peak 3 SNP rs10069690 was directly genotyped in two BCAC African-American studies
(1,116 cases and 932 controls), as well as the above mentioned Asian studies and has
estimated effects on ER-negative breast cancer similar to those in European populations:
per-allele OR=1.19, 95%CI 1.06–1.31, P=0.009 in African-Americans and OR=1.09, 95%CI
1.00–1.19, P=0.07 in Asian women. Within OCAC there were too few women of Asian and
African ethnicity to draw meaningful conclusions. (Supplementary Table 6).

Functional and in silico analyses
Chromatin analysis—Analysis of the ENCyclopedia Of DNA Elements (ENCODE)
data39 revealed no evidence of regulatory elements or open chromatin coinciding with any
risk-associated SNPs in normal breast epithelial cells or the other represented tissues
(Supplementary Fig.3) (Data for ovarian tissues are not included in ENCODE). We
therefore performed site-specific formaldehyde-assisted isolation of regulatory elements
(FAIRE40) in ovarian cancer precursor tissues to identify regulatory elements in a 1Mb
region centred on Peak 3. In fallopian tube secretory- and ovarian surface- epithelial cells,
we detected FAIRE peaks coinciding with the CLPTM1L promoter but not the TERT
promoter (Supplementary Fig.3). In silico analyses additionally indicated that TERT introns
4 and 5 (within and beyond Peak 3) contain regions showing regulatory potential and
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vertebrate sequence conservation41. We used site-specific FAIRE analyses of a ~1 kb region
centered on the Peak 3 SNP rs10069690 in normal tissue samples from breast reduction
mammoplasty (n=4), ovarian cancer precursor tissues (n=4) and ovarian cancer cell-lines
(n=4). Breast cells from each woman were sorted into four enriched fractions based on
differential expression of cell surface markers42 (myoepithelial/stem, luminal progenitor,
mature luminal and stromal) and assays were performed on each fraction (Fig.3). Chromatin
was closed in all the ovarian, breast luminal progenitor and mature luminal fractions.
However, in 2/4 stromal cell fractions, we detected ~600bp open chromatin of varying
amplitude, covering the position of SNP rs10069690, but not of rs2242652, and in 3/4
myoepithelial/stem cell fractions, we detected ~800bp open chromatin, covering the
positions of both SNPs rs10069690 and rs2242652.

Luciferase reporter assays—The regulatory capabilities of the DNA in each of the
three peaks, and the effects of most of the strongest candidate causative variants in each one,
were examined in luciferase reporter assays, using a construct containing 3915bp of the
TERT promoter sequence43. Effects of Peak 1 TERT promoter variants were examined via
five haplotype constructs differing at rs2736107, rs2736108 and rs273610925 (Fig.4a): one
with all three major alleles (TERT wt), another with all three minor alleles (rs2736107,
rs2736108, and rs2736109), and three with minor alleles of each SNP individually. Relative
promoter activity was determined in ER-positive (MCF7), ER-negative (MDA-MB-468)
breast and ovarian (A2780) cancer cell-lines. The construct containing all three minor alleles
consistently generated the lowest luciferase signals, close to baseline. To determine whether
the risk-associated variants in Peaks 2 and 3 fall within putative cis-acting regulatory
elements (PREs), we cloned ~3 kb of sequence surrounding each SNP. Constructs of PRE-A
(Peak 2) had no significant effect on the activity of either promoter construct (Fig.4b).
However, inclusion of the minor allele of rs7705526 increased TERT promoter activity by
~30% in all three cell-lines, suggesting that it can act as a transcriptional enhancer. This
increase in promoter activity was also observed with the construct in A2780 ovarian cells,
but not in the two breast cancer cell-lines. Constructs of PRE-B (Peak 3) consistently act as
strong transcriptional silencers, leading to a 40–50% decrease in activity, specifically in
constructs containing the TERT wt promoter. Notably, inclusion of the minor allele of
rs2242652 in PRE-B constructs decreased relative TERT wt promoter activity by a further
~20% compared to the silencer containing the major alleles, but highly-correlated SNP
rs10069690 did not generate this effect (Fig.4b).

