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Abstract

The resolution of PET images is limited by the physics of positron-electron annihilation and
instrumentation for photon coincidence detection. Model based methods that incorporate accurate
physical and statistical models have produced significant improvements in reconstructed image
quality when compared to filtered backprojection reconstruction methods. However, it has often
been suggested that by incorporating anatomical information, the resolution and noise properties
of PET images could be improved, leading to better quantitation or lesion detection. With the
recent development of combined MR-PET scanners, it is possible to collect intrinsically co-
registered MR images. It is therefore now possible to routinely make use of anatomical
information in PET reconstruction, provided appropriate methods are available. In this paper we
review research efforts over the past 20 years to develop these methods. We discuss approaches
based on the use of both Markov random field priors and joint information or entropy measures.
The general framework for these methods is described and their performance and longer term
potential and limitations discussed.

1. Introduction

Positron Emission Tomography (PET) is a powerful functional imaging modality that can
provide gquantitative measurement of a broad range of biochemical and physiological
processes in humans and animals /n vivo (1). However, resolution and quantification
accuracy in PET is limited by several factors including the intrinsic resolution of the
detectors and the statistical noise in the data. In recent years, image quality in PET has been
optimized using algorithms that explicitly account for both of these factors in the framework
of maximum likelihood or penalized maximum likelihood reconstruction (2). An approach
to further improving PET image quality is to use anatomical information from other imaging
modalities, primarily Computed Tomography (CT) or Magnetic Resonance (MR), to guide
the formation of the PET image. In this paper we review the computational approaches that
have been developed for this purpose.
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Combined PET/CT scanners are now routinely used for diagnostic PET studies (3). The CT
scan provides the anatomical context for display and interpretation of the PET scans.
However, soft tissue contrast in CT is typically poor, and CT images are therefore of limited
value in terms of delineating organ and other tissue boundaries in a manner in which they
can be used to guide PET image formation. Conversely, as a complementary imaging
modality to the high sensitivity functional information gathered by PET, MR scanners are
able to provide high-resolution anatomical information with excellent soft tissue contrast.
Combined MR-PET images have been used extensively in brain research for many years.
The PET images are typically co-registered to the MR images, which are then used to define
anatomical regions of interest through manual or automated labeling (4). Until recently,
these studies were performed with two separate scans of the subject, one in the MR and the
other in the PET scanner. While retrospective coregistration of brain images is relatively
straightforward, coregistration of other parts of the body is far more challenging because of
differences in posture from scan to scan as well as the internal motion and non-rigid
deformation of organs that can occur over time. For this reason, acquiring MR and PET
images (almost) simultaneously in the same scanner is important for MR-PET studies,
whether for clinical or research purposes.

The integration of PET and MR was first proposed about twenty years ago (5, 6). However,
fully integrated simultaneous MR-PET systems have only recently become a reality (7). The
major technical challenge of integrating PET and MR is the effect on PET detectors and
electronics from the static and gradient magnetic fields and the radio-frequency (RF) signals
used in MR. It is also important that the PET detectors don’t unduly compromise the
uniformity of the MR system’s magnetic field. Finally, the PET detectors must fit within the
bore of the MR magnet leaving sufficient room for the patient and RF coils. For these
reasons, conventional photomultiplier tubes (PMTs) are impractical and solid-state devices
are used. With the development of new detector materials and MR-compatible components,
several combined MR-PET scanners have been designed and produced in the last decade

).

Avalanche photodiodes (APDs) were first used for PET in a high magnetic field in 1998 (9),
and then in the first preclinical MR-PET scanner in combination with LSO scintillators in
2006 (10). Silicon photomultipliers (SiPMs), a densely packed matrix of small Geiger-mode
APD cells (11), are insensitive to magnetic fields and have higher gain than APDs as well as
excellent intrinsic timing resolution of about 60 ps. The feasibility of applying SiPMs in a
MR system was first demonstrated in 2007 (12) and a MR-PET prototype system for small
animal imaging was recently reported in 2009 (13).

The first clinical MR-PET system, the Philips Ingenuity TF, is a clinical whole-body
sequential MR-PET scanner combining time-of-flight (TOF) PET with 3T MR (14). Unlike
the simultaneous MR-PET systems, the sequential systems do not need a new design of the
PET system but allow for sequential acquisition of co-registered PET and MR images in a
manner similar to that typically used in PET/CT systems. The Siemens Biograph mMR is
the first commercially available clinical simultaneous whole body MR-PET scanner. The
mMR uses LSO/APD PET detectors that are placed between the MR body coil and gradient
coils. It has been shown that the performance of the PET system in the mMR scanner is
equivalent to that of the Siemens Biograph PET/CT (15).

The availability of simultaneous MR-PET imaging offers several important advantages: first
function and structural data are being acquired at the same point in time. Second, integrated
MR-PET allows spatial co-registration of PET and MR images with minimal error. Third,
the MR image can be used for attenuation correction of PET data, reducing the radiation
exposure compared with PET/CT or a PET transmission scan using an external source. It is
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also possible to use the MR signal for motion correction of the PET data, and consequently
generate motion corrected attenuation and scatters corrections. Finally, MR is a powerful
modality that itself allows functional as well as anatomical imaging. Many of these
advantages are described in other papers in this issue, here we focus only on using
anatomical MR images specifically to improve the quality of the PET images.

