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Abstract
Alternative therapies are currently being developed to treat patients with chronic limb ischemia
who are unable to be revascularized in order to avoid amputation. Cell based therapy using
mononuclear cells is gaining attention as many clinical trials are currently underway. We review
cell differentiation along with the different potential cell sources for use in therapeutic
angiogenesis.

Introduction
Critical limb ischemia (CLI) is defined as chronic ischemic rest pain, or presence of tissue
loss such as ulcers or gangrene, as a manifestation of severe peripheral arterial disease
(PAD). Chronicity is defined by the presence of symptoms for more than 2 weeks.1 CLI
implies end stage disease and the expectation of limb loss, and therefore revascularization
remains the optimal treatment option for CLI patients, with the ultimate goal of limb
salvage. However, some patients have no surgical or endovascular options for
revascularization and are left to amputation. Others present to vascular surgeons and are
poor candidates for surgical repair secondary to multiple medical co-morbidities, increasing
the risk of procedures. The concern for this subset of patients has led to exploration for
additional therapeutic options to prevent tissue loss.

Gene and cell based therapies have been evaluated both in the laboratory and at the patient's
bedside as possible options for patients unable to be revascularized. Initial animal models
with gene therapy demonstrated some promising results;2 however, double blinded,
randomized trials, such as RAVEL, failed to duplicate the promising animal and Phase I and
II studies, and even showing some negative outcomes.3

The Therapeutic Angiogenesis using Cell Transplantation (TACT) trial was the first
randomized controlled cell-based study in humans. The authors injected bone marrow-
derived mononuclear cells (BM-MNC) into the gastrocnemius muscle of the patient's
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ischemic limb; primary outcomes measured were safety and feasibility of treatment. The
ankle-brachial index, transcutaneous oxygen pressure and pain free walking measures were
all improved in the treated group and were found to be statistically significant compared to
the control group.4 Since then, several series have been published using BM-MNC in
patients with CLI, thromboangiitis obliterans and PAD demonstrating positive results.5–12

Review of Cell Differentiation
Traditionally, the components of the hematopoietic system are divided into the myeloid
tissues and the lymphoid tissues. The myeloid tissue is comprised of the bone marrow and
the cells it produces, whereas the lymphoid tissue consists of the lymph nodes, spleen, and
thymus. Despite this distinction, all of the formed elements of the blood – erythrocytes,
granulocytes, monocytes, platelets, and lymphocytes – share a common hematopoietic origin
(Figure 1). Early transplantation, developmental, and irradiation experiments helped
establish the existence of multi-potent hematopoietic progenitor cells.13–18 Furthermore,
various experiments demonstrated the single-cell origin of multi-lineage hematopoiesis with
the identification of hematopoietic stem cells (HSC) capable of self-renewal and complete
hematopoietic differentiation.19–22 HSC give rise to all blood cells through a differentiation
process where developmental potentials are gradually lost while lineage-specific features are
gained.23

During fetal development, hematopoietic cellular differentiation begins in the yolk sac and
aorta/gonad/mesonephros region then sequentially progresses to the liver, spleen, and bone
marrow.24–27 In adult mammals, hematopoietic cellular differentiation and proliferation
occurs in the bone marrow and to a lesser extent in the spleen and thymus.23, 28 HSC
represent up to 0.05% of cells in mouse and human bone marrow and are responsible for the
short and long-term multi-lineage reconstitution of blood cells.28 HSC differentiate into
lymphoid and myeloid progenitor cells via several proposed models.29, 30 Myeloid
precursors go on to develop into erythrocytes, megakaryocytes, granulocytes, and
monocytes. In contrast, lymphoid precursors develop into three distinct cell populations: T
and B lymphocytes and natural killer (NK) cells. The differentiation and lineage
commitment of each cell is an intricate process that involves the complex integration of
extracellular and internal signals to regulate the cellular composition of blood in
homeostasis. Although HSC differentiation and lineage commitment appear to follow a well
defined set of steps, significant plasticity exists and there are many ongoing investigations to
further clarify this complex process.31