Alternative splicing of TERT—Several TERT alternative splice variants have been
found to impact on telomerase activity44,45. To determine the role of PRE-B (Peak 3) SNPs
in TERT alternative splicing, we inserted intron 4 sequence into a full length TERT cDNA
mini-gene construct, and confirmed accurate splicing. Cancer risk-associated alleles for
rs10069690 and rs2242652 were generated individually and in combination within the mini-
gene. RT-PCR, using primers spanning intron 4, revealed that all SNP permutations in all
cell-lines produced comparable levels of both wild-type and an INS1 alternative splice
variant, which includes the first 38bp of TERT intron 446,47 (Supplementary Fig.5a). We
also identified a novel TERT splice variant, specifically associated with the minor allele of
rs10069690 (termed INS1b; Supplementary Fig.5a). Sequence analysis confirmed that
INS1b includes the first 480bp of intron 4 and results from an alternative splice donor
created by the minor allele of rs1006969048. INS1b has a premature stop codon 16 amino
acids into intron 4 and is predicted to generate a severely truncated protein product, likely to
impact on telomerase activity (Supplementary Fig.5b).

Gene expression and methylation analyses in ovarian tissue—We used The
Cancer Genome Atlas (TCGA)49 data to examine gene expression of the 11 protein-coding
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genes and one microRNA (MIR4457) located within 1Mb of Peak 3 SNP rs10069690. Most
genes showed higher expression in ovarian tumors compared with normal tissues
(Supplementary Fig.3; Supplementary Table 7). We observed no association between
rs10069690 and expression levels of any of the genes in any of the cells tested
(Supplementary Table 7; Supplementary Table 8; Supplementary Fig.5). There is some
evidence of association between rs10069690 and tumor methylation with probes
cg23827991 (TERT CpG island, P=1.3×10−6) and cg06550200 (CLPTM1L, P=6.9×10−4)
among 935 probes tested. Both showed reduced methylation with the minor, cancer-risk
allele (Supplementary Table 9) but this did not correlate with changes in expression.

Discussion
Our comprehensive examination of the TERT locus has answered some long-standing
questions and raised several new ones. We have identified two independent regions
associated with telomere length in leucocyte DNA; these provide definitive evidence for
genetic control of telomere length by common TERT variants. For rs2736108, the most
significant SNP in promoter Peak 1, the minor allele is associated with a 1.7%-fold increase
in telomere length. This equates to a telomere length change of ~60bp and, since telomere
length decreases by approximately 19bp per year of age50, this is equivalent in magnitude to
an age difference of 3.1 years. We estimate that rs2736108 explains 0.08% of the variance in
telomere length in men and 0.06% in women. SNPs in Peak 2 have a stronger effect on
telomere length with each additional A (minor) allele of rs7705526 associated with a 2.6%-
fold increase. This equates to a ~90bp change in telomere length and, correspondingly, to
4.7 years of age. We estimate that rs7705526 explains 0.31% of the variance in telomere
length in men and 0.16% in women. The only other reported associations with telomere
length, reaching genome-wide significance, involve TERC-locus SNP rs126930451 and
OBFC1-locus SNP rs438728752, which have similar effects on telomere length (75bp and
115bp per-allele, respectively).

Our only findings consistent with the hypothesis that shorter telomeres predispose to
increased cancer risk53 (equivalent to longer telomeres being protective) are those from the
Peak 1 SNPs. However, a regulatory-element construct containing the longer telomere
associated alleles of three highly correlated SNPs, rs2736108, rs2736107 and rs2736109
(reconstructing a haplotype with 25% frequency in Europeans35) virtually abolished
promoter activity in a reporter assay. This finding leaves an apparently paradoxical
association between decreased enhancer activity and increased telomere length (Figure 4).
Control of telomerase activity is currently poorly understood and this clearly merits further
investigation.