In PET studies, the resolution of the images is limited by several physical factors (16),
including positron range, photon pair non-collinearity, errors in localization of each detected
photon caused by crystal penetration and scatter within the crystal, and the finite size of the
detector elements. In addition, detection is photon limited due to limitations in the amount of
activity injected, short scan times, and attenuation within the body. As a result Poisson noise
is often the limiting factor in image quality. The current achievable spatial resolution of PET
images is on the order of 4mm for whole body clinical scanners (17) and 1mm for
preclinical scanners (18). Anatomical MR images can be routinely collected with both
higher resolution and superior signal to noise ratio (SNR). It is therefore natural to ask
where we can we use the anatomical information from MR to improve the quality of
reconstructed PET images. Over the last two decades, several research groups have
addressed this problem and many novel approaches have been proposed as we review
below. We first summarize approaches to PET image reconstruction in Section 2 before
proceeding to a review of how these methods can be modified to incorporate anatomical
information in Section 3.

2. PET Image Reconstruction

The simplest model of PET data acquisition system assumes the measured data correspond
to line integrals through the unknown image. In the 2D case the data, or sinogram, is the
Radon transform of a 2D function. The Radon transform can be inverted in multiple ways,
but most common among these is the filtered backprojection (FBP) algorithm, in which the
sinogram is first filtered and then projected back into image space (19). For 3D systems the
finite axial extent of the scanner results in missing data when the problem is viewed as a
direct extension of the 2D case. Approaches to deal with these effects include the use of
modified filters (20) and reprojection methods to estimate the missing data (21). An
alternative analytic approach to the 3D problems first maps the data into a set of 2D Radon
transforms using Fourier rebinning (22). The computation cost of this method is relatively
low and for several years was the preferred method for 3D PET image reconstruction.
Recently Fourier rebinning methods have also been extended to time-of-flight (TOF) data
from the latest generation of PET/CT scanners (23, 24).

These analytical methods do not take into account the statistical variability inherent in
photon-limited detection nor do they accurately model the true physical process of photon
coincidence detection. In contrast, model based methods are able to combine accurate
physical and statistical models, resulting in superior image quality. For this reason, model
based methods are now routinely used in both research and clinical PET studies. The use of
a model based method also facilitates the introduction of anatomical information as we
describe below. First we will give a brief introduction to model based PET image
reconstruction (see (2, 25) for more detailed reviews).

Model based reconstruction methods for PET are based on a statistical model in which the
data are modeled as a collection of independent Poisson random variables with joint
probability distribution function (PDF)
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where Y€ RM*1 are the measured sinogram data, ¥'€ RM*1 are the mean (expected) values

of the data, and M is the number of lines of response (LORs) in the sinogram. ¥can in turn
be modeled as:

Y=Al+S+R (2

where A is the unknown image, A is the system matrix, and Sand R are the means of the
scattered and random contributions, respectively, to the measured data. The system matrix A
models the mapping from source to detector space and should take into account the
geometry of the scanner, the properties of the detectors (including their intrinsic and
geometric sensitivities), and the attenuation probabilities between each detector pair. These
models can be either computed on the fly (26) or precomputed and stored in sparse matrix
formats. As noted in (16), A can be usefully factored into geometric, detector response,
attenuation, and detector normalization components for efficient storage and computation.

The most common approach to reconstruction of PET images based on the model in egs
(1,2) is to find the image that maximizes the log likelihood, L7 A'Y'I A). This maximum
likelihood (ML) solution can be found using the Expectation-Maximization (EM) algorithm
(27). The EM algorithm has a simple iterative update equation with guaranteed convergence
to the ML solution. Convergence of EM is slow so that in practice it is common to perform
EM updates over subsets of the data which produces much faster initial convergence
towards the ML solution (28). While this ordered subsets EM (OSEM) algorithm does not
ultimately converge to the true ML solution, a judicious choice of the number of subsets and
iterations, possibly with additional post-reconstruction smoothing, can produce excellent
image quality in practice. For this reason OSEM remains the most widely used iterative
reconstruction method in clinical scanners.

With either the EM or OSEM algorithms, iterating beyond a certain point will result in
increased noise and decreasing image quality in the estimated image. This effect is caused
by the inherent ill-posedness of the PET inverse problem. The system matrix A is ill-
conditioned so that small differences in the data (which naturally occur due to photon
counting noise) will produce large changes in the ML solution. This problem can be avoided
in practice by using a limited number of iterations to reconstruct the image (29) or by post-
filtering of an image obtained using a higher number of iterations (30).

An alternative approach to dealing with the instability of the ML problem is to work in a
Bayesian framework by introducing a statistical prior distribution to describe the expected
properties of the unknown image. The Bayesian formulation is of particular interest if one
wants to include anatomical information since, as we show below, it provides a natural
framework to do so. The effect of the prior distribution is to choose among those images that
have similar likelihood values the one that is most probable with respect to the prior.