Potential Cell Sources
The concept of injecting autologous bone marrow (BM) into ischemic limbs was proposed
on the premise that components of the cellular mixture are capable of homing to, and
regenerating ischemic tissue.4, 32, 33 Modern thought regarding the mechanism of tissue
regeneration is that some sub-fraction(s) of BM are capable of contributing, perhaps
indirectly, to both the cellular components and growth factors required for the expansion of
blood supply, including: angiogenesis, arteriogenesis, and perhaps even vasculogenesis, the
de novo formation of new vessels (Table 1).34–36 One or more populations of the BM are
likely contributing to this circulatory expansion in the ischemic environment. But, there is
currently no consensus regarding which population is the “effector population” in
therapeutic angiogenesis. A multitude of studies have shown in vivo success with the use of
several isolated populations including mononuclear cells (MNC), monocytes, endothelial
progenitor cells (EPC) and mesenchymal progenitor cell (MPC) fractions of the BM.
Questions of which specific cells and what dose remain to be elucidated. In current studies
and clinical trials, the composition of the cellular therapy used has great variability. Factors

Brenes et al. Page 2

Vascular. Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



such as the origin of the cells (bone marrow vs. peripheral blood), the co-morbidities of the
donor and the methods used to prepare the cells may lead to major differences in this
cellular product. It is important to characterize the precise nature of the “effector
population(s)” used for therapeutic angiogenesis before continuing on with large-scale
clinical trials. This will allow for optimization and standardization of therapy, and will
contribute to the knowledge of involved mechanisms.37 Overview of potential cell sources
for therapeutic angiogenesis can be found in Table 2.

Raw Bone Marrow/Mononuclear Cells
The bone marrow is a heterogeneous mixture of cells. It contains hematopoietic stem cells,
including common lymphoid and myeloid precursors and their mature forms (T and B
lymphocytes, NK cells, monocytes, EPC, dendritic cells, megakaryocytes, RBC and
granulocytes) as well as mesenchymal progenitor cells. Some preparations of cells for use in
therapeutic angiogenesis use the MNC population, which are isolated from BM by density
centrifugation or using a blood cell separator, which allows for the removal of RBC and
granulocytes.10, 38 After preparation, the mononuclear cell population includes primarily
lymphocytes (85%), monocytes (15%) and EPC (0.03%), as well as dendritic cells, NK cells
and MPC with even lower levels of hematopoietic stem and progenitor cells.39 These
populations can be identified based on cell surface markers using flow cytometry, including
CD45, which identifies lymphocytes, monocytes, NK cells, dendritic cells and a monocyte
fraction of EPC that only indirectly promotes endothelial cell growth, but does not directly
become endothelial cells. This population can be further divided based on co-expression of
CD45 with CD2 (T lymphocytes and NK cells), CD19 (B lymphocytes), and CD14
(monocytes).37 Additional markers such as CD34 and CD133 are often used to identify
EPC, CD 11b and CD115 for monocytes, and CD73, CD90 and CD105 for MPC, as will be
discussed below.

Many investigators have successfully demonstrated that after BM-MNC injection into
ischemic limbs, there are improved clinical outcomes in patients with PAD and/or
CLI.4, 8, 10, 11, 40, 41 Higashi et al.8 demonstrated that BM-MNC implantation into ischemic
limbs increased the ankle-brachial pressure index, transcutaneous oxygen pressure, basal leg
blood flow as well as improved endothelium-dependent vasodilation. Another study
investigated the efficacy and safety of autologous BM-MNC implantation in patients with
CLI due to thromboangiitis obliterans (Buerger's disease). The patients received multiple
injections into the gastrocnemius muscle, the intermetatarsal region, and the dorsum of the
foot or forearm. At 6 months, patients demonstrated a statistically significant improvement
in rest pain scores, peak walking time, and quality of life. Total healing of the most
important lesion was achieved in 83% of patients with ischemic ulcers and angiography
studies at 6 months after the implantation showed vascular collateral networks had formed
across the affected arteries in 78.5% of the patients.11 In animal models of ischemia, MNC
injections induced collateral sprouting and angiogenesis.42–44

Peripheral blood has also been a source of MNC for the therapeutic use in ischemia. Since a
large amount of BM is required to obtain an adequate number of MNC, growth factors
(granulocyte colony stimulating factor or granulocyte-macrophage colony stimulating
factor) have been administered to stimulate the BM to mobilize progenitor and stem cells
into circulation.45, 46 These cells can subsequently be harvested by leukapheresis.

