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Abstract

A new machine learning method referred to as F-score_ELM was proposed to classify the lying and truth-telling using the
electroencephalogram (EEG) signals from 28 guilty and innocent subjects. Thirty-one features were extracted from the
probe responses from these subjects. Then, a recently-developed classifier called extreme learning machine (ELM) was
combined with F-score, a simple but effective feature selection method, to jointly optimize the number of the hidden nodes
of ELM and the feature subset by a grid-searching training procedure. The method was compared to two classification
models combining principal component analysis with back-propagation network and support vector machine classifiers. We
thoroughly assessed the performance of these classification models including the training and testing time, sensitivity and
specificity from the training and testing sets, as well as network size. The experimental results showed that the number of
the hidden nodes can be effectively optimized by the proposed method. Also, F-score_ELM obtained the best classification
accuracy and required the shortest training and testing time.
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Introduction

Deception is an important social and legal behavior. The

traditional method for detecting deception is based on polygraph

measurements. In recent years, significant progress in neurosci-

ence has inspired investigations on lie detection. A number of

studies have used neurophysiological signals, such as Functional

Magnetic Resonance Imaging (fMRI) and Event Related

Potential (ERP) [1–3], to investigate lie detection [4]. An

endogenous ERP component, P300 (P3), has been extensively

investigated and successfully used in the detection of deception

and malingering [5–7].

The widely used P3-based lie-detection methods can be

roughly divided into three categories: bootstrapped amplitude

difference (BAD), bootstrapped correlation difference (BCD) [8]

and pattern recognition (PR) methods [4,9,10]. Compared with

BAD and BCD, PR-based lie detection is a promising approach

for two main reasons: 1) more physiological features can be

extracted from raw P300 and 2) a variety of PR classifiers can

be utilized to improve the accuracy of the lie detection.

However, the adoption of PR classifiers for lie detection has not

yet been widely reported. Davatzikos et al. [4] proposed a

support vector machine (SVM)-based method to classify the

patterns of brain activity (fMRI data) obtained during lying and

truth-telling. Abootalebi et al. [9] used linear discrimination

analysis (LDA) to identify P3 responses and obtained a higher

detection rate (86%) than that obtained using BAD- and BCD-

based methods. SVM was used for the first time in the

investigation of P3-based lie detection by Gao et al. [10].

Compared to fisher discrimination analysis (FDA) and back-

propagation neural networks (BPNN), SVM classifier obtained

the highest average classification accuracy (91.8%) between P3

responses from the guilty and non-P3 responses from the

innocent.

In the current studies of EEG classification, there is a general

trend to test various classifiers to ultimately obtain the highest

classification accuracy possible [11,12]. Rooted in statistical

learning theory, SVM classifier implements structural risk

minimization and margin hyperplane maximization [13]. More

importantly, the SVM can map the nonlinear separable data onto

a high-dimension space, and hence classify the data linearly by

using a technique of kernel function mapping. In the past 30 years,

SVM classifier has demonstrated great advantages over most other

classifiers in terms of classification accuracy and generalization

power [4,11,14]. However, it should be noted that the time

required to train the classification models should be considered,

especially when the training data is substantial and the training

procedure is complex. Taking this into account, SVM and

gradient descent-based artificial neural network (ANN, e.g.,

BPNN) may be unsuitable and unsatisfactory due to their high

computational cost [15,16]. Extreme learning machine (ELM), a

single-layer feedforward network (SLFN)-based method, was

proposed by Huang et al. [15] to overcome some inherent

drawbacks of SVM and BPNN (complex and long parameter
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training procedure). ELM randomly specifies the input weights

and biases and then analytically calculates the output weights with

the smallest norm. Hence, ELM tends to provide good general-

ization power at an extremely fast training speed [17,18]. During

the past several years, ELM has drawn considerable attentions in

many fields related to PR [19,20].

Some researchers have studied the performance of ELM in the

classification of ERP. Liang et al. applied ELM for the first time to

the classification of mental tasks using EEG signals [21]. Their

results showed that ELM obtained similar classification accuracy

with a training time that was 1–2 orders of magnitude shorter,

compared with SVM and BPNN. ELM was successfully adopted

by Shi et al. for EEG-based vigilance estimation [22]. Several

ELM-based investigations on epileptic seizure detection have also

demonstrated the promising performance of ELM in the

classification of different EEG tasks [16,23,24]. To date, ELM

has not been used to detect lying and to classify guilty and

innocent subjects.

Feature selection plays an important role in the construction of

a classification model. Chen demonstrated for the first time that

feature selection strategies for SVM classification should be

included [25]. Polat et al. classified medical datasets using a

hybrid system of feature selection and several classifiers and

obtained better performance compared with the methods that did

not utilize feature selection [26]. Akay proposed a breast cancer

diagnosis method which integrated SVM and F-score feature

selection [27]. The experimental results showed that the hybrid

method attained the higher classification accuracy compared with

all other models without feature selection. To date, few researchers

have conducted studies combining ELM with feature selection.

Han et al. combined principal component analysis (PCA) and

ELM to predict the postoperative survival time of patients who

suffered from non-small cell lung cancer [24]. Their results showed

that the CPU time with their proposed method was significantly

less than that obtained with other classification models, such as

BPNN and BPNN combined with PCA. In the area of EEG

classification, no reported investigation has combined ELM with

feature selection.