In Bayesian image reconstruction, the maximum a posterior (MAP) estimate of the image is
found by maximizing the posterior function

A=arg max >0 {P(/llY): w}

P(Y)
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Equivalently, we can maximize the log of the posterior probability, noting that A'Y) is a
constant once the data are acquired, so that

A=arg max,so {Ln P(Y|)+Ln P(1)} (4)

When written in this way we see that MAP can also be viewed as maximizing a penalized
likelihood function where the additive penalty is L7 A(A). While Bayesian and frequentist
statisticians (who favor ML approaches) differ widely in their views on statistical inference,
for all practical purposes MAP and penalized maximum likelihood (PML) are essentially
equivalent as used in most PET image reconstruction contexts. We will present the methods
for incorporation of anatomical priors in a Bayesian framework here.

Different approaches have been proposed to design the prior distribution for the image AA).
The simplest among these assume each voxel is statistically independent. These models are
of limited value since the information we typically seek to capture in the prior is some
degree of piecewise smoothness in the image. The Gibbs distribution, or Markov random
field (MRF) (31), allows us to specify a prior in terms of local interactions since all MRFs
have the property that the conditional probability for the value of any voxel in the images
depends only on the values of the voxels in a local neighborhood of that voxel. This not only
allows us to model the desired local properties but also leads to computationally tractable
MAP reconstruction algorithms.

To define a MRF prior we need to specify the form of statistical interaction (or conditioning)
between neighboring voxels. The simplest MRF models encourage uniform smoothness
throughout the image using a multivariate Gaussian distribution. While these models have
proven very useful in controlling the noise amplification issue encountered with EM and
OSEM reconstruction, they are limited in their abilities to identify sharp changes in intensity
that may occur, for example, at the boundaries between organs or substructures within an
organ. The more complex compound MRFs are able to model these boundaries explicitly
through introduction of “line process” as we described below in Section 3.2. An alternative
approach to modeling piecewise smoothness is to use a hierarchical MRF in which we
explicitly model the image as consisting of distinct segmented regions. While these MRF
models can all be used for MAP reconstruction from PET data only, they also lend
themselves to incorporation of additional anatomical data. These data can be used to
influence the degree of smoothness throughout the image or the location of boundaries or
edges in the image.

3. Using Anatomical Images for PET Image Formation and Analysis

There are two distinct ways in which anatomical MR images can be combined with PET
data. The first approach is to use the MR to define anatomical regions of interest (ROISs)
over which the PET data are then analyzed, either for computing semiquantitative metrics
such as the Standardized Uptake Value (SUV) (32) or by fitting a dynamic model to
determine pharmacokinetic parameters of interest such as the volume of distribution or
binding potential (33). This approach can be taken one step further when the anatomical
image is used as the basis to effectively increase the resolution of the PET image, using the
anatomical ROI to compensate for partial volume effects, as we describe in Section 3.1. The
second approach is to use some facet of the MR image to directly influence the
reconstruction of the PET image. The rationale for this is that while anatomical and
functional images clearly give very different views on the human body, it is also true that
PET images, whether they represent metabolism, blood volume, or receptor binding, will
exhibit a spatial morphology that reflects the underlying anatomy. While we cannot be sure
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of uniform uptake within relatively homogeneous tissue regions, we can be confident that
most tracers will exhibit distinct changes in activity as we cross tissue boundaries.
Alternatively, we can say that a priori we have no reason to expect smooth variation in tracer
uptake across anatomical boundaries, while within homogeneous tissue regions, we are more
likely to see smooth variations in uptake, unless there is evidence to the contrary in the PET
data itself. Consequently we can use an anatomical prior to influence formation of the PET
image by indicating those regions in which, a priori, we are more likely to see more abrupt
changes in activity. Importantly, this does not mean that there must be such a change, but
rather that changes in these locations are more likely. In Section 3.2 we describe how these
ideas can be encoded within an image reconstruction algorithm using Bayesian and related
formulations.

3.1 Improving Quantitation through Partial Volume Correction

If we assume accurate calibration and normalization, the reconstructed radiotracer
concentration within each voxel differs from its true value because of two main effects:
spread of activity into neighboring voxels and spill-over of activity from neighboring voxels.
The former effect reduces the measured activity concentration while the latter effect
increases it. In addition, the size of PET image voxels is usually a few mms and may contain
two or more different tissue types. As a result, the activity concentration in each image voxel
is a weighted average of the concentration in each tissue type. For quantitative studies of
small structures, such as brain FDG scans of neurodegenerative diseases, this may cause
significant errors in data analysis. Meltzer et al (34) implemented a two-compartment
method to account for the loss of signal in gray matter (GM) due to the influence of
cerebrospinal fluid (CSF). Later a three-compartment method was proposed to correct for
the different uptake in GM and white matter (WM) (35). The corrected PET image can be
represented as:

- A(x) — ¢y, (s, (%) ® h(x))
A (1)~ 5o (1) ® h(x)

where A(X) is the reconstructed image value in location x, s,yand sg are the support
function of the WM and GM respectively, /(x) is the point spread function and ¢}y is the
(assumed) known concentration of radiotracer in WM. This method assumes the GM
concentration has small variation near a mean value, WM concentration is constant and CSF
concentration is 0.

In another approach proposed by Rousset et al (36), multiple regions were considered and
the regional spread function (RSF) of each calculated. The RSF is then used to compute a
regional geometric transfer matrix (GTM) between different regions. The true
concentrations of the regions are derived by inverting the GTM and multiplying by the
measured regional concentrations.