SNPs within Peak 3 (TERT introns 2–4) exhibit strong associations with hormone-related
cancers: Peak 3 SNP rs10069690 is associated with risk of ER-negative breast cancer34 and
breast cancer in BRCA1 mutation carriers, consistent with the observation that the majority
of breast cancers arising in BRCA1 mutation carriers are ER-negative. This variant has been
reported to be associated with prostate cancer26,54 and we find it associated with serous
invasive ovarian cancer. Although SNPs in Peaks 2 and 3 overlap on a physical map, the
SNPs most strongly associated with cancer risk or telomere length were not highly
correlated with each other [r2 between rs10069690 and rs7705526 = 0.33 (Fig.2, panel b)].
These observations suggest that either the associations observed with multiple cancers and
SNPs in Peak 3 are mediated via a mechanism distinct from control of telomere length, or
that telomere length in breast, prostate and ovarian cells is under the control of a different set
of SNPs to those controlling telomere length in leucocytes. Luciferase reporter assays show
that Peak 3 contains a silencer of the TERT promoter and that the minor allele of Peak 3
SNP rs2242652 further reduces expression. Consistent with this finding, Kote-Jarai Z. et
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al.54, report that the minor, risk allele of this SNP is associated with reduced TERT
expression in benign prostate tissue. However, our search for comparable associations in
ovarian or breast tumor tissue has been negative, possibly because TERT expression is
severely disregulated in most tumors. Taken together, our luciferase assays indicate that
either reduced signal from regulatory elements in Peaks 1 and 3, or increased signal from
Peak 2, increases risk of specific cancer types.

We have additionally shown that the minor allele of rs10069690 affects splicing and is
associated with transcription of a novel, truncated isoform resulting from a premature stop
codon (Supplementary Fig.4). We do not yet know whether this isoform affects canonical
telomerase activity, or how it changes activity. We further identified novel, open chromatin
signatures overlapping rs10069690 in breast stromal and myoepithelial/stem cell fractions
but not in progenitor or differentiated luminal epithelial cell fractions. Senescent stromal
cells can stimulate malignant transformation of epithelial cells in in vitro and in vivo
models55,56, and these SNP mechanisms merit investigation in future studies.

The SNPs originally reported to be associated with risk of lung (rs402710)57 and breast
cancer (rs3816659)58 (Supplementary Table 10) were not associated with any cancer in this
study. Moreover SNP rs2736100, in Peak 2, has been reported to be associated with glioma,
lung and testicular cancer27,28,31,57,59–62 while nearby SNP rs2853677 was reported to be
associated with glioma in the Chinese Han population63. Despite their physical proximity,
these are not highly correlated with rs7705526 (r2=0.52 and 0.18 respectively), nor do they
display independent associations with telomere length after adjustment for rs7705526. Thus,
variants underlying susceptibility to different cancer types are different from the set of
variants in the TERT region mediating changes in telomere length.

One limitation of this study is the incomplete representation of all SNPs at 5p15.33 on the
iCOGS chip, which was designed in March 2010 using SNPs catalogued in HapMap3,
together with those from the pilot study of the 1000GP35. To help fill known gaps on the
iCOGS chip, additional SNPs were genotyped from the October 2010 1000GP data release,
and imputation was based on the most recent, January 2012 release. However, several gaps
remain across the TERT locus and this, coupled with the strikingly low linkage
disequilibrium across the region (Fig.2), raises the possibility that there could be more
independent associations that we have not yet detected. Furthermore, the incomplete SNP
catalogue at the time of study design means that we cannot assume with certainty that the
true causal variants, directly responsible for the observed association peaks, were captured
in our analysis. It is also possible that more rare variants, not specifically investigated in this
study, could have additional functional effects within this locus. Further re-sequencing of
this region is needed to uncover the full spectrum of variation and phenotype associations.
Another limitation is that telomere length was measured in DNA from leucocytes rather than
from breast or ovarian tissue. Whilst we obtained suitable blood DNA for measurements in
>53,000 subjects (a necessary sample size for adequate statistical power), obtaining
comparable qualities and quantities of DNA from normal breast or ovary cells would be
almost impossible. Telomere lengths, measured in different tissues within one individual
have been shown to be highly correlated64–66 meaning that leukocyte telomere lengths are
likely to be good surrogates for other tissues. Furthermore, one of our aims was to
investigate whether the previously reported associations between mean telomere length and
cancer risk might be mediated through TERT variants, and such studies have been based on
telomere length measured in blood cell DNA. Another limitation was that we were unable to
stratify OCAC ovarian cancer cases by BRCA1 and BRCA2 mutation status because this
information was not available; nor was there sufficient power to evaluate ovarian cancer risk
in mutation carriers in CIMBA.
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Our findings provide evidence relevant to the hypothesis that shorter telomeres increase
cancer risks: associations in the TERT promoter (Peak 1) fit this hypothesis best, while those
in Peaks 2 and 3 (introns 2–4) and other reported 5p15.33 SNP-cancer associations
(Supplementary Table 10) do not. Thus, it would appear that the majority of cancer
associations within the TERT locus are mediated via alternative mechanisms involving the
TERT gene. The protein product of TERT has functions beyond the telomerase-mediated
extension of telomeres67. These non-canonical functions of TERT strongly resemble those
mediated by MYC and WNT68, which are upstream regulators of proliferation,
differentiation and migration. TERT also modulates WNT/β-catenin signaling69, and ectopic
TERT expression induces increased cell division and decreased apoptosis in primary
mammary cells, independently of telomere elongation70.