The number of hidden nodes (NHN) in ELM is an important

parameter that may affect the classification performance (the other

one important parameter the activation function). NHN is usually

randomly assigned in the basic ELM algorithm. Huang et al.

found that for some special datasets, the generalization perfor-

mance of ELM was very stable over a wide range of NHN [15].

However, Cao et al. indicated that the classification boundary

may not be optimal when this number remains unchanged during

the training procedure [28]. In addition, too many or too few NHN

might lead to over-fitting or under-fitting [22]. Because this is one

of the hottest issues related to the ELM research, a few methods

were recently proposed to investigate this problem [29–33].

However, these improved ELM algorithms are relatively compli-

cated for real application in classification system. Moreover,

similar to SVM algorithm, ELM cannot directly obtain the feature

importance. Finally, there exists a close relationship between the

NHN and the dimensions of the feature space, which, however,

was not stressed in these improved algorithms.

In this study, we combined ELM with feature selection to

classify truth-telling and lying signals. In addition, we simulta-

neously optimized the feature subspace and the NHN in ELM. We

hypothesize that this joint optimization strategy could not only

further enhance the classification accuracy of lie detection, but also

significantly decrease the training and testing times.

Materials

1. Ethics Statement
The experiment was approved by Psychology Research Ethical

Committee (PREC) of the College of Biomedical Engineering in

South-Central University for Nationalities. Thirty-three healthy

subjects (15 females, mean age of 22) were recruited from the

university. The participants provided their written informed

consent according to a human research protocol in this study.

2. Subjects and Experimental Protocol
The guilty knowledge test (GKT) [9] and three-stimulus

protocol [10] were used in this study. The probe (P) stimuli

consisted of some images or sound related to criminal acts, such as

the weapon in the scene of the crime. The guilty is certainly

familiar with these stimuli, whereas this is not the case for the

innocent. The target (T) stimuli are known by all the subjects, but

these are not related to the criminal acts. The irrelevant (I) stimuli

are not known by all the subjects and are not related to criminal

acts. All of the participants were randomly divided into a guilty

group and an innocent group. Six different jewels were prepared,

and their pictures served as the stimuli during the detection

procedure. A safe containing one (for the innocent) or two (for the

guilty) jewels was given to each subjects, who were told that only

one examiner knew the contents in the safe. The subjects were

instructed to open the safe and memorize the details of the object.

All of the subjects were asked to write down the information of the

objects in the safe, such as styles and colors. As the subjects stole

the jewels, all of the researchers were asked to stay out.

We instructed the guilty steal one jewel and pocket the object,

which served as a P stimulus, whereas the other one in the safe

served as T stimulus and the remaining four pictures were I

stimuli. The guilty group was instructed to press the ‘‘Yes’’ and

‘‘No’’ buttons when facing with T and I stimuli, respectively. With

a P stimulus, they were asked to press the ‘‘No’’ button in an

attempt to hide the stealing act. We told the guilty that they would

earn 100 RMB if successfully concealed the identity of the probe

stimuli during the experimental session. For the innocent, the

object in the safe was a T stimulus, whereas the object stolen by

guilty subjects servered as a P stimulus in order to add

comparability (although the object is indeed random in the

remaining five pictures); the other four images were I stimuli. In

contrast, the innocent group responded honestly to all of the

stimuli.

3. EEG Data Acquisition
All of the subjects were seated in a chair, facing a video screen

1 m from their eyes. The stimuli were presented in a random

order on the screen for a duration of 0.5 s at a random interval of

1.4–1.6 s. Each session lasted approximately 5 minutes with a 3-

minute resting time. Each subject was instructed to participate in 3

sessions. The EEG was recorded on the following nine silver

electrodes: C3, Cz, C4, P3, Pz, P4, O1, O2, and Oz from an

International 10–20 system. The vertical EOG (VEOG) signals

and the horizontal EOG (HEOG) signals were recorded. The

EEG and EOG signals were passed through a Neuroscan

Synamps Amplifier with a bandpass filter of 0.1–30 Hz, and

digitized at 500 Hz. All of the electrodes were referenced to the

right earlobe, and the electrode impedances were less than 2 kV.

The artifact removal criterion was +75 mv. The EEG data

obtained from 5 of the subjects were excluded due to significant

eye blinking and eye movement artifacts. Although none did, any

subjects with a clicking error rate of more than 5% would be
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excluded. Finally, EEG signals from 14 subjects in each group

were further preprocessed.

4. Preprocessing
During the experiment, if the subject did not provide a response

or failed to give the right response by pressing the corresponding

button, the corresponding EEG responses were first rejected by

visual inspection. The resulting EEG data were then segmented

into epoched datasets from 0.2 s before to 0.8 s after the stimuli

onset. All of the trials were baseline-corrected based on the pre-

stimulus interval.

All of the epoched datasets were further processed as follows.

Within each subject, 30 single-trials from each type of stimulus and

each site were pooled into one wave. Figure 1 shows the results

from a randomly selected guilty subject and an innocent subject.