All partial volume correction methods require segmentation of the MR images and are
therefore affected by any segmentation error (37). In addition they assume a piecewise
constant activity in the regions surrounding the tissue of interest and tend to be sensitive to
noise in the data. The use of these methods has so far been restricted to specific applications,
such as correction for the effect of cerebral atrophy (38).

3.2 Anatomically Guided PET Image Reconstruction

Rather than using the anatomical MR image for post correction of partial volume effects, an
alternative approach is to use the MR image to constrain the reconstruction directly,
effectively trying to incorporate partial volume correction directly into the reconstructed
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image. As noted above, the most common framework in which this has been done is using
the MRF prior.

3.2.1 Markov Random Fields—The MRF is a probabilistic image model with properties
that allow one to readily specify the joint distribution (within a scale factor) in terms of local
“potentials” that describe the interactions between groups of voxels that are mutual
neighbors (39). The joint density has the form of a Gibbs distribution:

1
P(/l)zze_ﬁu @ (g)

where Zis a normalizing constant, Sis a parameter that determines the degree of
smoothness of the image, and () is the Gibbs energy function, which is formed as the
sum:

U=y, Ve @

where V{A) are a set of potential functions, each defined on a clique ¢ € C consisting of
one or more voxels all of which are mutual neighbors of each other; here C is the set of all
cliques. To complete the definition we need to define a neighborhood system. In 2D images,
the neighbors of a voxel could be the 4 or 8 nearest neighbors as illustrated in Fig. 1.
Similarly, in 3D, we could define a 6 nearest neighbor, or 26 nearest neighbor system, again
illustrated in Fig. 1. As the size of the neighborhood grows, so do the number of possible
cliques. For the purposes of this paper we will restrict discussion to a 2D image with an 8
nearest-neighbor system. Extensions to higher dimensions and larger neighborhoods are in
principal straightforward, although pose practical problems both in terms of computation
cost and in specification of the potential functions and their parameters.

Let us number the voxels in the image with a single index, /€ [1,.... V], and denote the set
of neighbors of voxel 7as N, then for the 8-neighbor system we can write the Gibbs energy
function as:

N N )
U(A):Zi:1¢(/li)+zi:] Zj>i,jeN,'l/,(/li’ Aj)+higher order terms (8)

where the higher order terms include three or more voxels. The first term on the right hand
side allows us to specify properties we may know about individual voxels, but it is the
second term that forms the basis for most MRF priors used in tomographic image
reconstruction. This term specifies a potential function or penalty on each pair of
neighboring voxels. Typically this is done through specification of a weighted function of
their difference:

Ui, ))=Biy(li — ;) (9)

with the constraint that )(A; - 1)) = 0 and that the function is monotonically nondecreasing
injA;-Aj

Choice of the function (A, — A)) and the associated weights S;; determine the properties of
the prior. The simplest and most widely used is the quadratic penalty: (1, -A)) = (4, -
/1/)2. When the image has the same value at each voxel, the potential functions and hence the
energy function {(A) are zero and the probability density function P(/l)=l€_5uw is at its
maximum value. As the difference between voxels increases, so does U()S, with A1)
decreasing correspondingly, indicating less likely images. The advantage of this weighting is
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that it tends to produce the most natural looking images. The disadvantage is that the
quadratic penalty between voxel differences attaches very low probability to large changes
so that reconstructed images tend to be smooth. A large number of alternative functions have
been explored that reduce the penalty for larger differences as illustrated in Fig. 2 (40).

In all the cases shown in Fig. 2, other than the quadratic penalty, the goal is similar: to attach
lower probability to images that are not locally smooth but without over-penalizing
occasional large changes that might correspond, for example, to organ boundaries.
Interestingly the total variation (TV) prior in Fig. 2b is equivalent to the TV norm that is
now commonly used in the context of much of the recent literature on sparse imaging (41).

To complete specification of the prior we need to also specify the smoothing parameters. In
the absence of anatomical scans, we would intuitively use the same value of the smoothing
parameters ;; for each voxel pair. In fact for PET data, Fessler and Rogers (42) have shown
that this leads to a spatially variant resolution in the image that depends on the Fisher
information matrix (FIM), a measure of the information content in the data about the
unknown image. By locally adjusting S;;based on the FIM, we are able to achieve
approximately uniform resolution (43) when using the quadratic potential function.

3.2.2 Incorporating Anatomical Boundaries and Regions in MRFs—When we
introduce anatomical information we are specifically attempting to achieve a nonuniform
resolution since we use anatomy to guide the formation of boundaries in the PET image. In
this case we can make the B;;parameters dependent on the edge strengths in the MR image.
Suppose we apply an edge detection operator to the MR image, 7 to produce an edge
strength map g. Then the simplest approach to using anatomical information to guide
formation of the PET image is to set B;;= Hgj, g) where Agj, g)) is a function whose value
is small when the two edge strengths are large (a small penalty for an edge in the PET
image) and large when the edge strengths are small (a higher penalty for an edge in the PET
image). Specific algorithms will then differ in the manner in which the edge map g is
computed, in the choice of the weighting function Ag;, gj), and also in the associated choice
of the potential function (A, — A)). This process with a quadratic penalty with weights
dependent on boundary locations in a segmented volumes is described by (44) and (45). To
account for possible misregistration between the anatomical and functional images, some
degree of blurring can be applied to the estimated edge maps (44). Bowsher et al (46) avoid
using a segmented anatomical information but attach nonzero weight to only those cliques
consisting of voxels whose intensities in the anatomical image are sufficiently close.