In conclusion, this study provides definitive evidence for genetic control of telomere length
by common genetic variants in the TERT locus. Additionally, we report multiple,
independent TERT SNP associations with breast cancer risk, confirming previously-reported
associations and identifying new associations in both the general population and in BRCA1
mutation carriers. We also provide, for the first time, highly significant evidence for the
association of distinct TERT SNPs with serous LMP and invasive ovarian cancer risk. Our
results demonstrate that the relationships between TERT genotype, telomere length and
cancer risk are complex, and that the TERT locus may influence cancer risk through
multiple mechanisms.

Online Methods
SNP selection and genotyping

Most SNPs were genotyped on the iCOGS custom array36,37,71. SNPs at 5p15.33 (Build 36
positions 1280000–1415000; Build 37 positions 1227693 to 1361969) were selected, based
on published cancer associations, from the March 2010 release of the 1000 Genomes Project
(1000GP)35. These included all known SNPs with minor allele frequency (MAF)>0.02 in
Europeans and r2>0.1 with the then-known cancer associated SNPs (rs40271057 and/or
rs381665958), plus a tagging set for all known SNPs in the linkage disequilibrium blocks
encompassing the genes in the region (SLC6A18, TERT and CLPTM1L). An additional 30
SNPs in TERT were selected through a telomere length candidate gene approach. In total,
134 SNPs were selected, 121 of which were successfully manufactured; 110 of those passed
quality control (QC)36 in BCAC and CIMBA, and 108 in OCAC (Supplementary Tables 1–
3). After genotyping, these SNPs were complemented with 22 SNPs, selected from the
October 2010 release of 1000GP, to improve coverage. These were genotyped in two BCAC
studies, SEARCH72 and CCHS73, using a Fluidigm™ array according to the manufacturer's
instructions. To improve SNP density further, comprehensive genotype data for the locus
were imputed for all subjects based on the January 2012 1000GP release. The genotype
imputation process is described in36–38.

Samples and Quality Control
Study characteristics, iCOGS methodology and quality control for cancer-risk analyses are
detailed elsewhere36–38. We measured telomere length in 6,766 control samples from the
SEARCH study; 1,569 of these were accrued by SEARCH itself36, 793 were collected as
part of the Sisters in Breast Screening (SIBS) study15 and 4,404 were cancer-free
participants in the EPIC-Norfolk study19. We also measured telomere length in 8,841
participants in the Copenhagen City Heart Study (CCHS)73,74 and in 38,145 participants in
the Copenhagen General Population Study (CGPS)75,76. Genotype clusters were visually
inspected for the most strongly associated SNPs (Supplementary Fig.6). For all studies,
ethnicity was assigned using HapMap (release 22) genotype data for European, African and
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Asian populations as reference (for BCAC and CIMBA using multidimensional scaling, for
OCAC using LAMP77). All CIMBA analyses were restricted to individuals of European
ancestry. For BCAC, separate estimates for individuals of East Asian and African-American
ancestry were also derived. For OCAC, limited analyses of non-European ancestry groups
were also performed. A subset of BCAC and OCAC were utilised in previous breast and
ovarian cancer association studies of individual SNPs78. However, the associations with the
key SNPs (rs10069690, rs2736108 and rs7705526) remained significant after excluding
these studies, demonstrating similar ORs.