The averaged waves at the Pz electrode from the guilty and

innocent subjects are shown in Figure 1A and Figure 1B,

respectively. Comparing the two subfigures, we can observe that

there is significant P300 in the P responses (i.e., the response waves

from the P stimuli) from the guilty subject, but no P300 in the P

responses from the innocent subject. Furthermore, the brain

topographies at the latency of 348 ms (see Figure 1A) and at the

peak point of 316 ms (see Figure 1B) are shown in Figure 1C and

Figure 1D, respectively. By comparing the two figures, we can

observe that there exists a significant difference between the P

responses on the Pz site from the two subjects. Similar to some

early reports [34,35], all of the P responses on the Pz site were

finally selected, and each of the 5 P responses for each subject

were pooled into one average to enhance the signal-to-noise ratio

(SNR) of the P300 [10,36]. Hence, there were approximately

300 P responses for each group of subjects. The P responses from

the guilty subjects represent P3, whereas the responses from the

innocent subjects represent non-P3.

Methods

1. Feature Extraction
Three groups of features based on time-domain, frequency-

domain, and time-frequency domain features were extracted from

each P response with the time varying from 0.2 to 1 s. Burg’s

method was used for spectrum estimation [14]. There were nine

time- and frequency-domain features as follows: maximum

amplitude Vmax, latency tmax, latency/amplitude ratio RL/A,

minimum amplitude Vmin, peak-to-peak amplitude Vptp, positive

area Ap, maximum frequency fmax, mean frequency fmean, and the

power of the frequency band containing the P3 Alf. In this study,

we used discrete wavelet transform (DWT) [11,37] to decompose

each P response into seven sets of wavelet coefficients. The

coefficient set corresponding to the first frequency band (0.1 to

3.9 Hz) was selected as the 22 wavelet features, which were

denoted by W where i = 1, 2,..., 22. Please refer to our previous

report for more details on the extracted features [36]. After the

feature extraction, two feature sample sets (represent P3 and non-

P3) were obtained with the class label 1 and 21, respectively. Each

sample consisted of 31 feature values. Before the classification, all

of the feature values were normalized to [21, 1].

2. Feature Selection
The feature selection can help the original classification system

achieve a better predictive performance and a lower computa-

tional cost by removing any redundant features. The F-score is a

simple but effective technique for evaluating the discriminative

power of each feature in the feature set. Chen proposed and

combined this method with SVM to participate NIPS 2003

Feature Selection Challenge and was ranked third [38]. Recently,

many researchers have successfully applied the combination of F-

score with an SVM classifier to various classification tasks

[25,26,27,39].

Given the ith feature vector fxi1,xi2,:::,xinz
,:::,xiNg with the

number of positive instances nz and the number of all the

instances N, the F-score value of the ith feature is defined by

F (i)~
�xx(z)

i {�xxi

� �2

z �xx({)
i {�xxi

� �2

1

nz{1

Xnz

k~1

xik{�xx(z)
i

� �2

z
1

N{nz{1

XN

k~nzz1

xik{�xx({)
i

� �2
,ð1Þ

where �xx(z)
i ,�xx({)

i , and �xxi are the average of the positive, negative, and

whole samples, respectively, and xik is the kth feature value in the ith

feature vector. The numerator indicates the discrimination

between the positive and the negative sets, and the denominator

is the sum of the deviation within each feature set. A larger the F-

score value indicates that the feature has more discriminative

power. We adopted the F-score method in this study due to its

simplicity of its use in a lie detection system with real applications.

There are two main methods that are used to select the

appropriate feature subset: the filter method [40] and the wrapper

method [41,42]. Although there is higher computation cost

associated with the wrapped method, many experimental results

are in favor of the wrapper method for feature selection due to its

good performance. Hence, we also used this method in this study.

For comparison, we adopted another popular method, principal

component analysis (PCA), to select the features [43]. PCA

extracts dominant features from the original input samples. The

dominant features retain most of the information, both in the sense

of maximum variance of the features and in the sense of minimum

reconstruction error [44]. In this study, similarly to the F-score,

PCA was combined with classifiers to identify the optimal feature

set.

Given a set of N input samples x~(x1,x2,:::,xt,:::,xN ), each of

which has m dimensions xt~(xt1,xt2,:::,xtm)T , PCA first solves an

eigenvalue problem, i.e.,

liui~Sui (i~1,2,:::,m), ð2Þ

where S~ 1
N

PN
t~1

xtx
T
t is the sample covariance matrix,and li is the

corresponding eigenvalue of the eigenvector ui~(ui1,ui2,:::,uim)T .

After all of the li are sorted in descending order, PCA uses the first

d eigenvalues and their corresponding eigenvectors to project the

original input samples x into a d-dimensional space using the

following linearly transform:

Y~UT
d X (dvm), ð3Þ

where UT
d is a d|m matrix, the ith row of which is the

eigenvector ui. Each feature vector of the new projection samples

Y is referred to as a principal component.

3. Extreme Learning Machine
For comparison purposes, ELM, SVM, and BPNN were

selected as the three types of representative machine learning-

based classifiers to classify the P300 data for lie detection.