Li et al.43 studied the effects of the granulocyte colony-stimulating factor (G-CSF)
mobilized PB-MNC and CD34-depleted G-CSF-mobilized PB-MNC in an ischemic model
in mice. Fluorescence-labeled PB-MNC were intramuscularly injected into the ischemic
hind limbs and laser Doppler imaging analysis demonstrated significant increases in blood
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perfusion at day 7, 14 and 28 after the operation. Transplanted cells were found to
accumulate around arterioles and disperse in capillary networks. Incorporation of
transplanted cells into new capillaries was observed in the PB-MNC CD34+ group, but not
found in the group deprived of CD34 cells. There was also an elevated expression of
vascular endothelial growth factor (VEGF) in ischemic tissue. These findings indicate that
G-CSF-mobilized PB-MNC promote vascular growth not only by incorporating into vessel
walls but also by supplying angiogenic factors.43

Given that similar results have also been shown with peripheral blood PB-MNC,11, 40–42

these studies suggest that the therapeutic population is not limited to immature precursors in
the bone marrow. However, BM-MNC may have a more rich supply of CD34+ cells
compared to PB-MNC.37 It was classically believed that the therapeutic properties of MNC
were attributed to the CD34+/EPC component of the BM.10 In addition to the EPC
population, other MNC may be required for the recruitment of EPC,39 as well as the having
additional therapeutic benefits by providing the optimal milieu for growth by producing
cytokines and growth factors.47 Though studies involving MNC have produced intriguing
results, it remains that MNC contain many cell populations. Further characterization and
efficacy testing of each component will provide insight into the mechanisms of their
angiogenic properties.

Monocytes
The mononuclear phagocyte system is constituted by three cell types: monocytes, dendritic
cells and terminally differentiated macrophages. Monocytes, which are derived from the
hematopoietic stem cells in the bone marrow, comprise approximately ten percent of the
peripheral leukocytes and have a half-life of three days.48

We have previously reported that patients with CLI have elevated preoperative monocyte
levels compared to control patients (with PAD but without CLI). This increase in monocytes
was independent of an increase in other WBC populations, and was shown to significantly
decrease in CLI patients following successful revascularization procedures. These results
suggest that monocytes may be a useful perioperative marker in CLI patients undergoing
surgery, and that this population of cells plays a critical role in the recovery of ischemic
limbs.39

The monocyte population is one component of MNC that is likely to contribute to
angiogenesis in ischemic tissue. Monocytes are an essential part of the innate immune
system capable of phagocytosis and production of inflammatory cytokines. Monocytes are
capable of migration between the bone marrow, blood and tissues in response to infection
and inflammation, as well as differentiation into dendritic cells and macrophages. The fate
of monocytic location and differentiation is thought to depend on the local and systemic
microenvironment, including cytokines, growth factors and toxins.49 Though the complete
differentiation pathways of monocytes has yet to be fully elucidated, it is clear that at least
two distinct phenotypic classes of monocytes exist that have been characterized by their cell
surface markers: Gr1+/Ly-6Chigh and Gr1−/Ly-6Clow. These two lineages give rise to two
distinct macrophage populations, M1 and M2, respectively.50

The M1 population, arising from Gr1+/Ly-6Chigh monocytes, is part of the “classical”
inflammatory cascade stimulated by LPS and INF-γ involved in the innate defense against
microbes. This population is not thought to be directly involved in tissue repair and
regeneration.49 M2 macrophages are of particular interest in ischemic injuries as they have
been shown to play a role in tissue repair. For instance, Auffray et al. have shown that Gr1−/
Ly-6Clow monocytes migrate along the luminal surface of vascular endothelium and may
have a role in surveying for local damage and infection to the endothelium.51 Furthermore,
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this population expresses VEGF after being recruited to sites of ischemic myocardium in
mice where it promotes angiogenesis and collagen deposition.52 In a model of skeletal
muscle injury, Arnold et al. examined monocyte recruitment. During the early phase of
recovery, Ly6Chi monocytes are recruited and an overall inflammatory environment exists
with expression of TNF-α and IL-1β. However, these cells evolve into Ly6CloF4/80hi

macrophages. This transition results in an overall anti-inflammatory environment, which
allows for membrane repair, myogenesis, and fiber growth.53

