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Actin cytoskeletal damage induces inactivation of the onco-

protein YAP (Yes-associated protein). It is known that the

serine/threonine kinase LATS (large tumour suppressor)

inactivates YAP by phosphorylating its Ser127 and Ser381

residues. However, the events downstream of actin cytoske-

letal changes that are involved in the regulation of the LATS–

YAP pathway and the mechanism by which LATS differen-

tially phosphorylates YAP on Ser127 and Ser381 in vivo have

remained elusive. Here, we show that cyclic AMP (cAMP)-

dependent protein kinase (PKA) phosphorylates LATS and

thereby enhances its activity sufficiently to phosphorylate

YAP on Ser381. We also found that PKA activity is involved

in all contexts previously reported to trigger the LATS–YAP

pathway, including actin cytoskeletal damage, G-protein-

coupled receptor activation, and engagement of the Hippo

pathway. Inhibition of PKA and overexpression of YAP

cooperate to transform normal cells and amplify neural

progenitor pools in developing chick embryos. We also

implicate neurofibromin 2 as an AKAP (A-kinase-anchoring

protein) scaffold protein that facilitates the function of the

cAMP/PKA–LATS–YAP pathway. Our study thus incorpo-

rates PKA as novel component of the Hippo pathway.
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Introduction

The YAP (Yes-associated protein) transcriptional co-activator

is a potent oncogene that drives cell proliferation and

promotes survival. Overexpression of Yorkie, the Drosophila

homologue of YAP, triggers massive overgrowth of fly imagi-

nal discs (Huang et al, 2005). Similarly, transgenic mice

overexpressing YAP rapidly develop tumours in multiple

organs (Camargo et al, 2007; Dong et al, 2007). In humans,

YAP is overexpressed as a result of genomic amplification of

the 11q22 locus in several cancer types (Weber et al, 1996;

Imoto et al, 2001, 2002; Dai et al, 2003; Baldwin et al, 2005;

Bashyam et al, 2005; Hermsen et al, 2005; Snijders et al,

2005). YAP might also accumulate in human cancers through

genomic amplification-independent mechanisms (Zhao et al,

2007). Moreover, YAP expression is able to transform normal

human mammary epithelial cells in culture (Overholtzer

et al, 2006). These studies establish the evolutionarily

conserved role of YAP as an oncogene and underscore the

importance of understanding how YAP’s activity is regulated.

The Hippo pathway has been implicated as the major

negative regulator of YAP (Harvey and Tapon, 2007; Pan,

2010; Sudol and Harvey, 2010; Zhao et al, 2010a; Halder and

Johnson, 2011). The core of this pathway consists of two

sterile 20-like protein kinases, MST1 and MST2 (also known

as STK4 and STK3, respectively), and the scaffolding protein

SAV1 (salvador homologue 1). Together with SAV1, MST1/2

activate LATS (large tumour suppressor) kinases 1 and 2 by

phosphorylating residues in their hydrophobic motif (HM)

(Chan et al, 2005). Subsequently, with the help of Mob1A/B

(mob kinase activator 1 A/B) scaffold proteins, activated

LATS1/2 kinases phosphorylate and thereby inactivate YAP.

Importantly, mice lacking core Hippo pathway genes have

increased YAP activity and develop cancers in various

epithelial tissues. For example, mice with specific deletion

of Mst1/2 or Sav1 in the liver exhibit hepatomegaly followed

by rapid progression to liver cancer (Zhou et al, 2009; Lee

et al, 2010; Lu et al, 2010; Song et al, 2010). Likewise, deletion

of Mst1/2 in the intestinal epithelium triggers colon cancer

development, a phenotype that is rescued by YAP knockout

(Zhou et al, 2011). Although mice deficient for intestinal Sav1

do not progress to spontaneous cancer development, they are

susceptible to chronic damage-induced tumorigenesis; this

phenotype is also abolished by YAP deletion (Cai et al, 2010).

These studies highlight the importance of the Hippo pathway

as a suppressor of YAP. In terms of events upstream of MST1/

2 kinase, mounting evidence suggests that epithelial cell

adhesion and polarity initiates the signalling event (Grusche

et al, 2010). At the molecular level, a number of proteins,

including neurofibromin 2 (NF2), Angiomotin and Kibra,

have been implicated as potential upstream regulators of

MST1/2 kinase (Hamaratoglu et al, 2006; Baumgartner

et al, 2010; Genevet et al, 2010; Yu et al, 2010; Chan et al,

2011a, b; Paramasivam et al, 2011; Wang et al, 2011;

Zhao et al, 2011). However, the exact nature of the

upstream event responsible for MST1/2 activation remains

elusive.
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LATS1/2 can potentially phosphorylate five residues in YAP

that follow the LATS consensus, HxRxxS/T (Zhao et al, 2007;

Lee et al, 2008). Of these five sites, two—Ser127 and Ser381—

seem to be the most critical for YAP inactivation since

retention of phosphorylation at either of these two serines

is sufficient to abolish the transforming ability of the YAP 5SA

mutant (Zhao et al, 2009). Mechanistically, Ser127

phosphorylation mediates interaction with 14-3-3 proteins,

which sequester YAP in the cytosol (Dong et al, 2007; Zhao

et al, 2007). On the other hand, Ser381 phosphorylation

triggers successive phosphorylation on Ser384 by casein

kinase-1 followed by BTRC (beta-transducin repeat-

containing E3 ubiquitin protein ligase)-mediated

degradation (Zhao et al, 2010b). However, in cell-free

systems Ser127 serves as the primary and preferred

substrate for LATS, whereas phosphorylation of Ser381 is a

minor reaction (Zhao et al, 2007; Lee et al, 2008). This raises

the important question of whether and how these two

phosphorylations are differentially regulated in intact cells.

A recent report revealed a novel upstream regulator of YAP

(Halder et al, 2012), demonstrating that, when stress fibres

develop tension, YAP is imported into the nucleus and thus

activated. Conversely, YAP is exported from the nucleus

when stress fibres loose tension. Similarly, actin

cytoskeletal damages, such as latrunculin B, cytochalasin D,

or maintenance of cells in suspension, inactivates YAP

(Dupont et al, 2011; Fernandez et al, 2011; Sansores-Garcia

et al, 2011; Wada et al, 2011; Zhao et al, 2012). However,

unlike the aforementioned canonical Hippo pathway,

signalling events downstream of the actin cytoskeleton are

poorly understood. Moreover, reports pertaining to the

requirement of canonical Hippo pathway components in

this context have been conflicting, possibly reflecting the

use of siRNAs or dominant-negative approaches instead of

genetically deficient cell lines. Moreover, although these

studies commonly show that localization and Ser127

phosphorylation of YAP are affected by cytoskeletal

damage, whether and how Ser381 participates in this

signalling and which downstream components are actually

involved have not been elucidated. In this study, we

investigated these issues by taking advantage of genetically

engineered mouse embryonic fibroblasts (MEFs) for each

Hippo pathway component and a YAP phospho-Ser381-

specific antibody that we generated. Our study reveals an

unexpected role of cyclic AMP (cAMP)-dependent

protein kinase (PKA) in promoting LATS-mediated

Ser381 phosphorylation, and thus full inactivation, of YAP.