Telomere length measurement
Telomere length was measured in SEARCH using a modified version of the protocol as
described elsewhere19,79. Twelve percent of samples were run in duplicate. Failed PCR
reactions were not repeated. Telomere length was measured in CCHS and CGPS with a
modified version of the protocol as described elsewhere50,80. Each individual was measured
in quadruplicate. After exclusion of outliers, average cycle threshold (Ct) values of the
remaining samples were calculated. Failed measurements were repeated up to twice. For
meta-analysis, telomere length measurements from SEARCH were converted to the same
scale as the CCHS and CGPS measurements, based on parameters from the linear regression
between corresponding CCHS and SEARCH 10-year-age and 5-percentile groups in women
only (Supplementary Fig.7). This measure of telomere length was used for all the analyses
and then converted into fold changes (RTL) to aid interpretation (Supplementary Fig.7).

Statistical analyses
SNP associations with telomere length were evaluated using linear regression to model the
fold-change in telomere length per-minor-allele, adjusted for age, 384-well plate, sex, seven
principal components and study. The SNP was coded as number of minor alleles (0, 1, 2 for
genotyped and the inferred genotype for imputed SNPs). The test of association was based
on the 1 degree of freedom (1df) trend-test statistic. We also performed separate analyses
(SEARCH, CCHS females, CCHS males, CGPS females, CGPS males) and combined the
parameter estimates in a fixed-effect meta-analysis81. Associations with breast and ovarian
cancer risk in BCAC and OCAC were evaluated by comparing genotype frequencies in
cases and controls using unconditional logistic regression. Analyses were adjusted for study
and seven principal components in BCAC36 and five in OCAC37. Nine OCAC studies with
case-only genotype data were paired with case-control studies from similar geographic
regions, resulting in 34 analysis study-strata. The principal analysis fitted the SNP as an
allelic dose and tested for association using a 1df trend-test, but genotype-specific risks were
also obtained. Associations between genotypes and breast cancer risk in CIMBA studies
(BRCA1 carriers) were evaluated using a 1df per-allele trend-score test, based on modeling
the retrospective likelihood of the observed genotypes conditional on breast cancer
phenotypes82. To allow for non-independence among related individuals, an adjusted
version of the score-test was used in which the variance of the score was derived, taking into
account the correlation between the genotypes by estimating the kinship coefficient for each
pair of individuals using the available genotype data83. Per-allele Hazard Ratio (HR)
estimates were obtained by maximizing the retrospective likelihood. All analyses were
stratified by country of residence. USA and Canada strata were further stratified on the basis
of reported Ashkenazi Jewish ancestry.

Conditional analyses were performed to identify SNPs independently associated with each
phenotype. To identify the most parsimonious model, all SNPs with marginal P-value<0.001
were included in forward-selection regression analyses with a threshold for inclusion of P-
value<10−4, and including terms for age (for telomere length only), principal components
and study. Similarly, forward-selection Cox-regression analysis was performed for BRCA1
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carriers, stratified by country of residence, using the same P-value thresholds. This approach
provides valid association tests, although the estimates can be biased82,84. Parameter
estimates for the most parsimonious model were obtained using the retrospective likelihood
approach.

FACS-sorting
Normal breast tissue was donated by women undergoing reduction mammoplasty surgery.
Patients provided written consent and all work was performed with full local institutional
human ethics approval. Tissue was dissociated as described previously85. Cells were
prepared for flow cytometry as described previously42 by staining with a cocktail of Lin+
markers (CD31-PE, CD45-PE and CD235a-PE), EpCAM-FITC, CD49f-PE-Cy5 and Sytox
Blue. Cells were then processed by a BD FACSAria II Cell Sorter and live cells immuno-
negative for Lin+ markers were sorted into four subpopulations on the basis of their
EpCAM-FITC and CD49f-PE-Cy5 fluorescence.

FAIRE analysis
Cell pellets derived from FACS-sorting of breast tissue samples were cross-linked in 1%
formaldehyde, then lysed in 200μl Tris-buffered 1% SDS lysis buffer containing protease
inhibitors. Lysates were sonicated using a QSONICA Model Q125 Ultra Sonic Processor to
shear chromatin to 200bp-1kb fragments. Insoluble cell material was removed through
centrifugation, and supernatants equally divided into 100μl INPUT and FAIRE samples.
INPUTs were incubated overnight at 65°C to reverse cross-linking. All samples were
purified through two rounds of phenol-chloroform extraction and DNA recovered through
ethanol precipitation and re-suspended in water for use as PCR templates.