Given N different training instances (xi,ti), where

xi~½xi1,xi2,:::,xin�T[Rn and ti~½ti1,ti2,:::,tim�T[Rm, we train a
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SLFN with K hidden nodes and an activation function g(x), as

shown in Figure 2. This network can be mathematically modeled

as

XK

i~1

bigi(xj)~
XK

i~1

big(ai
:xjzbi)~tj , j~1,:::,N, ð4Þ

where ai~½ai1,ai2,:::,ain�T denotes the weight vector connecting

the ith hidden node and the n input nodes, bi is the bias of the ith

hidden node, bi~½bi1,bi2,:::,bim�T denotes the weight vector

connecting the ith hidden node and the m output nodes, and ai
:xj

denotes the inner product of ai and xj .

The above N equations can be rewritten in a matrix form as

Hb~T, ð5Þ

where

Figure 1. The preprocessing results of a guilty subject and an innocent subject. 1A: Three averaged waves over the three kinds of stimuli
respectively at Pz electrode from the guilty subject. 1B: The averaged waves over the three kinds of stimuli respectively at Pz electrode from the
innocent subject. 1C: The brain topographies at the latency of 348 ms of the averaged P responses (the solid line in Figure 1A). 1D: The brain
topographies at the peak point of 316 ms of the averaged P responses (the solid line in Figure 1B).
doi:10.1371/journal.pone.0064704.g001
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:
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H is called the hidden-layer output matrix, where the ith column is

the output of the ith hidden node [26]. To learn the N instances for

a SLFN, the conventional method is to find the solution set W,

including ai, bi and bi, by minimizing the following cost function:

E(W)~
XN

j~1

(
XK

i~1

big(ai
:xjzbi){tj)

2: ð7Þ

Given an arbitrarily small value ew0, Huang et al. proved that

if the input weights and the biases of the hidden nodes are

randomly assigned and the activation function in the SLFN is

infinitely differentiable, the SLFN can approximate the N training

data with e error, i.e., Hb{Tk kƒe[15]. In this case, the matrix H
has been randomly fixed. Hence, the training procedure of SLFN

is equivalent to the identification of a least-squares (LS) solution of

the linear system:

Hb̂b{T
���

���~ min
b

Hb{Tk k, ð8Þ

where b̂b~H{T is the LS solution of the above problem with the

smallest norm, and H{ is the Moore-Penrose generalized inverse of

H. Bartlett [17] and Huang et al. [15] indicated that SLFNs with

smaller output weights have a better generalization ability.

4. The Proposed Method: F-score_ELM
In this study, we combined the ELM methodology with a

feature selection method for lie detection. There are two important

problems for the proposed method: the choice of the optimal

feature subset for F-score and the determination of the value of

NHN for ELM.

Taking into account a lie diction system with real applications,

the wrapper method mentioned previously should be more

suitable for solving the first problem than the filter method

because the feature subset was relatively fixed after the training

procedure. With respect to the optimal NHN, we did not randomly

assign but integrated the optimization of NHN into the selection of

feature subset. The proposed method is referred to as F-

score_ELM.

Figure 3 presents the block diagram of F-score_ELM using a

grid-search technique [45] to jointly optimize the feature subset

and the NHN in ELM. Let D denote the number of the originally

extracted features, which equals 31 in this paper. The F-

score_ELM method consists of the following steps:

Step 1: Calculate the F-score values of the D feature vectors.

Then, rearrange the feature vector set such that the first feature

vector has the highest F-score, and the second vector has the second

highest F-score, and so on. Let F denote the new feature vector set,

and initialize a feature subset, denoted by FS, to be empty.

Step 2: Pick one feature vector with the highest F-score value from

F. Add the selected vector to the subset FS. Set S to be the number

of features in subset FS.

Step 3: Denote the NHN of the ELM by K and initialize K = S.

Step 4: Feed subset FS into the ELM classifier with K hidden

nodes to train and search for the optimal combination (S, K).

Considering the specific requirements for lie detection and to

avoid over-fitting problem, a Subject-Wise cross validation

(SWCV) [46] was adopted, resulting in 14 pairs of training sets

and testing sets. Furthermore, a 10-fold CV was performed on

each pair of training set. Hence, the averaged accuracy, denoted

by BA_train, is calculated by averaging the values of TRsen (the

mean of 14 sensitivities [47]) and TRspe (the mean of 14 specificities).

Step 5: Update K to K+1. Repeat Step 3 though 5 until K = S+20

(based on prior knowledge and the computational limitation of the

lie detection system), as shown by the inner loop in Figure 3.

Step 6: Update S by S+1. Repeat Step 2 through 6 until F is

empty, as shown by the outer loop in Figure 3.

Step 7: Comparing all of the BA_train values obtained in step 4,

the optimal parameter combination (S, K) is finally obtained when

the BA_train reaches its highest value. Accordingly, the solution b̂b
and its corresponding value of the hidden node (a,b) in the ELM

are also obtained, which are fixed and then used in testing phase.

Step 8: Calculate the testing accuracy on the 14 pairs of testing

sets with the optimal feature subset and the trained ELM. Hence,

TEsen (the mean of the 14 sensitivities) and TEspe (the mean of the 14

specificities) can be obtained.

In the Step 4 and Step 8, the sensitivity and the specificity refer to

the percentage of the correctly classified feature samples with the

class label 1 (P3 class) and 21 (non-P3 class), respectively.