One can also introduce the anatomical priors through use of a “weak membrane” model in
which a quadratic penalty is used within homogeneous regions, but at boundaries no penalty
is applied, effectively making the weight Agj, g)) = 0 at these locations and performing no
smoothing across anatomical boundaries (47). The use of larger neighborhoods for the MRF
allows introduction of the higher order terms in eq (8). In this way analogs of mechanical
models can be introduced into the prior where the image reflects the bending of a thin metal
plate (47). Anatomical boundary information can then be used to control the bending of this
plate by weighting interaction terms in a similar manner to that described above (48). In the
limiting case where weights go to zero at boundaries, this leads to the “weak plate” model
that allows penalized discontinuities in the PET image across anatomical boundaries (47).

A related approach is to first attach a label Cjto each of the voxels 7;in the MR image
through a segmentation process (e.g. in brain images, we can label brain voxels as WM, GM
or CSF) and then define weights B;;= Hc;, ¢)) based on the labels of the two voxels (49, 50).
A variation on this framework uses the segmented anatomical image to define different
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distributions in the prior as a function of tissue type, essentially defining a tissue mixture
model (51).

Segmented MR images can also be used in the context of a hierarchical MRF model. In
these models, rather than model the PET image intensity itself as a MRF, we model regions
in the image using one discrete label for each region or tissue type. The MRF is then defined
on this discrete image using a Potts model (52). As with eq (7), the Gibbs energy function is
defined on cliques of neighboring voxels in such a way as to encourage formation of
contiguous homogeneous regions (53). The PET image is then defined in terms of a PDF
conditioned on this underlying segmented model. When anatomical information is available,
these can be used to modify the Potts model for the segmented PET image so that it largely
follows the underlying morphology but with sufficient freedom to allow the formation of
lesions or other structures in the PET image that may not be well defined in the anatomical
image.

Compound MRF models are able to explicitly model boundaries in the image. This is
achieved by augmenting the image intensity values, A, with a set of binary random variable
“edge processes”, 1, representing the presence (z;;= 1) or absence (z;;= 0) of an edge or
boundary between that pair of voxels (31). The compound MRF model includes a
neighborhood system consisting of a combination of voxels and edge processes. The
potential functions are defined in such a way as to encourage the formation of contiguous
regions of similar intensity separated by continuous boundaries formed by connected
vertical and horizontal edge processes as illustrated in Fig. 3.

To use this model for incorporation of anatomical information, we used a segmented MR
image to define likely locations of boundaries and used these as weights in the Gibbs energy
function which had the following form (54):

UAD=D > o 1B = AP = Iy +aly+ HUUp) - o)

where the first term corresponds to a quadratic potential function when the associated line
process is off, but is turned off when the edge is present. The second term penalizes the
nonzero line sites in the image thus avoiding too many edges. The third term is used to
encourage formation of closed and connected boundaries and defined on cliques consisting
of two or more line process variables. Incorporation of anatomical information in this
context is straightforward by using the location of anatomical boundaries to spatially
modulate the weights a to encourage formation of similar boundaries in the PET image (54,
55). Extensions of this approach include methods in which the edge processes are solved for
implicitly to reduce computational costs, as described in (56).

Fig. 4 shows this approach applied to simulated brain phantom data from (54). A patient MR
image was segmented into four regions: WM, GM, lesion and ventricles. A hot spot was
inserted in the left side of the WM to simulate functional edges not present in the MR image.
The result clearly shows the benefits of using the anatomical edges including improved gray/
white matter contrast and better visibility of the functional lesion.

One of the disadvantages of the line site model is that there is no guarantee that the
reconstructed edge sites form continuous boundaries. The use of the Potts MRF model in
which the PET image is explicitly segmented avoids this problem, but presents additional
computational challenges related to the need to optimize over many discrete variables. An
alternative to explicit use of line sites is to instead model continuous boundaries directly.
This was done by Cheng-Liao and Qi using a level set function (LSF) to represent the
continuous boundaries in the functional image (57). The anatomical image is then used to
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influence the location of the estimated functional boundaries. In a related approach, Hero et
al (58) used B-splines to represent boundaries in the PET image, again using the anatomical
image to guide its formation. Another interesting approach is to use the anatomical image to
generate an irregular mesh (rather than a uniform voxel grid) on which to reconstruct the
PET image (59). In this approach the anatomical image is first segmented. The curves (or
surfaces in 3D) representing tissue boundaries, and the regions inside them, are then
tessellated so that the mesh reflects the underlying anatomy. Reconstruction of the PET
image on this mesh, with local MRF smoothing based on adjacency in the mesh will
naturally encourage formation of a PET image that reflects underlying anatomy.