Moreover, we demonstrate that NF2 plays a role as an AKAP

(A-kinase-anchoring protein) in the cAMP/PKA–LATS–YAP

pathway.

Results

The LATS/Mob1 complex, but not upstream canonical

Hippo components, is essential for induction of YAP

phosphorylation by cytoskeletal damage

We first asked if Ser381 phosphorylation was induced by

cytoskeletal damage. To do this, we first generated and

confirmed the specificity of a YAP phospho-Ser381 antibody

(Supplementary Figure S1). We found that YAP was rapidly

phosphorylated at both Ser127 and Ser381 in NIH3T3 cells

after latrunculin B treatment or cell detachment (Figure 1A).

We noted that, unlike Ser127 phosphorylation, which is

already abundant in unstressed cells, basal Ser381 phosphor-

ylation was barely detectable and was induced in an almost

all-or-none fashion by cytoskeletal damage. To examine

whether this signalling event requires the canonical Hippo

pathway, we exploited MEFs isolated from mice deficient for

each pathway component. First, we generated Lats1- and

Lats2-deficient MEFs by retroviral Cre infection of

Lats1� /� ;Lats2fl/fl MEFs. In cells deficient for all LATS iso-

forms, YAP was unphosphorylated under basal conditions

and cytoskeletal damage was unable to induce YAP phos-

phorylation (Figure 1B). Next, we asked if the interaction of

LATS with Mob1 was necessary for YAP phosphorylation. To

overcome the problem of cellular senescence associated with

multiple passaging, we immortalized Lats1� /� ;Lats2fl/fl

MEFs with SV40 LT. Then, either wild-type or Mob1-bind-

ing-defective versions of LATS1 were introduced followed by

retroviral Cre infection (Hergovich et al, 2006). Cells

reconstituted with LATS1 R690A or R696A mutants were

also unable to phosphorylate YAP (Figure 1C). These results

genetically confirm that an intact LATS/Mob1 complex is

indispensable for both basal and cytoskeletal damage-in-

duced YAP phosphorylation.

Mst1/2-deficient cells were obtained similarly by retroviral

Cre infection into Mst1fl/fl;Mst2� /� MEFs. Mst1/2-null MEFs

were fully competent to induce YAP phosphorylation, both

basally and in response to cytoskeletal damage (Figure 1D),

consistent with previous reports (Zhou et al, 2009; Song et al,

2010; Zhao et al, 2012). Also, YAP was normally

phosphorylated in Sav1-null MEFs (Supplementary Figure

S2). We conclude that the upstream components of the

canonical Hippo pathway, Mst1/2 and Sav1, are dispensable

for cytoskeletal damage-induced YAP phosphorylation; thus,

some other upstream signal(s) is involved in this context.

PKA activity is required for Ser381 phosphorylation of

YAP after cytoskeletal damage

Cell detachment has been reported to increase the concentra-

tion of cAMP, which contributes to anchorage-dependent

mitogenic signalling (Howe and Juliano, 2000). To

determine if cAMP signalling is necessary for the induction

of YAP phosphorylation by cytoskeletal damage, we pre-

treated cells with the PKA inhibitor, H-89. Interestingly,

PKA inhibition selectively decreased YAP Ser381

phosphorylation without affecting YAP Ser127

phosphorylation (Figure 2A). To confirm these results using

an independent approach, we inhibited PKA activity using

the dominant-negative PKA mutant (dnPKA), a mutant reg-

ulatory subunit 1a that is defective for cAMP binding.

Overexpression of this mutant renders the PKA holoenzyme

complex insensitive to cAMP stimuli, and thus inhibits down-

stream signalling (Clegg et al, 1987). Expression of dnPKA,

like H-89, also specifically inhibited YAP Ser381

phosphorylation (Figure 2B). We further confirmed the in-

volvement of PKA in YAP Ser381 phosphorylation by using

PKI, PKA-specific peptide inhibitor (Day et al, 1989). In order

to deliver PKI peptide inside the cell, we linked 11 Arg to N

terminus of PKI (11R-PKI). Such polybasic peptides can be

efficiently taken up by the cell (Matsushita et al, 2001).

Pre-treatment of 11R-PKI also attenuated YAP Ser381

phosphorylation induced by latrunculin B (Supplementary

Figure S3). Of note, the adenylate cyclase inhibitor DDA

PKA inhibits YAP through LATS activation
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(20,50-dideoxyadenosine), which inhibits adenylate cyclase

only when signalling via the G-protein Gs subunit is involved

(Florio and Ross, 1983), failed to block YAP Ser381

phosphorylation (Supplementary Figure S4A). This result is

consistent with an early study that reported that Gs does not

participate in cAMP production induced by cytoskeletal

damage (Watson, 1990).

Next, we attempted to activate cAMP/PKA signalling by

treating cells with the adenylate cyclase agonist, forskolin/

IBMX (3-isobutyl-1-methylxanthine). This treatment induced

both Ser127 and Ser381 phosphorylation of YAP and excluded

YAP from the nucleus (Figures 2C and D). We noted that a 1-h

treatment with cAMP agonist did not cause obvious cytoske-

letal damage, ruling out secondary effects (Supplementary

Figure S4B). cAMP can signal through the cAMP-activated

guanine nucleotide exchange factors (GEFs) Epac1/2 in par-

allel with PKA (de Rooij et al, 1998). However, cells

stimulated with compound 007, an Epac1/2-selective

agonist, failed to induce YAP phosphorylation

(Supplementary Figure S4C). Forskolin/IBMX as well as

cell detachment activated LATS kinase, as evidenced by

activation-loop (AL) phosphorylation (Figure 2E). YAP phos-

phorylation induced by activated PKA signalling was

mediated by LATS kinases since forskolin/IBMX was unable

to induce YAP phosphorylation in Lats1/2-null MEFs

(Figure 2F). Importantly, Lats1/2-null MEFs normally

showed CREB phosphorylation at Ser133, indicating that

PKA is still active in the absence of Lats1/2. Taken together,

these data suggest that cAMP/PKA signal to LATS1/2 to

promote YAP phosphorylation, and this signalling has

stronger effect on Ser381 phosphorylation.