To objectively evaluate the performance of the proposed

method, the following combined classification models were also

performed: PCA_ELM, PCA_BPNN, PCA_SVM, F-score_BPNN

and F-score_SVM. Three individual classification models (i.e., the

models without integrating feature selection) were also conducted:

ELM, BPNN and SVM. Each individual model was trained only

to obtain the optimal classifier parameters when the training

accuracy BA_train reached its highest value.

For the models that utilized PCA, the eigenvalues were first

calculated and sorted in a descending order. Then, the

Figure 2. SLFN with K hidden, n input and m output nodes.
doi:10.1371/journal.pone.0064704.g002
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transformed new feature set was constructed using the d largest

eigenvalues. The new feature set was then fed into the classifiers.

Similar to F-score_ELM, we used grid-search technique to jointly

optimize the optimal value of d (see Section Feature Selection) and

the classifier parameters.

In this study, a sigmoid activation function

g(x)~1=(1z exp ({x)) was used in all of the classification

models to fairly and objectively compare these models. The

learning rate g and the control precision e of the models that

integrated BPNN were set to be 0.025 and 0.002, respectively; The

Levenberg-Marquardt algorithm was used for the training of these

models, and the NHN of BPNN was also optimized by the grid-

searching. The training and testing strategies mentioned above

were also used for the models that utilized the SVM, and, based on

our previous experience, the penalty parameter C and the radial

width s for radial basis function (RBF) [48] (kernel function

K(x,y)~e{1=2�( x{yk k=s)2

) were tuned with the following grid:

C = [25,..., 28], s = [23,..., 26] (step size = 21 ). To decrease the

huge training time, 10-fold SWCV and then normal 5-fold CV,

which consists of a three-dimensional grid-search procedure, were

used in the training stage for BPNN and SVM.

Figure 3. The block diagram of the proposed method F-score_ELM.
doi:10.1371/journal.pone.0064704.g003
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Using the optimization procedure described above, the follow-

ing measures were used to evaluate the performance of the total

nine classification models:

(i) The training accuracy. This measure consists of the

sensitivity, the specificity, and their respective standard

deviations (SDs). They correspond to TRsen+SD and

TRspe+SD when the corresponding BA_train reaches its

highest value.

(ii) The test accuracy. Similar to the above measures, This

measure refers to TEsen+SD and TEspe+SD. Addition-

ally, all of the TEsen and TEspe are averaged to obtain a

balanced testing accuracy, which is denoted by BA_test.

(iii) The optimal number of features in the feature subset when

the classification model reaches the highest value of

BA_train. This optimal number is denoted by NFS.

(iv) The optimal classifier parameters when the classification

model reaches the highest valus of BA_train. For the models

that integrate BPNN and ELM, this parameter is the

optimal value of NHN, whereas for the models that

integrate SVM, the number of the support vectors (NSV)

is used to compare the models with ELM and BPNN.

(v) The training time of the classification models, which refers

to the time spent on the Step 1 through and is denoted by

TTR.

(vi) The testing time of the classification models, which refers

to the time spent on testing the 14 pairs of unseen testing

sets. For individual models, which is denoted by TTE,

refers to the time required to test the 14 pairs of unseen

datasets in the original feature space.

Results

Table 1 shows the F-score values of the 31 original features.

Those features with relatively larger F-score values were selected to

construct the feature subset. The detailed results of the above

mentioned six measures are summarized in Table 2. Furthermore,

we listed the values of BA_train and BA_test in Table 3 for each

classification model. Finally, the averaged value of each pair of the

sensitivity and the specificity in each model was calculated for

training and testing, respectively, which yielded 14 balanced

accuracies forthe training (and the testing) for each model. Hence,

the paired t-test was performed between F-score_ELM and each of

the other models to obtain the corresponding significance level (p

value) of the difference of the balanced accuracy. These

significance levels are also provided in Table 3.

1. General Classification Performance
First, the comparison of the accuracy results in the first three

rows in Table 2 shows that ELM, which exhibited training

sensitivity of 98.72% and training specificity of 98.16%, performs

significantly better than SVM (paired t-test, p,0.001) and BPNN

(paired t-test, p,0.001). The results of the comparison of the

generalization performance are the same as the training results

(paired t-test, p,0.001).

As shown in Table 3, the comparison of the accuracy between

the hybrid and its corresponding individual model revealed that

each hybrid model achieves significantly higher accuracy than the

corresponding individual model, with the exception of F-

score_BPNN. For example, the BPNN obtained a BA_test value

of 90.72%, whereas PCA_BPNN achieved 98.27% (paired t-test,

p,0.0001). Both the BA_test and the BA_train of F-score_ELM are

significantly higher than the corresponding values obtained with

the ELM (see Table 3, p = 0.044,0.05 and p = 0.008,0.01,

respectively).

Second, as shown in the last column of Table 2, it is obvious

that the feature selection reduces the value of the NFS for the

hybrid models from the number of the original features (NFS = 31).

For example, F-score_ELM selected 11 features (NFS = 11), which

are most informative to the classification and thus highlighted in

Table 1, to construct the feature subset.

Third, the feature selection effectively helped the hybrid models

obtain lower values of the NHN than the corresponding individual

models, as can be observed from the table. For example, NHN is

equal to 29 and 51 for F-score_ELM and ELM, respectively.

Additionally, NHN values of 20 and 45 were obtained for

PCA_BPNN and BPNN, respectively.