Plasmid construction and luciferase assays
TERT promoter variants were introduced into pGL3-TERT-391543 by site-directed
mutagenesis (Agilent Technologies). TERT Putative Regulatory Elements PRE-A (hg19;
chr5:1,284,900–1,287,087) and PRE-B (chr5:1,279,401–1,282,763), were PCR amplified
using KAPAHiFi DNA polymerase (Geneworks) and cloned into pGL3-TERT-3915 or
rs2736107/8/9 vectors. Individual SNPs were incorporated using overlap extension PCR.
Cells were transfected with equimolar amounts of luciferase reporter plasmids and 50ng of
pRLTK using siPORT NeoFX Transfection Agent (Ambion), according to the
manufacturer's instructions, and harvested after 48h. Luminescence was measured with a
Wallac Victor3 1420 multilabel counter and data (n=3) was analysed by one-way ANOVA
with post-hoc Dunnett's tests.

Mini-gene construction and qRT-PCR analysis
TERT intron 4 was synthesised by GenScript and subcloned into pIRES-TERT44. The minor
alleles at rs10069690 and rs2242652 were introduced by site-directed mutagenesis (Agilent
Technologies). The resultant plasmids, designated pIRES-TERTint4-WT (wild-type intron
4), pIRES-TERTint4-rs10069690, pIRES-TERTint4-rs2242652 and pIRES-TERTint4-DM
(minor alleles at both sites), were transfected using siPORT NeoFX Transfection Agent
(Ambion) and cells harvested after 24h. Total RNA was extracted using the RNeasy Mini
Kit (Qiagen) and digested with DNaseI (Invitrogen). cDNA was synthesised from 1μg RNA
by random priming using SuperScript III reverse transcriptase (Invitrogen). Samples were
screened for the presence of TERT splice variants by RT-PCR.

Molecular correlations at the 5p15.33 locus
For each gene within 1Mb we performed the following assays: (1) gene expression analysis
in ovarian cancer cell lines (N=50) compared to ovarian surface epithelial and fallopian tube
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secretory cell lines (N=73) and tissues from high-grade serous ovarian cancers; (2)
methylation analysis in high-grade serous ovarian cancers compared to normal tissues, and
methylation quantitative trait locus (mQTL) analysis; (3) expression quantitative trait locus
(eQTL) analysis to evaluate genotype-gene expression associations in normal high-grade
serous ovarian cancers precursor tissues. We also evaluated these genes in silico in the
somatic data from The Cancer Genome Atlas (TCGA49). We also profiled the spectrum of
non-coding regulatory elements in ovarian surface epithelial and fallopian tube secretory cell
lines using a combination of formaldehyde-assisted isolation of regulatory elements
sequencing (FAIRE-seq40) and RNA sequencing (RNA-seq).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Association results for all SNPs for seven phenotypes including: (a) telomere length, (b)
overall breast cancer, (c) breast cancer risk in BRCA1 mutation carriers, (d) ER-negative
breast cancer, (e) ER-positive breast cancer, (f) serous low malignant potential (LMP)
ovarian cancer and (g) serous invasive ovarian cancer. Directly-genotyped SNPs are
represented by solid black circles and imputed SNPs (r2>0.3, minor allele frequency
(MAF)>0.02) as open red circles, plotted as the negative log of the P-value against relative
position across the locus. Schematics of the gene structures are shown above panel a.
Association peaks, as described in the text are labeled at the top of the figure, and are shown
as grey regions, when appropriate.
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Figure 2.
Associated signals within the TERT gene. Peak regions described in the text are labeled:
Peaks 2 and 3 overlap around introns 2–4, and Peak 1 encompasses the promoter. The
positions of associated SNPs are shown as black and red ticks representing genotyped and
imputed SNPs, respectively. The TERT gene structure is depicted with exons (boxes) joined
by introns (lines). The positions of all analyzed iCOGS SNPs are marked. Data from the
UCSC genome browser including epigenetic marks for H3K4Me1 and H3K4Me3, ESPERR
regulatory potential, and vertebrate conservation tracks are shown. Regions cloned into
reporter constructs are depicted as the green bar (TERT promoter) or blue bars (PRE-A and
PRE-B). The pattern of linkage disequilibrium based on the BCAC population is shown
where white represents r2=0 and black r2=1.
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Figure 3.
Open chromatin signatures around rs10069690. (A) Map of the PCR amplicon sites A-D
used to annotate a 1 kilobase region surrounding rs10069690 and rs2442652. Primer
sequences are listed in Supplementary Table 11. (B) PCR analysis of FAIRE-processed
chromatin from FACS-sorted myoepithelial/stem, luminal progenitor, mature luminal and
stromal cell enriched fractions derived from breast tissues of four subjects Q695, Q723,
Q706, and Q674. Error bars represent standard errors of triplicate PCR reactions.
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Figure 4.
TERT promoter and putative regulatory element (PRE) activity. Luciferase reporter assays
following transient transfection of ER-negative breast cancer cell line (MDA-MB-468), ER-
positive breast cancer cell line (MCF7), and ovarian cancer cell line (A2780). Error bars
represent standard error between at least three separate experiments. (a-c) Luciferase
reporter assays following transient transfection with pGL2-control (SV40 promoter and
enhancer), pGL2-basic (lacks promoter and enhancer), and the TERT reporter vectors TERT
wildtype (wt) (3.9kb of TERT promoter), the minor (T) alleles of rs2736107, rs2736108,
rs2736109, and rs2736107/8/9 (T-alleles at all sites). Comparisons with TERT wt performed
using one-way ANOVA with post hoc Dunnett's tests are represented by ** (P-value
<0.001) and * (P-value 0.005).
(d–f) PRE-A or PRE-B were cloned downstream of either the TERT wt or TERT
rs2736107/8/9 (TERTh) promoter-driven reporters with and without SNPs rs10069690,
rs2242652 and rs7705526. Comparisons with TERT wt or TERTh performed using one way
ANOVA with post hoc Dunnett's tests are represented by *** (P-value <0.0001) and ** (P-
value <0.001).
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Table 1
Independently-associated SNPs for each phenotype