3.2.3 Information Based Methods for Incorporating Anatomical Priors—The
methods presented in the previous section almost all rely on boundary or regional
information extracted from the anatomical image by segmentation or edge detection.
Another approach that avoids this requirement is to maximize an information-based
similarity measure between the anatomical and reconstructed PET image. These methods are
inspired by the great success found in coregistration of multimodal images based on mutual
information (60). The essential idea is that while anatomical and functional images represent
different parameters, they are mutually informative: you can infer something about the
functional image from the anatomical image, and vice versa. This should in turn be reflected
in their joint density function, p(A, 7). Given an image pair A and fwe can estimate this
density using the joint histogram. An information measure /A, #), such as the Kullback-
Leiber (KL) distance, joint entropy or mutual information, can be used to quantify the
degree to which p(A, 5, (or its estimate) reflects consistency between the two modalities.
Maximization of this metric in combination with the likelihood function for the data
therefore leads to a PET image that, in some sense, extracts the most information available
from the anatomical image. The methods we review below differ primarily in the choice of
this metric.

The general formulation of the inverse problem in this case can be written as:

A=arg max s {Ln P(Y|)+BI(A, )} (11)

By comparison to eq (4) we see that this is similar to the MAP formulation with the
information theoretic measure replacing the role of the log of the prior density.

One of the earliest papers to use this approach (61) used a modified KL distance as a
measure of dissimilarity between the two images:

I(/l,szzi [/ll- In (%) - /l,-+f,] 12)

To encourage edge formation in the reconstructions the anatomical image was first
preprocessed with an edge-preserving filter. This differs from later work in the sense that the
images themselves are used as the sample PDFs rather than their histograms. This results in
a far simpler computational problem but will of course produce quite different results.

Interpreted in the usual sense, information measures are computed on the joint density p(A,
7). By quantizing the voxel intensities we can estimate this density as 6(Ayx ), k=1,... K,/
=1, ... L, equal to the fraction of voxels that have the value A;= A when f;= F; The
Parzen window estimate of the joint density, which makes numerical optimization more
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straightforward and works with fewer voxels, computes a continuous estimate of the joint
density as

F—fi

— 1 A -4
PAF)=5 ) 5= o)

where .) Is a compact window function whose extent is determined by the parameters o
and ox The Mutual information (MI) between two random variables can be computed as

L, (4, )=HWO+H(f) —HA, ) (14
where the entropy H(A) and joint-entropy (JE) H(A, # are defined as

HW)= - [p()log(p()dd HX,Y)= - [p(d, f)log(p(A, ) dAdf (15)

and can be computed from the estimated PDFs defined above. By substituting the numerical
approximation of Ml into eq (11) and optimizing it, we can compute the PET image
consistent with the data with maximum Ml relative to the anatomical image.

Using a phantom simulation data, Nuyts showed that MI-based anatomical priors may
introduce bias in the PET image estimates due to the tendency to create separate clusters in
the marginal histogram of the PET image (62). By using JE instead of Ml (i.e. by ignoring
the marginal entropy terms AH(A) and AH( /) he found that this problem can be avoided. In
related work, Tang and Rahmim (63) used a JE prior between the intensities of anatomical
and functional images and used a one-step-late MAP algorithm for PET image
reconstruction. We also found a similar bias issue when comparing Ml and JE based priors
(64). In (65), a Bayesian joint mixture model was formulated and PET image reconstructed
by minimizing a joint mixture energy function including the MI between anatomical and
functional class labels. A parametric model was used where the class conditional prior was
assumed to have a Gamma distribution.

The information-based measures described so far make the implicit assumption that all
voxels are spatially independent. In other words, we would obtain identical Ml or JE
measures if the anatomical and PET image voxel indices were randomly reordered (provided
we retain the same pairing). For this reason, these methods do not directly exploit the spatial
structure in the images. In our recent paper we investigated the use of a scale space
representation of the image (64). A three-element feature vector at each voxel location was
formed by concatenating, for each modality, the original image, the image blurred with a
Gaussian kernel and the Laplacian of the blurred image. Fig. 5 shows these scale-space
features for a MR brain image. By maximizing the sum of the JEs for each of these three
components, the resulting image directly exploits similarities in structural smoothness
(through the Gaussian filtered image) and edginess (through the Laplacian of Gaussian
image). A related approach from Tang and Rahmim (66) use mutual information with
respect to a multi-scale wavelet representation.

Simulation and clinical data show that the M1 and JE based priors can improve resolution
compared to a simple quadratic MRF prior. Fig. 6 shows the joint PDF of the MR image and
the PET image (original and reconstructed using different methods). It can be seen that
reconstruction using a JE prior is closer to that for the true PET image than the results either
using a standard OSEM-based ML reconstruction or using the Ml prior. Fig. 7 shows an
application of this approach to reconstruction of a clinical brain scan using F18 Fallypride, a
dopamine receptor binding tracer. The JE prior image demonstrates superior definition of
subcortical nuclei than obtained using a standard quadratic MRF prior with minimal
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smoothing, indicating the effect of the anatomical prior in guiding placement of the edges of
the caudate and putamen.

4. Discussion

We have summarized the methods reviewed above in Table 1. Throughout these
publications, images reconstructed using anatomical priors have been compared with those
reconstructed without. One needs to be careful with these evaluations, because the results
may be affected by factors including registration and segmentation error and noise in the
MR image. We now consider the performance of the methods in Table 1 as they relate to the
two primary tasks for which PET is employed: quantitation and lesion detection.