The smaller NFS and NHN and the higher accuracy obtained

with the hybrid models confirms the hypothesis that the

combination of the feature selection method and these classifiers

improves the classification performance. The above results are

analyzed further in the next section.

Comparing the PCA and F-score methods, we can observe that

each classifier combined with F-score achieves an accuracy that is

similar to that obtained by the same classifier combined with PCA.

As shown in Table 3, there is no significant difference of accuracy

between F-score_ELM and PCA_ELM (p = 0.233.0.01 for

training and p = 0.173.0.01 for testing). The results appear to

indicate that both F-score and PCA can be successfully combined

with these three classifiers to jointly optimize the feature space and

the classification parameters for lie detection. However, each

classifier combined with F-score requires significantly less compu-

tation time than the same classifier combined with PCA. For

instance, the TTR of F-score_BPNN equals 58.58 hours, whereas

the TTR of PCA_BPNN equals 106.64 hours. We will compare

these two methods further in Discussion.

Moreover, as shown in Table 2, the difference between the TTR

of F-score_ELM and that of F-score_SVM is almost 1108-fold. In

addition, the TTE of F-score_ELM is approximately 0.003 s,

which is the shortest among all nine models tested. This short time

for F-score_ELM should be attributed to the optimized results: the

smallest NHN (NHN = 29) and smallest feature number (NFS = 11).

Table 1. The results of feature valuation on original 31
features using F-score method.

Features F-score values

Vmax 0.966

tmax 0.581

RL/A 0.162

Vmin 0.019

Vptp 0.890

Ap 0.124

fmax 0.001

fmean 0.305

Alf 0.886

W1– W5 0.075, 0.001, 0.317, 0.002, 0.075,

W6– W10 0.003, 0.154, 0.097, 0.069, 0.364,

W11–W16 0.977, 0.554, 0.213, 0.886, 0.874, 0.987

W17–W22 0.893, 0.953, 0.892, 0.987, 0.874, 0.881

doi:10.1371/journal.pone.0064704.t001
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2. Impact of Network Size and Feature Selection on the
Classification Performance

Based on the above results, we next investigated the effect of the

feature selection on the optimal network size and the classification

accuracy. In this study, the network size refers to the NHN for the

ELM classifier and the NSV for the SVM classifier. The results of

analysis are shown in Figure 4. Each curve in Figure 4A illustrates

the highest sensitivities TRsen+SD that the indicated classification

model can achieve with NFS varying from 1 to 31. The specificities

TRspe+SD are similarly plotted in Figure 4B. For each model,

Figure 4C demonstrates the relationship between the NFS and the

NHN for which BA_train achieves its highest value. Similarly, the

relationship between the NFS and the NSV is shown in Figure 4D.

As shown in Figure 4A and 4B, in general, there is no obvious

monotonically increasing tendency as the NFS increases from 1 to

31. For example, the results of F-score_ELM show a TRsen of

99.42% and a TRspe of 98.52% when NFS = 11; these values are

slightly less than the highest corresponding values (99.47% and

98.89%, respectively), which are obtained for NFS equal to 25. As

shown in Figure 4, this phenomenon is also exhibited by F-

score_BPNN and F-score_SVM models. Hence, the accuracy that

approximates the highest value with a significantly smaller NHN

and NFS is regarded as the best accuracy (i.e., the highest value was

not always the optimal for our training purpose). These best

accuracies and the corresponding NHN and NSV for the three

models, which correspond to the results in the last three rows in

Table 2, are labeled in Figure 4A through 4D.

We also investigated the individual influence of the NHN on the

classification accuracy of the ELM classifier. We set the NFS to be

11 (the optimal values mentioned previously) and then trained F-

score_ELM with a grid search of the NHN, which varied from 1 to

200. Figure 5 shows the training accuracy as a function of the

NHN. Figures 5A and 5B show the sensitivities TRsen and the

specificities TRspe, respectively. There is a large fluctuation in the

classification accuracy as the NHN increases gradually. For

example, the sensitivity and specificity only equal 88.8% and

71.7%, respectively when NHN is set to be 2, whereas these are

96.03% and 91.02%, respectively, when NHN is set to be 12. The

sensitivity and specificity reach almost the highest value (99.43%

and 98.76%, respectively, when the NHN is set to be 29). Both of

these measures decrease when NHN is varied from 80 to 200.

3. Individual Diagnostic Rate
The final aim of a lie detection system is to correctly separate

the guilty subjects from the innocent subjects. The individual

diagnostic rate is the most important evaluation measurement for

a lie detection system. As shown in Table 2, the testing accuracies

TEsen and TEspe of our proposed method are 99.27% and

98.17%, respectively. Therefore, the averaged testing accuracy is

98.72%, which is the threshold for individual diagnosis (a subject

will be classified as a liar if either the sensitivity or the specificity is

higher than 98.72%). This number is higher than most results that

have been reported in the literature [4,7,9] and is also acceptable

for practical applications.

Discussion and Conclusions

In this work, ELM method was first introduced for the purpose

of lie detection, and the optimization of the NHN of ELM was

combined with the F-score feature selection method. As a popular

feature selection method, PCA was also combined with ELM,

Table 2. Performance of the classification models with the optimal NFS and NHN (or NSV).