Endothelial Progenitor Cells
The endothelial progenitor cell phenotype is complex, dynamic, and dependent on several
factors including location and length of peripheral circulating time. Classically, bone
marrow derived EPC have been identified by the presence of CD34, CD133, and VEGFR-2
markers.54–56 Once released into the peripheral circulation (Figure 2), differentiation of EPC
have been associated with a change in surface marker expression.57 Peripherally circulating
EPC are further classified as either early EPC or late endothelial outgrowth cells (EOC).
This maturation process involves the down regulation of BM-derived EPC markers, such as
CD133, and a concurrent increase in mature endothelial cell marker expression.57–59 Early
circulating EPC continue to express CD34, CD133, and VEGFR-2 while assuming
additional markers such as CD14, CD31, CD45, VE-cadherin, and vWF.54, 56, 57 In
comparison, EOC down regulate CD14, CD45, and CD133 while up-regulating eNOS, a
marker of mature endothelial cells.58, 59 EOC precursors were found to be of the CD34+
CD45− cell fraction, which directly lead to endothelial cells. In contrast, CD34+ CD45+
hematopoietic progenitor cell fraction display characteristics of early EPC and promote
angiogenesis via secreted factors.60

It should, however, be noted, that despite progress in identifying EPC associated markers,
variations in definition persist secondary to lack of a universal specific identifier. In
particular, it is misleading to refer to CD45+ pro-angiogenic monocytes as EPC even though
they could be considered `early outgrowth' cells; they do not become endothelial cells so the
cells that are growing in the early outgrowth are not derived from EPC, but they are
monocytes – or perhaps an as yet un-named macrophage subtype. It is similarly misleading
to refer to all previous reports as having used EPC even if they claimed to use EPC; rather
the differentiation of CD45+ from CD45− cells is now a critical aspect of modern reports
and EPC characterization.

Over the last several years, new and emerging roles for EPC have been discovered. Today, it
is known that EPC play critical roles in all areas of adult neovascularization including
angiogenesis, arteriogenesis, and postnatal vasculogenesis. Angiogenesis, defined as the
proliferation of pre-existing capillary networks through the use of native endothelial cells, is
augmented by growth factors and cytokines released by EPC.33, 61–63 In a similar manner,
the paracrine-like effects of EPC promote arteriogenesis, the vascular remodeling of resident
vessels.64–66 Until recently, vasculogenesis was believed to be a process restricted to the
embryonic period of development. This concept changed with the successful isolation of
EPC from adult peripheral blood in 1997 by Asahara et al. which validated the possibility of
postnatal vasculogenesis.32 Vasculogenesis, the de novo formation of blood vessels through
recruitment and use of BM-derived EPC, has become an emerging and critical component in
therapeutic angiogenesis.56

Subsequent to these findings, the use of EPC to increase perfusion and treat ischemia has
become a potential alternative for patients who are not candidates for traditional surgical
intervention. Growing evidence, both in the form of preclinical and clinical data, has shown
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therapeutic angiogenesis to be a safe alternative method for non-surgical enhancement of
neovascularization with regard to both limb and myocardial ischemia.33, 67–70

Mesenchymal Progenitor Cells
In an analogous manner, similar to that of the EPC, mesenchymal progenitor cells (MPC)
are found in adult bone marrow, and have recently been shown to occupy an important
augmentory role in therapeutic angiogenesis.71 MPC likewise lack specific cell surface
markers. They are frequently identified by documenting their lack of expression of
hematopoietic markers, which include CD14, CD34, and CD45, as well as their positive
expression of CD73, CD90, and CD105.65, 72, 73 MPC are capable of generating most
somatic cells, including myoblasts, smooth muscle cells, and hematopoietic stromal support
cells, when provided with a suitable environment.74