4.1 Quantitation

The quantitative accuracy of PET images can be investigated by studying the trade-off
between bias (or resolution) and noise properties in reconstructed images. In one of the few
papers to compare different approaches to including anatomical priors, Vunckx et al (72)
compared three MR-based anatomical priors with EM reconstruction of maximum
likelihood images: A-MAP (51), JE-prior (62) and a modified Bowsher-prior (46). The
evaluation used a realistic Monte Carlo simulation of a brain with 20 lesions. The
parameters for each prior were determined from a preliminary reconstruction using a fast
analytical simulator. Quantitative evaluation used a single figure of merit parameter, as well
as the bias-noise tradeoff in GM and lesions and the SNR in the lesions. Fig. 8 shows
samples of reconstructed images and Fig. 9 shows a bias-noise analysis from a simulated 1
minute FDG brain scan. Overall they found anatomical priors produced significantly better
results than ML-EM reconstruction. The Bowsher-prior yielded the best images, while the
JE-prior had the worse performance among the anatomical priors and was more sensitive to
the reconstruction parameters and the noise in the MR image and PET data.

Cheng-Liao and Qi compared their level set method for incorporating anatomical priors with
several existing algorithms using simulation data and looked at situations when the
anatomical and functional boundaries are not matched (57). The authors concluded that the
level set method has better bias-variance performance. Fig. 11 shows the contrast-variance
performance from their simulated human phantom data.

4.2 Detection

Several groups have evaluated the performance of anatomical priors for lesion detection (51,
67, 71, 73-76) using either computer observer or human observers for the evaluation. The
most common figure of merit is the area under the receiver operating characteristic (ROC)
curve. In general it appears that if the task is to detect lesions with elevated activity, the use
of organ boundary does not increase the detection accuracy, while using both organ and
lesion boundaries may improve the accuracy, especially when the contrast of activity
concentration in lesion and background is high (73, 74, 76). Baete et al (51) compared A-
MAP with post-smoothed ML-EM, where the task is detection of hypometabolic regions in
brain FDG PET. They calculated the SNR of a non-prewhitening computer observer. A-
MAP vyields similar SNR as ML-EM with optimal post-smoothing. In (71), similar
experiments were done with human observers. The authors found that in contrast to the
computer observer result, A-MAP outperforms post-smoothed ML-EM in human observer
studies.

Nuyts et al studied the use of anatomical information in lesion detection using simulated
phantom data. (67) Two methods were compared. One method uses anatomical priors in
MAP reconstruction and the other uses it in post-processing of ML-EM images. The
performance was evaluated by computing bias-noise curves and detection performance for
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non-prewhitened (NPW) and channelized Hotelling (CHO) observers. Results show that
post-processing ML-EM images using anatomical information is inferior, unless the noise
correlations of the voxels are considered by using a prewhitening filter. The prewhitening
filter is not as efficient as MAP with anatomical prior, because it is shift-variant and object
dependent. The authors concluded that MAP with anatomical priors is the preferred method.
Fig. 11 shows bias vs. variance plots as well as the SNR for the NPW and CHO observers as
a function of regularization parameter for this study,

In (75), lesion detectability using anatomical and non-anatomical priors was compared using
a CHO. In this case, the authors found no difference in lesion detectability.

5. Limitations and Challenges

We have described the framework for a number of different approaches to incorporating
anatomical MR information into PET images and reviewed some of the literature evaluating
their performance. It is clear that there is some improvement in quantitation and detection
when the anatomical prior provides accurate information about the location of boundaries of
lesions or organs in which we want to detect/quantify tracer uptake. As the quality of the
MR data deteriorates, or when there is a mismatch between anatomical and functional
boundaries, these advantages appear to be largely lost. An important challenge therefore is
to ensure that the PET and MR data are well registered or that the methods have robustness
to small errors in registration.

One of the potential downsides to using anatomical priors is that we are deliberately making
image resolution anisotropic and spatially variant. While this may help compensate for
partial volume effects and improve detection or quantitation, it also adds challenges in terms
of interpretation since the image reader will not know the true resolution at each location.
Analytic methods for estimating the image resolution of MAP estimators (77-79) could be
extended to reconstruction using anatomical priors. If successful, the reader could then be
provided with a map of the spatially variant resolution, although visual interpretation of this
data may still be difficult. A similar approach could also provide useful information about
the voxelwise and regional variance and covariance which would be useful for quantitative
analysis or computer-observer based detection.

A second related challenge, and possible area for future research, is to apply these
approaches to dynamic data. When analyzing dynamic data with kinetic models it is
important that the resolution does not vary over time, other time-varying partial volume
effects will introduce bias into estimated rate parameters. Consequently, if anatomical priors
are to be used for dynamic studies it is important the methods be designed to produce time-
invariant spatial resolution for reconstruction of each frame of the study.

In this paper we have focused on the combination of structural MR images with static PET
data. We close by noting that both PET and MR are very flexible modalities. PET allows
static and dynamic imaging using a broad range of radiotracers. MR has great flexibility not
only in the control of tissue contrast, but also in terms of functional imaging (fMRI, dynamic
contrast-enhanced imaging, imaging spectroscopy, blood flow, etc). There is therefore the
potential for many forms of synergistic combination of PET and MR for which combined
image reconstruction and analysis should play an important role in the future.
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L
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Fig. 1.