YAP Ser127 and Ser381 phosphorylation are

differentially sensitive to a reduction in LATS1/2

The observation that PKA inhibition selectively affected

Ser381 phosphorylation was surprising. However, because

PKA agonists were also able to increase YAP Ser127 phos-

phorylation, we reasoned that PKA generally enhanced LATS

activity but Ser127 phosphorylation did not necessarily

require PKA. In contrast, PKA might be necessary for efficient

Ser381 phosphorylation by further activating LATS. This

model agrees well with the biochemical observation that

Ser381 is a poor substrate of LATS in cell-free systems. If

so, we hypothesized that Ser381 phosphorylation might be

more sensitive to a reduction in LATS expression

level, whereas Ser127 phosphorylation would be relatively

Figure 1 The LATS/Mob1 complex is essential for induction of YAP Ser127 and Ser381 phosphorylation by cytoskeletal damage.
(A) Phosphorylation at Ser127 and Ser381 by actin cytoskeletal damage. NIH3T3 cells were treated with 5 mM latrunculin B or seeded onto
poly-HEMA-coated dishes and incubated for the indicated times. (B) Indispensability of LATS1/2 for YAP phosphorylation. Lats1� /� ;Lats2fl/fl

MEFs were transduced with either empty or Cre retroviruses. Selected cells were treated as indicated. (C) Indispensability of intact LATS/Mob1
complex for YAP phosphorylation. SV40 LT-immortalized Lats1� /� ;Lats2fl/fl MEFs were complemented with either LATS1 WT, LATS1 R660A
or R696A mutants. After Cre infection, cells were treated as indicated. Lanes 13 and 14 were infected with empty virus in place of Cre to
measure LATS2 deletion efficiency. (D) Dispensability of MST1/2 for YAP phosphorylation. Mst1fl/fl;Mst2þ /þvector, Mst1fl/fl;Mst2� /� vector,
and Mst1fl/fl;Mst2� /� Cre MEFs were infected and treated as indicated.

PKA inhibits YAP through LATS activation
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unaffected. To test this idea, we partially depleted LATS1/2 in

RPE cells by siRNA transfection. In our experimental

system, about 75% of LATS1 and 90% of LATS2 were

depleted. Interestingly, latrunculin B treatment showed

that Ser127 phosphorylation was almost completely unaf-

fected by the knockdown level we achieved. However,

in the same sample, Ser381 phosphorylation markedly

decreased (Supplementary Figure S5). We conclude that

only a trace amount of LATS is capable of inducing Ser127

phosphorylation with high efficiency in intact cells. In

contrast, Ser381 phosphorylation requires sufficient LATS

and PKA activity.

PKA phosphorylates LATS and thereby enhances its

activity

To address the question of how PKA increases the ability of

LATS to phosphorylate YAP on Ser381, we tested whether

PKA enhances LATS activity through direct phosphorylation.

Using a cell-free system, we found that purified PKACa
catalytic subunits phosphorylated immunoprecipitated

LATS1 and LATS2 as monitored using either radioisotope

labelling or antibodies against phosphorylated PKA substrate

(Figure 3A). To determine if PKA phosphorylates LATS in

intact cells, we transfected NIH3T3 cells with HA-tagged

LATS2 and treated transfected cells with cytoskeletal-dama-

ging agents or forskolin/IBMX followed by immunoprecipita-

tion with an anti-HA antibody. Western blotting of HA

immunoprecipitates with an antibody against a phosphory-

lated PKA substrate revealed that LATS2 was phosphorylated

(Figure 3B). We also obtained similar results using a stable

RPE clone expressing SBP (streptavidin-Flag-S tag)-fused

LATS2 (Figure 3C, lanes 1–4). H-89 treatment abolished the

increase in the signal of the phosphorylated PKA substrate

antibody, confirming that this signal was indeed due to PKA

activity (Figure 3C, lanes 5–8). Importantly, H-89 did not

affect AL phosphorylation and even increased phosphoryla-

tion in the HM of LATS (Supplementary Figure S6). It is not

yet clear why PKA inhibition increased phosphorylation of

the LATS HM. It may be that PKA affects the activity of a

phosphatase or kinase that targets this motif.

We then tested if PKA-mediated LATS phosphorylation

increased LATS enzymatic activity using a sequential ‘cold’

kinase assay. The first kinase reaction was carried out using

PKA and immunoprecipitated LATS2. After washing out

recombinant PKA, the second kinase reaction was run

using a GST-fusion protein of recombinant, full-length YAP

as a substrate. Pre-incubation with PKA increased

LATS2 kinase activity towards GST–YAP, monitored using

antibodies against YAP phospho-Ser127 and phospho-Ser381

(Figure 3D). Overall activity was enhanced by co-transfection

of Mob1A. Using purified PKA and YAP in in vitro kinase

assays, we noted that PKA induced robust YAP Ser381

phosphorylation (Figure 3D, lane 5). However, we ruled out

the possibility that residual PKA was responsible for the

additional phosphorylation since PKA pre-incubation also

enhanced activity towards Ser127, which was poorly phos-

phorylated by PKA alone. In addition, PKA pre-incubation

increased LATS kinase activity even when we added

PKI (5-24) in the second kinase reaction buffer to block

residual PKA activity (Supplementary Figure S7). This result

suggests that PKA increases LATS activity through direct

phosphorylation of LATS.

Figure 2 Requirement of cAMP/PKA signalling for induction of YAP Ser381 phosphorylation by cytoskeletal damage. (A) Effect of H-89 on YAP
phosphorylation by cytoskeletal damage. NIH3T3 cells were pre-treated with 20mM H-89 for 1 h followed by addition of latrunculin B or
seeding onto poly-HEMA-coated dishes. (B) Effect of dnPKA on YAP phosphorylation by cytoskeletal damage. NIH3T3 cells were infected with
Flag–dnPKA retroviruses. Selected cells were treated with latrunculin B or seeded onto poly-HEMA-coated dishes. (C, D) Effect of PKA agonist
on YAP phosphorylation. NIH3T3 cells were stimulated with 20mM forskolin and 500mM IBMX for the indicated times. YAP phosphorylation
(C) and localization (C, D) were determined. WCL, whole cell lysate; Nuc, nuclear lysate. Scale bar, 10mm. (E) LATS activation by PKA agonist
or cell detachment. LATS activation loop (AL) phosphorylation was determined in cells treated with the indicated stimuli. (F) Requirement of
LATS1/2 for YAP phosphorylation by PKA agonist. Lats1� /� ;Lats2fl/fl MEFs were transduced with either empty or Cre retroviruses. Selected
cells were treated with forskolin/IBMX. *, nonspecific signal.
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PKA phosphorylates LATS2 at (R/K)(R/K)xS/T motifs,

thereby mediating cytoskeletal damage-induced YAP

phosphorylation

We then tried to identify the PKA target residues on LATS.