The independently-associated SNPs are shown for each phenotype following the forward conditional stepwise
logistic regression analysis of overall breast cancer and estrogen receptor subgroups in European individuals
in BCAC, invasive and LMP subgroups in OCAC, relative change of telomere length (RTL) in the SEARCH
and CCHS combined data following the forward stepwise linear regression analysis, and CIMBA BRCA1
mutation carriers, following the forward stepwise Cox regression. These analyses were performed on all SNPs
with MAF>0.02 and P<10−4 in the single SNP analyses.

SNP Chr5 position TERT Peak Source Effect (95%CI) P-Trend

Telomere length (RTL)

BCAC (SEARCH & CCHS)

n=15567 rs2736108 1297488 1 Genotyped 1.010 (1.004–1.016) 0.0004

rs7705526 1285974 2 Imputed 1.019 (1.014–1.025) 2.47E-11

Overall breast cancer

BCAC

46451 cases, 42599 controls rs3215401 1296255 1 Imputed 0.94 (0.91–0.96) 9.91E-10

rs7734992 1280128 2 Imputed 1.06 (1.04–1.08) 1.73E-07

rs56963355 1251503 None Imputed 0.90 (0.84–0.95) 1.95E-05

Risk of breast cancer in BRCA1 carriers

CIMBA

n=11705 rs2736108 1297488 1 Genotyped 0.92 (0.88–0.96) 5.12E-05

rs10069690 1279790 3 Genotyped 1.16 (1.11–1.21) 4.83E-13

Estrogen receptor negative breast cancer

BCAC

7435 cases, 41575 controls rs3215401 1296255 1 Imputed 0.91 (0.86–0.95) 6.15E-06

rs2242652 1280028 3 Imputed 1.15 (1.10–1.20) 4.29E-09

Estrogen receptor positive breast cancer

BCAC

27074 cases, 41749 controls rs2736107 1297854 1 Imputed 0.95 (0.92–0.97) 3.32E-05

Serous LMP ovarian cancer

OCAC

986 cases, 23491 controls rs7705526 1285974 2 Imputed 1.51 (1.36–1.67) 1.34E-15

Serous invasive ovarian cancer

OCAC

8371 cases, 23491 controls rs10069690 1279790 3 Genotyped 1.15 (1.11–1.20) 1.25E-11
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