First and second-order neighborhoods and their cliques for Markov random fields: (a) 15t
order 2D neighborhood - the 4 blue voxels at left are the neighbors of the red central voxel,
green blocks in the figure at right illustrate cliques of mutual neighbors on which potential
functions are defined in eq (7); (b) 2" order 2D neighborhood with 8 (blue) neighbors in left
figure, green blocks on right show groups of voxels forming cliques with respect to this
neighborhood; (c) 15t order neighborhood in 3D with 6 nearest neighbors and (d) 2" order
neighborhood with 26 nearest neighbors. In (c) and (d) the groups of green voxels on the
right illustrate some of the allowed cliques for their respective neighborhoods.
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(a) Quadratic (b) Total variation
(c) log(1+(4, =4 ) /1) (d) Truncated quadratic

Fig. 2.

[llustration of different possible choices for the potential function »{(1,;— A)). The quadratic
penalty tends to produce globally smoother images; the alternatives attempt to achieve a
trade-off between local smoothness and allowing occasional large changes to reflect changes
in uptake at organ or lesion boundaries in the PET image.
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(g) (h) (i)

Fig. 4.

(a): Original MR brain image. (b): Segmentation of (a) into four tissue types. (c):
Anatomical boundaries extracted from (b). (d): Computed PET phantom generated from MR
template (b). (e): PET reconstruction using filtered backprojection. (f): PET reconstruction
using maximum likelihood estimation. (g): PET reconstruction using a simple quaratic MRF
model. (h): PET reconstruction using a compound MRF model without anatomical prior (i):
PET reconstruction using compound MRI with anatomical prior. Reprinted with permission.
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(a) (b)

Fig. 5.

Scale-space features of a coronal slice of an MR image of the brain used for information-
based PET image reconstruction with anatomical priors: (a) Original image, (b) image
blurred by a Gaussian, and (c) Laplacian of the blurred image in (b). Reprinted with
permission.64
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(a) (b)
(c) (d)

Fig. 6.

Joint PDFs of the anatomical image and (a) true PET image, (b) OSEM estimate used for
initialization, (c) image reconstructed using Ml-intensity prior, (d) Image reconstructed
using JE-Intensity prior. Reprinted with permission.64
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Fig. 7.
Overlay of PET reconstruction over coregistered MR image for quadratic MRF prior (top)
and joint entropy prior (bottom). Reprinted with permission.64
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(a) True activity distribution

Sistpothed MI1EM
0

Fig. 8.

True activity distribution (a) and example reconstruction images (first columns) and the
corresponding bias (second columns) and standard deviation images (third columns) of a
PET-SORTEOQ simulated 1-min FDG PET-scan of a brain with hypointense lesions using
the simulated noisy MRI. The following reconstruction algorithms were used: (b) MLEM,
(c) postsmoothed MLEM (6 mm FWHM), (d) MAP with a quadratic prior, (¢) A-MAP
using perfectly segmented MRI information, (f) A-MAP using SPM segmented MRI
information, (g) JE with gradually increased weight, (h) JE + Bowsher using 4 out of 18
neighbors, (i) Bowsher using 4 out of 18 neighbors, and (j) Bowsher using 12 out of 80
neighbors. Both the bias images and the standard deviation images were multiplied by 3 for
visualization reasons. Reprinted with permission.72
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Fig. 9.

Bias-noise analysis for the reconstructed images in Fig. 8. In (a) the percentage noise in the
GM voxels is plotted with respect to the percentage mean absolute bias in these voxels. In
(b) the signal-to-noise ratio in the lesion VOIs is plotted with respect to the percentage bias
on the signal in the lesion VOIs. In (c) and (d) the percentage noise in the lesion VOIs in the
normal brain (c) and in the brain with lesions (d) is plotted with respect to the percentage
bias in these VOIs. Reprinted with permission.72
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Fig. 10.

Contrast recover coefficient (CRC) versus standard deviation curves for a human phantom:
(a) Matched boundary, (b) enlarged boundary, (c) reduced boundary. Reprinted with
permission.57
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Fig. 11.

Bias-noise curve (left), SNR for NPW (middle), SNR for CHO (right), averaged over all
lesions, as a function of the degree of regularization (0 = minimum; 5 = maximum), using
the BRAIN phantom. Reprinted with permission.67
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Table 1

The approaches reviewed here are summarized in the following table. We indicate the general approach, the
form of anatomical information used and whether the method requires segmentation or labeling of the
anatomical image prior to use in the reconstruction algorithm.

General Category Method Information Used  Anatomical image segmentation  References
Post processing Two/three compartment  Region Yes (34, 35)
GTM Region Yes (36)
PML Region Yes (67)
Anatomical prior ~ Weighted Markov prior ~ Boundary Yes (45, 48)
Line process Boundary Yes (54-56, 58, 59, 68, 69)
ALSM Boundary Yes (57)
Region based prior Region Yes (44, 49-51, 53, 70, 71)
Bowsher prior Region No (46)
Cross Entropy Image intensity No (61)
Mutual information Image features No (62, 64, 65)
Joint Entropy Image features No (62-64, 66)
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