PKA optimally phosphorylates RRxS/T motifs whereas Arg

can be replaced with Lys in some instances. We noticed that

LATS2 have four such sequences; Ser172 and Ser380 belong-

ing to the optimal RRxS/T motif and Ser592 and Ser598

belonging to weaker consensus. Thus, we generated LATS2

mutant bearing alanine substitutions in all four serine resi-

dues (LATS2 4SA). This mutant was not phosphorylated

in vitro by PKA as examined by phospho-PKA substrate

western blot (Figure 4A). Signals from both antibodies, one

raised against phosphorylated RRxS/T motifs (Ab #2) and

another raised against phosphorylated RxxS/T motifs

(Ab #1), were absent for LATS2 4SA. More importantly,

LATS2 4SA was not phosphorylated by PKA in intact cells

after cell detachment, while AL and HM were normally

phosphorylated in LATS2 4SA (Figure 4B). LATS2 4SA inter-

acted with Mob1 with comparable affinity to LATS2

WT (Supplementary Figure S8). These results confirm

that LATS2 4SA mutant is specifically defective in phosphory-

lation by PKA while retaining other known regulations.

To test whether PKA-mediated LATS2 phosphorylation

is required for actin cytoskeletal damage-induced YAP phos-

phorylation, we reconstituted immortalized Lats1/2-null

MEFs with either LATS2 WT or LATS2 4SA mutant followed

by Cre infection. These cells were harvested at early time

points (15 min, 30 min and 1 h) after latrunclin B treatment or

detachment. Remarkably, YAP phosphorylation was attenu-

ated in cells reconstituted with LATS2 4SA (Figure 4C). Of

note, in this experimental setup where only LATS2 4SA

mutant is expressed in cell, Ser127 as well as Ser381

phosphorylation was affected. Nevertheless, Ser127 phos-

phorylation level eventually catches up to that of LATS2

WT-reconstituted cells. In contrast, Ser381 phosphorylation

was markedly reduced at all time points examined. Lastly, we

performed kinase assay using immunoprecipitated LATS2

WT or 4SA mutant, and found that LATS2 4SA mutant have

significantly lower activity (Figure 4D). These results prove

that PKA-mediated LATS phosphorylation is required for full

kinase activity and efficient YAP phosphorylation induced by

actin cytoskeletal damages.

PKA inhibition and YAP cooperate to confer resistance

to anoikis and serum starvation

Next, we asked if PKA inhibition and YAP can functionally

cooperate. Because PKA promoted YAP inhibition by cytos-

keletal damage, the first phenotype associated with YAP

hyperactivation that we assessed was resistance to anoikis,

a type of cell death caused by deprivation of cell anchorage

that, when dysregulated, supports the initial stages of cancer

Figure 3 Phosphorylation of LATS1/2 by PKA enhances LATS kinase activity in cell-free systems and in intact cells. (A) PKA phosphorylates
LATS in cell-free system. HA–LATS1 KD (kinase dead) or HA–LATS2 KD was immunoprecipitated from transfected 293T cells.
Immunoprecipitated beads were incubated with purified PKACa and radiolabelled ATP. Reaction products were analysed isotopically or by
western blotting with phospho-PKA substrate antibodies. *, nonspecific signal. (B) PKA phosphorylates LATS in intact cells. HA–LATS2-
transfected NIH3T3 cells were treated with the indicated stimuli for 1 h. After immunoprecipitation with anti-HA antibody, phosphorylation
by PKA was examined using a phospho-PKA substrate antibody. WCL, whole cell lysate. (C) RPE cells stably expressing SBP-LATS2 were
pre-treated with 20 mM H-89 for 1 h, followed by an additional 1-h treatment with the indicated stimuli. LATS2 was pulled down using
Streptavidin agarose bead and assayed as in panel (B). (D) LATS2 pre-incubated with PKA has increased kinase activity. HA–LATS2 WTor KD
mutant was immunoprecipitated from 293T cells and reacted with PKACa. PKACa was extensively washed out, followed by incubation with
1 mg GST–YAP (full-length) protein and 200mM unlabelled ATP. Reaction products were analysed by SDS–PAGE and immunoblotting. In lanes
6–9, HA–Mob1A was co-transfected to increase overall kinase activity. In lane 5, GST–YAP was reacted with PKACa to examine possible
background phosphorylation of YAP by PKA. SE, short exposure; LE, long exposure.

PKA inhibits YAP through LATS activation
M Kim et al

1547&2013 European Molecular Biology Organization The EMBO Journal VOL 32 | NO 11 | 2013



metastasis (Simpson et al, 2008; Kim et al, 2012). Because

PKA activity had a greater impact on Ser381 phosphorylation,

and the YAP S127/381A double-mutation (YAP 2SA) was

necessary for anoikis resistance, we hypothesized that PKA

inhibition would effectively synergize with the YAP S127A

mutant. To test this, we infected NIH3T3 cells with dnPKA,

YAP WT (wild-type), or YAP S127A alone, or YAP (WT or

mutant) in combination with dnPKA. Interestingly, dnPKA

cooperated with the YAP S127A mutant such that cells co-

expressing YAP S127A and dnPKA underwent less anoikis

compared to cells expressing YAP S127A alone (Figure 5A).

dnPKA conferred no advantage in vector- or YAP WT-infected

backgrounds (Supplementary Figure S9A). In soft-agar assays,

which allow monitoring of long-term survival of anchorage-

deprived cells, dnPKA addition increased the size of colonies

but did not increase colony numbers (Figures 5B and C). We

noted that dnPKA/YAP S127A-infected cells ultimately under-

went anoikis at later time points; hence, the size of these

colonies was still very small compared to those formed by

fully transformed cells. Nevertheless, YAP and PKA inhibition

together conferred partial anoikis resistance.