Historically the marrow stromal population was derived by adherence to plastic culture
wells; this property actually complicates the matter since it is not clear whether the plastic
and/or the in vitro culture induces changes in the cells. Subsequent studies showed that this
population consists of many subpopulations including endothelial cells, osteoblasts,
monocyte/macrophages, as well as relatively rare stem/progenitor cells that have the ability
to self-renew in vitro and to differentiate at the clonal level down the fibroblast, osteoblastic,
chondrogenic and adipocyte lineages. The data regarding their ability to become endothelial
or smooth muscle cells are not uniformly accepted because antigen profiles of smooth
muscle cells and myofibroblasts overlap.

Although original therapeutic angiogenesis studies focused on hematopoietic-derived
CD34+ cells, more recent investigations have preliminarily shown that the synchronous
injection of both CD34+ EPC and CD34− MPC leads to heightened neovascularization of
ischemic tissues.71 Questions continue to exist over the exact mechanism through which
MPC contribute to neovascularization. Some studies have suggested that the addition of
MPC stimulates the recruitment of smooth muscles cells, pericytes, and other stromal
support cells which cohesively contribute to neovascularization and the formation of more
mature vessels.32, 75 Other findings suggest that MPC are capable of differentiating into
EPC.76, 77 At present, there are ongoing clinical trials further investigating MPC and their
role in therapeutic angiogenesis.

Discussion
Cell based therapy remains a potential therapeutic option for patients with critical limb
ischemia to restore blood flow and salvage limbs. Multiple cells in the bone marrow can
play a role in angiogenesis, arteriogenesis and vasculogenesis in the postnatal period.
Ongoing clinical trials will hopefully demonstrate which cells are optimal, along with the
optimal injection site, cell number and whether there is a need for multiple injections.
Additional studies are needed to characterize which cell markers are optimal to determine
cell phenotypes, and particularly which cells are optimal for therapeutic use. Controlled
animal studies may aid in determining these conditions.
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Abbreviations

BM bone marrow

BM-MNC bone marrow-derived mononuclear cells

CLI critical limb ischemia

EOC endothelial outgrowth cells

EPC endothelial progenitor cells

HSC hematopoietic stem cells

MNC mononuclear cells

MPC mesenchymal progenitor cells

NK natural killer cells

PAD peripheral arterial disease

PB peripheral blood

PB-MNC peripheral blood-derived mononuclear cells

VEGF vascular endothelial growth factor
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Figure 1.
Hematopoietic stem cell (HSC) differentiation
Legend: CFU=colony forming unit
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Figure 2.
Endothelial progenitor cell (EPC) transit from the bone marrow to the periphery
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Table 1

Angiogenesis, Arteriogenesis, and Vasculogenesis

Process Vessels Timing Cell type involved Mechanism

Angiogenesis New capillaries Embryo + Adult Endothelial cells Hypoxia

Arteriogenesis Enlargement of collaterals Embryo + Adult Endothelial cells Shear stress Forces

Vasculogenesis Primary development of arteries, veins and capillaries Embryo Angioblasts Embryonic development
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Table 2

Overview of potential cell sources for therapeutic angiogenesis

Cell Type Characteristics Human Markers Source

Raw bone marrow Heterogeneous mixture of cells BM

Mononuclear cells Include lymphocytes, monocytes, EPCs, MPCs, dendritic
cells & NK cells Promote angiogenesis (CD34+ CD45+)

CD2, CD11b, CD14, CD19,
CD34, CD45, CD73, CD90,

CD105, CD113, CD115

BM, PB

Monocytes Give rise to M1 and M2 macrophage population (M2 plays
role in ischemia)

CD11b, CD115 BM, PB

Endothelial progenitor cells Bone marrow derived and peripherally circulating Create
endothelial cells (CD34+CD45−)

CD31, CD34 BM, PB

Mesenchymal progenitor cells Capable of generating most somatic cells (myoblasts,
smooth muscle cells & hematopoietic stromal support cells)

CD73, CD90, CD105 BM
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