Classification models Times Accuracy (%) NHN/NSV NFS

TTR(h) TTE(s) Training Testing

TRsen6SD TRspe6SD TEsen6SD TEspe6SD

BPNN 1.25 0.51 95.3161.38 88.6164.44 95.0563.25 86.3863.15 45 31

SVM 20.22 22.06 97.8860.41 97.6860.41 96.3361.87 95.1562.29 58.28 31

ELM 0.03 0.004 98.7260.35 98.1660.51 98.2660.32 98.1460.44 51 31

PCA_BPNN 106.64 1.59 95.1061.82 95.7561.97 98.2061.82 98.3461.93 20 14

PCA_SVM 675.58 25.23 99.3260.35 99.2860.33 99.6560.02 98.9160.02 57.76 14

PCA_ELM 0.64 0.014 98.8260.36 99.3160.36 98.9960.48 98.7960.51 30 13

F-score_BPNN 58.58 0.184 95.2660.23 88.0561.36 95.8063.92 90.0565.27 34 25

F-score_SVM 633.77 21.62 98.0660.48 98.2160.44 97.6860.02 97.9560.02 60.25 25

F-score_ELM 0.61 0.003 99.4260.38 98.5260.72 99.2760.24 98.1760.25 29 11

doi:10.1371/journal.pone.0064704.t002

Table 3. Balanced accuracy of each model and statistical
analysis results between F-score_ELM and the other models.

Classification
models Balanced accuracy and statistical results (%)

Training Testing

BA_train p value (2-t) BA_test p value (2-t)

BPNN 91.96 0.000* 90.72 0.000*

SVM 97.78 0.000* 95.74 0.000*

ELM 98.44 0.044m 98.20 0.008*

PCA_BPNN 95.43 0.000* 98.27 0.009*

PCA_SVM 99.30 0.006* 99.30 0.004*

PCA_ELM 99.06 0.233 98.89 0.173

F-score_BPNN 91.66 0.000* 92.93 0.000*

F-score_SVM 98.14. 0.0008* 97.82 0.006*

F-score_ELM 98.97 [] 98.72 []

‘‘*’’ and ‘‘m’’ denotes p value,0.01 and p value,0.05, respectively for the
comparison of the F-score and the indicated model using paired t-test.
doi:10.1371/journal.pone.0064704.t003
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BPNN, and SVM to construct various classification models. The

training and testing times, classification accuracy, and network size

were used to completely assess the classification performance of

these models. Compared with the other classification models

tested, the experimental results showed that the proposed method

(F-score_ELM) achieves nearly the highest training and testing

accuracies for the identification of lying and truth-telling using the

most compact network and the shortest training and testing times.

Additionally, the proposed method obtains a very high individual

diagnostic rate.

The ELM method has many advantages over most other

classifiers, such as BPNN and SVM. However, only a few very

effective methods have been developed to decide the optimal

NHN. Most of the investigations focused on the improvement on

the ELM algorithm itself. If the feature space is changed, the

training procedure needs to be rebooted. Hence, the NHN in the

ELM should be changed accordingly. We therefore opted to not

use the improved ELM algorithms that have been proposed in the

past few years and combined ELM with the feature selection

method to automatically select the optimal NHN. As shown in

Table 2, the trained F-score_ELM obtains a smaller NHN

(NHN = 29) with a higher accuracy than the trained ELM model

(NHN = 51). As a result, an advantage of our proposed method is

the integration of the optimization of NHN and of the feature

subset into one optimized procedure. The proposed method

provides a new concept for the determination of the optimal NHN

in ELM algorithms.

With respect to feature selection, the experimental results show

that F-score_ELM enhanced the classification performance with

the most informative features (NFS equals 11) selected by F-score

method, compared with the individual ELM model, as shown in

Table 3. This experimental result indicates the importance of the

feature selection for the ELM classifier.

For the F-score methodology, most researchers always remove

redundant features by a threshold calculated based on the F-score

values. However, this thresholding strategy exhibits some limita-

tions. First, it appears too harsh to directly remove those features

with the F-score values that are less than the threshold. Second,

there should be a close relationship between the NFS and the NHN

of the classifiers. Hence, we abandoned the commonly used

technique mentioned above and proposed a combined optimized

strategy. It is worth mentioning that the proposed optimization

strategy is especially suitable to the ELM classifier because only

one classifier parameter in ELM needs to be tuned.