To examine the functional cooperation of YAP and PKA

inhibition in another assay, we serum-starved infected cells

by incubating with 0.1% fetal bovine serum (FBS). Six days

after starvation, B6-fold more dnPKA/YAP S127A-infected

cells survived compared to cells infected with YAP S127A

alone (Figure 5D). An examination of caspase-3 cleavage also

indicated prominent protection from serum starvation in

dnPKA/YAP S127A-infected cells (Figure 5E). Again, dnPKA

conferred no advantage on vector- or YAP WT-expressing

cells (Supplementary Figure S9B). Collectively, these data

indicate that PKA inhibition strengthened YAP overexpression

phenotypes in cell culture systems.

PKA inhibition and YAP cooperate to regulate neural

progenitor pools

We next sought to examine the cooperation between PKA

inhibition and YAP in vivo. For this, we turned to the

developing chick embryo as a model system. YAP overexpres-

sion in the developing chick embryo generates ectopic neural

progenitors, whereas its inhibition promotes spontaneous

neural progenitor death (Cao et al, 2008). During

mammalian neurogenesis, YAP inhibition is also critical for

cell cycle exit and differentiation on-set of progenitor cells

(Zhang et al, 2012). We first tested the cooperation between

dnPKA and YAP WT. Co-transfection of dnPKA and YAP WT

induced an increase in the generation of Sox2 (SRY box 2)-

positive neural progenitors that was more than additive,

indicating a synergistic effect (Figures 5F and H). Ectopic

proliferation was observed by staining for phospho-H3

(Supplementary Figure S10). We then asked if constitutively

active PKA could suppress phenotypes associated with YAP

overexpression alone. Constitutive PKA activity can be

achieved by expressing PKA-CA, a PKACa subunit defective

for interactions with regulatory subunits (Orellana and

Mcknight, 1992). The induction of ectopic neural

progenitors by YAP was abolished by co-transfection of

PKA-CA (Figures 5G and I). Using YAP 2SA, we observed a

Figure 4 Identification of PKA target sites on LATS2 and their contribution to cytoskeletal damage-induced YAP phosphorylation. (A) LATS2
4SA mutant is not phosphorylated by PKA in vitro. Flag–LATS2 WTor LATS2 4SA were prepared by immunoprecipitation from transfected 293T
cells. Flag immunoprecipiates were incubated with cold ATP and PKACa. Reaction products were analysed by two antibodies against
phosphorylated PKA substrate. (B) LATS2 4SA mutant is not phosphorylated by cell detachment. NIH3T3 cells were transfected with empty
vector, Flag–LATS2 WT, or LATS2 4SA. Transfected cells were suspended for 1 h followed by Flag immunoprecipiation. Flag immunoprocipiates
were fractionated by SDS–PAGE and analysed with indicated phospho-specific antibodies. SE, short exposure; LE, long exposure. (C) LATS2
4SA-reconstituted cells attenuate YAP phosphorylation. SV40 LT-immortalized Lats1� /� ;Lats2fl/fl MEFs were complemented with either LATS2
WTor LATS2 4SA mutant. After Cre infection, cells were treated as indicated. Lanes 13 and 14 were infected with empty virus in place of Cre to
measure LATS2 deletion efficiency. The different mobility of human LATS2 (complemented products) and murine Lats2 (endogenous product
before deletion) ensures efficient excision of Lats2 in lanes 1–12. (D) Reduced kinase activity of LATS2 4SA mutant. 293Tcells were transfected
with indicated Flag-tagged LATS2 constructs. LATS2 was immunoprecipiated by Flag antibody followed by time-course kinase assay as
indicated.
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dramatic induction of ectopic neural progenitors that was not

rescued by PKA-CA (Supplementary Figure S11). Thus, PKA-

CA inhibits YAP activity by inducing phosphorylation at these

residues. Of note, we often observed ectopic neural progeni-

tors in untransfected cells (LacZ negative), suggesting exis-

tence of cell non-autonomous effect of YAP. Cell-extrinsic

effect of YAP on stem/progenitor cells have also been noticed

by other studies (Zhang et al, 2009; Staley and Irvine, 2010;

Ohsawa et al, 2012; Zhang et al, 2012). Taken together, these

results demonstrate a functional interaction between PKA

and YAP in regulating stem/progenitor cell proliferation.

PKA activity is required for induction of YAP

phosphorylation by upstream Hippo pathway

components or GPCR stimulation

We wondered if the requirement of PKA activity in suppres-

sing YAP could be generalized to other known contexts that

activate LATS–YAP pathway. Overexpression of upstream

Figure 5 Functional cooperation between PKA and YAP. (A) YAP S127A and dnPKA cooperate to resist anoikis. NIH3T3 cells expressing Flag–
YAP S127A alone or Flag–YAP S127A plus Flag–dnPKA were seeded onto poly-HEMA-coated dishes and incubated for the indicated times. The
apoptosis index was measured by immunoblotting for cleaved caspase-3. (B) Cells from (A) were also grown in soft agar for 15 days. Colonies
were stained with crystal violet and imaged with a dissecting microscope. Scale bar, 10 mm. (C) Quantification of average colony size for the
results in (B). The result was quantified from three independent experiments with triplicates in each experiment. Error bar indicates s.e.m.
(two-tailed Student’s t-test). *Po0.05. (D) YAP S127A and dnPKA cooperate to resist serum starvation-induced cell death. Approximately
5�103 cells from (A) were seeded onto 6-well plates. One day later, media were changed to DMEM containing 0.1% FBS and cells were
maintained for 6 days. Cell numbers were counted and expressed as fold induction relative to the original number of cells (5�103). The graph
shown is a representative result from two independent experiments. (E) Cells incubated in 0.1% FBS for the indicated number of days were
analysed by immunoblotting for caspase-3 cleavage. SE, short exposure; LE, long exposure. (F) YAP WT and dnPKA cooperate to generate
ectopic neural progenitors in developing chick. Immunohistochemical analyses of ectopic neural progenitor formation in chick spinal cords
electroporated with YAP WT, dnPKA, or YAP WT plus dnPKA, along with LacZ (left) to mark the transfected side. Neural progenitors were
detected by immunostaining for Sox2. Brackets indicate ectopic Sox2þ neural progenitor cells. þ , electroporated side. Scale bar, 75mm. (G)
PKA-CA suppresses YAP-induced generation of ectopic neural progenitors. Similar procedure as in (F) using YAP WT, PKA-CA, and YAP WT
plus PKA-CA. Scale bar, 75mm. (H) The number of ectopic neural progenitors from (F) were quantified. ***Po0.001. (I) Quantification of
results in (G). ***Po0.001. Error bars indicate s.e.m.’s (two-tailed Student’s t-test).
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components of the canonical Hippo pathway in 293T induced

both YAP Ser127 and Ser381 phosphorylation in a LATS-

dependent manner (Figure 6A). Similar to actin cytoskeletal

damage, Ser381 phosphorylation was induced in an all-or-

none fashion only in the presence of LATS and upstream

components. In contrast, significant levels of Ser127-phos-

phorylated YAP were present under basal condition. To

examine the impact of inhibiting PKA activity in this experi-

mental system, we used LATS1 specifically because LATS2

alone (i.e., without any upstream components) resulted in

too strong basal YAP phosphorylation. Incubation of cells

expressing all Hippo components with H-89 caused an abrupt

disappearance of YAP phosphorylation signals (Figure 6A,

lanes 5 and 6). Incubation of 11R-PKI also reduced the pre-

established YAP phosphorylation, although the effect was

weaker than H-89 (Figure 6A, lanes 7 and 8). Co-expression

of dnPKA also abolished YAP phosphorylation induced by

these upstream components (Figure 6B). Co-transfecting

RSV-PKI (PKI expression driven by RSV promoter) also

reduced YAP phosphorylation induced by NF2 and LATS1

(Figure 6C). Anti-phospho-PKA substrate western blot from

the cell lysates confirmed the inhibition of PKA activity in

PKI-transfected cells. Unlike the effect of PKA inhibition on

cytoskeletal damage-induced YAP phosphorylation, both

phosphorylation sites were affected in these experiments.

This is likely because YAP phosphorylation is saturated in

overexpression conditions; thus, most YAP proteins are dou-

bly phosphorylated and Ser127-phosphorylated species are

co-degraded together with Ser381-phosphorylated species.

Our results thus indicate that PKA activity also likely

functions in the canonical Hippo pathway.

Recently, diverse GPCR agonists have been reported

to regulate YAP (Yu et al, 2012). Those that activate

Gs-coupled GPCRs were shown to induce YAP phos-

phorylation. However, the signalling mechanism linking Gs-

coupled GPCRs to LATS activation was not elucidated. We

speculate that Gs-coupled GPCRs accomplish this, in part, by

promoting direct phosphorylation of LATS via PKA. Indeed,

we observed phosphorylation of LATS by PKA in

epinephrine-stimulated MDA-MB231 cells (Supplementary

Figure 6 Requirement for PKA activity in mediating YAP phosphorylation induced by engagement of the canonical Hippo pathway. (A) YAP
phosphorylation induced by Hippo pathway upstream components is opposed by PKA inhibition. 293T cells were transfected with Flag–YAP,
HA–LATS1, and Myc–NF2 or Flag-angiomotin-like 1/2 as indicated. Forty-eight hours after transfection, cells were incubated with 20mM H-89
or 50mM 11R-PKI for the indicated times. SE, short exposure; LE, long exposure. (B) 293T cells were transfected as in (A) with or without
dnPKA co-transfection. Lysates were analysed 48 h after transfection. (C) 293T cells were transfected as in (A) with or without RSV-PKI
co-transfection. Transfection of RSV-PKI was confirmed by western blotting the whole transferred membrane against phospho-PKA substrate
antibody. (D) NF2 mutant that is defective in AKAP function do not induce YAP Ser381 and PKA-mediated LATS phosphorylation. 293T cells
were transfected with Flag–YAP, HA–LATS1, and Flag–NF2 WTor Flag–NF2 DAKAP mutant. HA–LATS1 was immunoprecipitated and analysed
for phosphorylation by PKA.
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Figure S12A). Moreover, dnPKA abolished YAP phosphoryla-

tion induced by epinephrine or dopamine stimulation

(Supplementary Figure S12B and C). Taken together, PKA is

a general activator of LATS–YAP pathway.

NF2 functions as an AKAP to induce YAP Ser381

phosphorylation

AKAPs are crucial mediators of cAMP/PKA signalling (Wong

and Scott, 2004). AKAP proteins pre-anchor PKA holoenzyme

and associated signalling proteins in specific subcellular

localizations, enabling cells to rapidly respond to incoming

stimuli in a spatially confined area. AKAP proteins directly

bind through their amphipathic a-helix to the cavity formed

by regulatory subunit dimers (Carr et al, 1991; Newlon et al,

1997, 2001). AKAPs are classified into Type I, Type II, or dual

specificity depending on the regulatory subunits they interact

with. Although we have failed to detect endogenous interac-

tion, we observed that LATS associated with PKA regulatory

subunits in overexpression system (Supplementary Figure

S13A). Combinatorial pre-treatment of RIAD-11R and

11R-SuperAKAP-IS peptides, competitive inhibitors of type I

or type II AKAP, respectively (Carlson et al, 2006; Gold et al,

2006), inhibited latrunculin B-induced YAP phosphorylation

(Supplementary Figure S13B) as well as PKA-mediated LATS2

phosphorylation (Supplementary Figure S13C). Pre-treating

RIAD-11R or 11R-SuperAKAP-IS alone had no inhibitory effect

on YAP phosphorylation (Supplementary Figure S13B).

These results implicate possible existence of AKAP(s) in

PKA–LATS–YAP signalling and that they are likely to be

dual-specificity AKAP.

Interestingly, NF2 has been shown to function as an AKAP

(Gronholm et al, 2003). Although Gronholm et al suggested

that NF2 is a Type I AKAP, we observed that NF2 equally

interacted with Type II regulatory subunits as well

(Supplementary Figure S14). To determine if the AKAP

function of NF2 is necessary for NF2-induced YAP phosphor-

ylation, we transfected 293T cells with LATS1 and wild-type

NF2 or an NF2 deletion mutant lacking the amphipathic helix

(amino acids 462–480), which is known to constitute the

AKAP domain. NF2 DAKAP mutant failed to induce YAP

Ser381 phosphorylation and, importantly, abolished PKA-

mediated LATS phosphorylation (Figure 6D). This result

indicates that the AKAP function of NF2 is necessary for

efficient Ser381 phosphorylation of YAP by LATS kinases.