Although we find that BA_test of F-score_ELM is slightly lower

than that of PCA_ELM (p = 0.173.0.05) and significantly lower

than that of PCA_SVM (p = 0.006,0.01), it was stressed in this

study that we evaluated the classification model by its compre-

hensive performance. Hence the optimal parameter values were

not decided only when the training or testing accuracies were

maximal. In fact, when NFS equals 25, the correspondingly testing

accuracy reached its highest value with BA_test equal to 99.19%,

which is significantly higher (paired t-test, p,0.01) than that of

PCA_ELM (BA_test = 98.37%). Furthermore, it is noted that there

are three inherent limitations in the models that utilize PCA. First,

if a new training set is fed into the classification system, the optimal

transformed feature set needs to be calculated again because the

eigenvector matrix U, as mentioned in Feature Selection section, is

calculated solely on the input samples. In contrast, the optimal

feature subset does not need to be calculated again for the models

that utilize F-score methodology. The optimal feature subset with

the optimal NFS can be directly selected from the new input

samples. Second, it is very obvious that F-score has significantly

shorter calculation time than PCA. Third, the implication of each

feature transformed by PCA is not clear, whereas the features

selected by F-score are clear, which could help evaluate the

Figure 4. Training accuracy and NHN/NSV as a function of NFS achieved by the three classification models. Each point in each curve
corresponds to the highest classification performance of the indicated model with the optimal NHN/NSV. 4A: Highest sensitivity with the optimal NHN
or NSV vs NFS. 4B: Highest specificity with the optimal NHN or NSV vs NFS. 4C: NHN vs NFS for which BA_train achieves its highest value. 4D: NSV vs
NFS for which BA_train achieves its highest value.
doi:10.1371/journal.pone.0064704.g004

Figure 5. Training accuracy (constant NFS = 11) as a function of NHN achieve by the F-score_ELM. 5A: Highest sensitivity TRsen vs log
(NHN). 5B: Highest specificity TRspe vs log (NHN).
doi:10.1371/journal.pone.0064704.g005
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importance level of each original feature. The above discussion

appears to indicate that F-score is superior to PCA for the

identification of the optimal feature subset.

A good lie detection system with real applications should

achieve a high classification accuracy with a lower computational

burden. Through the proposed joint optimization, the testing time

can be decreased significantly because the smaller NFS and NHN

will be used in testing phase. In addition, in the future, we may

need to train on specific subjects to avoid the problem of individual

difference. The time required for future training for the proposed

method would be also significantly shorter than that for individual

ELM and that spent on the originally training procedure because

after the original learning procedure, the new training samples

with a smaller NFS can be fed into the original trained ELM with a

corresponding smaller NHN. Furthermore, if we found a few

important new features, we only need to add these to the originally

selected optimal features and then re-perform the above training

procedure.

The grid-search strategy was used in many literatures to tune

the optimal classifier parameters [40,46]. In this study, we did not

use a more sophisticated algorithm, but employed the grid-search

strategy with a SWCV procedure on the feature samples to find

the optimal combination of NHN and NFS. We assumed that this

strategy could ransack each combination of NHN and NFS and

hence avoid the local minimum. In addition, because each

parameter combination is independent, one can parallelize this

searching procedure and thus significantly reduce the learning

time of the proposed method.

For the sake of simplicity, we averaged 5 responses to remove

the noise in the original ERP signals. We recognized that the

averaging method adopted in this study is not very effective for

removing noise of P300 because some noise is also time-locked to

the stimuli [49]. If more appropriate methods of ERP reconstruc-

tion [36,50] were utilized, our method should be more robust. In

addition, other feature selection methods, such as mutual

information (MI) and correlation-based method, can be attempted

to combine with the ELM to enhance the robustness and the

efficiency of the ELM classifier in lie detection or other EEG-based

classification problems. This will be the focus of our future works.

Due to space constraints, only two comparable improved ELM

algorithms, I-ELM [51] and Pruning ELM (P-ELM) [52], were

selected to compare with the proposed method. After training and

testing, the following results were obtained: 1) I-ELM: BA_

train = 98.61%, BA_test = 98.22%, NHN = 51, NFS = 31, TTR

= 0.04 hours; 2) P-ELM: BA_train = 98.63%, BA_test = 98.18%,

NHN = 50, NFS = 31, TTR = 0.21 hours. Based on the principle of

these algorithms, it is not surprising that the trained values of NHN

and NFS are nearly the same as the training results of ELM (see

Table 2). Using paired t-test, we found no significant difference of

training and testing accuracies between these two improved

algorithms and ELM model (p = 0.228.0.01 for I-ELM and

p = 0.24.0.01 for P-ELM on testing accuracy). As for other

improved algorithms such as Kernel based ELM [53] and OS-

ELM [54], it may be unsuitable to apply them in this detecting

system due to their more complex calculation and training

procedure.

The advantage of the proposed method over BAD and BCD is

the trials-by-trial analysis, which is particularly beneficial for lie

detections. First, we could research the wealth of dynamic

variation information between the single trials. Second, based on

the testing results on a few trials, the examiner could decide

whether to continue to display, terminate or adjust the stimuli

content and/or sequence, which would help the examiner make

his/her final decision. In contrast, BAD and BCD must make a

decision after all the trials are presented. From this perspective, the

proposed testing system is based on a small number of stimuli. In

fact, the use of many repeated stimuli with little information would

induce two problems: fatigue in the subjects and an increase of the

countermeasures [7,9]. This is particular true for real lie detection,

when the real criminals are familiar with the stimuli contents,

which would result in the criminals resisting the detection

procedure on purpose [36]. In our opinion, the development of

a lie-detection method with a small number of stimuli is crucial to

extend the laboratory study to practical application. In compar-

ison with previously reported PR methods, the presented method

reaches a very high classification accuracy with the shortest

training and testing times. Therefore, although the classification

accuracy in the presented method may be lower than some early

reported results, the proposed method achieves a good tradeoff

between the various evaluation measures introduced earlier.

Although this study is focused on lie detection, the method

reported is not limited to this application. The proposed method

has the potential to be used in a variety of classification tasks of

brain states, such as identification of ERP or fMRI signals.
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