Discussion

In this study, we presented findings that incorporate cAMP/

PKA signalling into LATS–YAP pathway (Figure 7A). PKA was

necessary to fully inactivate YAP in all known contexts that

activate LATS. We provided evidences that direct phosphor-

ylation of LATS by PKA enhance LATS kinase activity,

enabling LATS to phosphorylate otherwise inefficient sub-

strate residues including Ser381. PKA directly phosphorylated

LATS2 at its (R/K)(R/K)xS/T motifs, and non-phosphoryla-

table LATS2 was inefficient in inducing YAP phosphorylation

when reconstituted in Lats1/2-null cell. In general, inactiva-

tion of YAP is crucial for cell cycle exit of progenitor cells

and differentiation (Camargo et al, 2007; Lee et al, 2008;

Zhang et al, 2012). Thus, our results suggest a role of cAMP/

PKA in stem/progenitor cell regulation. In this aspect,

neurogenesis is particularly interesting since PKA activation

can promote neuronal differentiation in various systems (Cox

et al, 2000; Suh et al, 2001; Vaudry et al, 2002; Kim et al,

2005; Li et al, 2007). It is likely that neuronal-differentiation-

inducing GPCR agonists such as PACAP or proneural genes

(e.g., Ascl1 or Neurogenin2) act at least in part by inhibiting

YAP. Further investigation of the interaction between PKA

and YAP during mammalian neurogenesis is an interesting

future topic.

Figure 7 Model depicting the refined Hippo pathway and step-wise LATS activation. (A) Signalling scheme of the Hippo pathway. PKA serves
a common function in both non-canonical and canonical Hippo pathways. See the text for further details. (B) LATS1/2 is activated in two steps.
The first step involves Mob1 binding and phosphorylation of the AL and HM. These events are sufficient for YAP Ser127 phosphorylation,
which is a good LATS substrate. The second step involves further activation by PKA (or others kinases). Only this fully activated LATS can
effectively phosphorylate poor substrates, including YAP Ser38.
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Although PKA inhibition in LATS1/2-proficient cells re-

sulted in strong reduction of YAP Ser381 phosphorylation

with only mild effect on Ser127 phosphorylation, we think

that PKA phosphorylation of LATS increases its general

kinase activity, that is, it does not confer specific advantage

towards phosphorylating Ser381. Two main observations

support this view. First, the sequential kinase assay

(Figure 3D) shows increase of both Ser127 and Ser381

phosphorylations by PKA pre-incubation. Second, in

Figure 4C, we show that LATS2 4SA-reconstituted cells

attenuate both phosphorylations. Since Ser127 is a biochemi-

cally efficient substrate for LATS, PKA inhibition had weaker

inhibitory effect on Ser127 phosphorylation compared to

Ser381 phosphorylation. Thus, our study provides important

insight on how otherwise inefficient substrate residues on

YAP can be fully phosphorylated in intact cells. On the basis

of these observations, we propose a model of step-wise

increases in LATS activity (Figure 7B). Mob1 binding, and

AL and HM phosphorylations are minimal requirements for

LATS activity. If these conditions are satisfied, LATS is

competent to phosphorylate its preferred substrate, YAP

Ser127. However, in order to efficiently phosphorylate other

poor target residues, including Ser381, LATS should acquire a

further activating event, such as PKA-mediated phosphoryla-

tion. Yet, we do not understand mechanistically how LATS

phosphorylation by PKA confers enhanced activity. We notice

that the extent of stimulatory effect of PKA in vitro is weaker

compared to its inhibition in intact cells. This implicates

missing/limiting component(s) in the in vitro assay.

Therefore, we speculate that LATS phosphorylation by PKA

mediates interaction with yet unidentified component(s),

which enhances its activity towards YAP. Proteomic analysis

of interacting partners using LATS2 WT or 4SA as bait might

identify the missing component(s).

We also emphasize that, although we have focused on

Ser381 phosphorylation in this study, PKA might promote

phosphorylation of other minor residues in YAP. Indeed, we

have found that the YAP 5SA mutant exhibits stronger

transcriptional activity than the YAP 2SA mutant (data not

shown), indicating that one or more of the remaining three

residues also contribute to suppressing YAP activity. Future

characterization of additional phosphorylation sites in intact

cells is necessary to completely understand YAP regulation.

Incorporation of PKA into the LATS–YAP pathway made

identification of relevant AKAPs an immediate issue. Role of

AKAP in the PKA–LATS–YAP signalling is supported by our

findings that LATS and regulatory subunits associate in intact

cells and, more importantly, that AKAP inhibitors inhibited

signalling by latrunculin B. Here, we showed that one Hippo

pathway protein, NF2, can function as an AKAP. Deletion of

AKAP domain in NF2 abrogated its ability to induce YAP- and

PKA-mediated LATS phosphorylation. We speculate that NF2

is the universal AKAP that facilitates PKA–LATS–YAP signal-

ling. Angiomotin and NF2 physically interact and cooperate

at cell junctions (Yi et al, 2011), suggesting that angiomotin

proteins might work with NF2 to bring about PKA-mediated

LATS phosphorylation. In regards of cytoskeletal damage

signalling, it has been shown that NF2 is dephosphorylated

and becomes activated by cell detachment (Shaw et al, 1998),

implicating NF2 as candidate AKAP during cytoskeletal

damage-induced signalling. However, depletion of NF2 in

RPE cells failed to attenuate YAP phosphorylation by

latrunclin B treatment (Supplementary Figure S15). The fail-

ure of NF2 depletion to inhibit cytoskeletal damage-induced

YAP regulation may reflect the presence of other proteins

with redundant functions. Importantly, many FERM-domain-

containing proteins in addition to NF2 also possess AKAP

function (Dransfield et al, 1997; Neisch and Fehon, 2011). In

fact, it has been shown that NF2 functions redundantly with

another FERM-domain protein, expanded, in Drosophila

(Hamaratoglu et al, 2006), and mammalian ‘expanded’ also

activates the Hippo pathway in cultured cells (Angus et al,

2012). These results suggest the possibility that mammalian

‘expanded’ and other FERM-domain proteins may also

redundantly carry out AKAP function and cooperate with

NF2 to transduce actin cytoskeletal damage signals. However,

at the same time, we still open the possibility that other

protein might function as AKAP to facilitate PKA–LATS–YAP

signalling during cytoskeletal damage.

Because cAMP/PKA signalling has pleotropic effects on

diverse cellular physiologies, manipulating PKA activity to

interfere with YAP activity would have obvious drawbacks.

However, understanding the mechanistic basis of step-wise

LATS activation will support the development of LATS

agonists as potential anti-cancer therapeutics.

Materials and methods

Cell culture and MEF isolation
NIH3T3, MDA-MB231, and U2OS cell lines were maintained in
Dulbecco’s modified Eagle medium (DMEM) supplemented with
10% FBS. RPE cells were maintained in DMEM/F12 with 10% FBS.
For MEFs, 2 mM L-glutamine was added to DMEM/10% FBS.

MEFs were isolated from E12.5�13.5 pregnant mice of the
indicated genotypes. After sacrificing mice, brains and livers were
removed from embryos and the remaining embryonic tissue was
trypsinized to a single-cell suspension and plated on a 100-mm dish.
This initial plating was designated passage 0. All experiments with
primary MEFs were performed at passage 3 or 4.

All treatments (Latrunculin B, detachment, Forskolin/IBMX, and
GPCR stimulation) in this study were performed in 70–80%
confluent cells.

Western blotting, immunoprecipitation, and kinase assay
Cells were washed once with ice-cold phosphate-buffered saline
(PBS) and harvested with 1 mM EDTA (ethylenediaminetetraacetic
acid) in PBS. For western blot analysis, cells were lysed with NP-40
buffer (1% NP-40, 50 mM Tris–Cl pH 7.5, 150 mM NaCl, 1 mM
EDTA, and 1 mM MgCl2) or RIPA buffer (NP-40 buffer containing
0.5% sodium deoxycholate and 0.1% sodium dodecyl sulphate
(SDS)). Lysates were cleared by microcentrifugation for 20 min at
13 000 r.p.m. and protein concentration was measured by BCA or
Bradford methods. Lysates were fractionated by SDS–PAGE (poly-
acrylamide gel electrophoresis), and proteins were transferred to a
nitrocellulose membrane. Membranes were blocked in 5% non-fat
dry milk for 1 h and incubated with primary antibodies diluted in
5% non-fat dry milk or bovine serum albumin (BSA). After incubat-
ing with horseradish peroxidase-linked secondary antibodies
(Jackson Laboratory) diluted 1:10 000 in 5% non-fat dry milk,
blots were developed using an enhanced chemiluminescence kit
(Amersham).

For immunoprecipitation experiments involving immunoblotting
phospho-PKA substrate, RPE cells were lysed with NP-40 buffer,
and 293T and NIH3T3 cells were lysed with RIPA buffer. For RPE,
lysates containing 1 mg protein were incubated with 20ml S-protein
agarose beads (Novagen). For 293T and NIH3T3 cells, lysates (1 mg
protein) were incubated with 3mg anti-HA antibody followed by
incubation with 20ml protein A/G-agarose beads (GeneDepot).
Beads were washed three times with lysis buffers and boiled.

For kinase assays, cells were lysed with 0.5% NP-40 buffer and
processed as described for immunoprecipitations. After the last
wash, beads were washed with 1X kinase assay buffer. The buffer
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for PKA assays was 50 mM Tris–Cl (pH 7.5) and 10 mM MgCl2, and
that for LATS kinase assays was 25 mM HEPES (pH 7.4), 50 mM
NaCl, 10 mM MgCl2, and 1 mM dithiothreitol (DTT). For ‘cold’
kinase assays, 200 mM unlabelled ATP was used; for ‘hot’ kinase
assays, 1 mCi gP32-labelled ATP and 10mM unlabelled ATP were
used. Reactions were allowed to proceed for 30 min at 301C

Generation of Lats2-floxed (Lats2fl/fl) mice
The Lats2-floxed embryonic stem (ES) cell line was generated by
targeting mouse Lats2 exon 4 with a fragment of DNA containing
Lats2 exon 4 flanked by two LoxP sites. ES cell culture, electro-
poration, chimera generation, germline transmission, and deletion
of FRT were performed as described (Jeon et al, 2011). See
Supplementary Figure S16 for detailed targeting schemes and
Southern blot validation results.

Retrovirus generation
pMSCV-puro vector/Cre plasmids were used to infect Lats1/2
primary MEFs. pMSCV-neo vector/Cre plasmids were used to infect
Mst1/2 primary MEFs. pBABE-puro SV40 LT plasmid was used for
immortalization. For LATS1/2-null MEF complementation experi-
ments, LATS1 was cloned into pMSCV-hygro plasmids and the Lats2
allele was excised using pBABE-zeocin Cre. For experiments in
NIH3T3 cells, dnPKA was cloned into pMSCV-puro, and YAP WT
or S127A was cloned into pMSCV-neo. pBABE-puro SV40 LT and
pBABE-Zeocin Cre plasmids were purchased from Addgene.

Retroviruses used to infect murine cell lines were generated by
co-transfecting 293T cells with 6 mg retroviral plasmids and 3mg
pCLEGO helper virus plasmid using the calcium phosphate
precipitation method. Viral supernatants were collected for 48 h
beginning 1 day after transfection. Retroviral supernatants were
supplemented with 6mg/ml polybrene and added to target cells. On
the next day, cells were selected by growing in media supplemented
with 3 mg puromycin, 400 mg/ml G418, or 200mg/ml hygromycin.

Anoikis and soft-agar assay
Poly-HEMA (2-hydroxyethyl methacrylate; Sigma) was dissolved in
95% ethanol. Culture dishes were coated with 10 mg/ml poly-
HEMA overnight and extensively washed with PBS before use.
After trypsinization, 3�105 cells were seeded onto 60-mm poly-
HEMA-coated dishes and incubated for the indicated times.

For soft-agar assays, 1 ml of 0.5% bottom agar in DMEM was
solidified in 6-well plates. Cells (5�103) were resuspended in 0.4%
top agar in DMEM and overlain onto bottom agar. Growth medium
(500ml) was added on top to prevent drying and was replenished
every 4 days. After 15 days, colonies were stained with 0.1% crystal
violet followed by extensive washing with distilled water. Stained
colonies were examined under a dissecting microscope.

In ovo electroporation
In ovo electroporation assays were performed as described (Thaler
et al, 2002; Joshi et al, 2009). In chick electroporation assays, DNAs
were injected into a Hamburger and Hamilton (HH) stage-13 chick
neural tube. The embryos were harvested 3 days post
electroporation and fixed in 4% paraformaldehyde, embedded in
OCT, and cryosectioned (12mm thickness) for immunohisto-
chemistry assays. Each set of chick electroporation experiments
was repeated independently more than three times with at least
three embryos injected with the same combination of plasmids in
each experimental set. Representative sets of images from
reproducible results are presented.

Statistical analysis
Graphs were drawn using Graph Prism software. Statistical analyses
were done by unpaired two-tailed Student’s t-test with a 95%
confidence interval.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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