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Abstract
Eukaryotic DNA replication is initiated from multiple sites on the chromosome, but little is known
about the global and local regulation of replication. We present a mathematical model for the
spatial dynamics of DNA replication, which offers insight into the kinetics of replication in
different types of organisms. Most biological experiments involve average quantities over large
cell populations (typically >107 cells) and therefore can mask the cell-to-cell variability present in
the system. Although the model is formulated in terms of a population of cells, using mathematical
analysis we show that one can obtain signatures of stochasticity in individual cells from averaged
quantities. This work generalizes the result by Retkute et al. [Phys. Rev. Lett. 107, 068103 (2011)]
to a broader set of parameter regimes.

I. INTRODUCTION
DNA replication, the process during which cells’ genetic information is duplicated, is one of
the most fundamental processes in biology. Eukaryotic cells regulate the replication of their
genomes in a highly complex manner: it is vital that chromosomal replication be completed
before cell division takes place, in order to pass full and accurate genetic information to the
daughter cells.

Cell cycle progression in eukaryotic organisms consists of four morphologically distinct
phases: a gap phase (G1) during which a cell grows, followed by the DNA synthesis (S)
phase, when the cell’s genome is duplicated, a second gap phase (G2), and the mitosis (M)
phase, when the cell divides into two [1]. The duration of each of these phases varies from
organism to organism, but in all eukaryotes chromosome replication occurs during the S
phase and is initiated at specific locations on the chromosome called replication origins.
When an origin is activated, two replication forks are formed, which travel on the
chromosome in opposite directions. The number of origins varies depending on species and
cell type; for example, most bacterial genomes are replicated from a single origin. The size
of eukaryotic genomes necessitates the use of multiple origins to ensure timely and complete
replication prior to cell division. The use of multiple origins requires tight regulation of
origin activity to ensure that sufficiently many origins are activated, but that no origin is
activated more than once in a single round of genome replication. This is achieved by the
mechanism of licensing of replication origins. This consists of binding of a series of specific
protein complexes at origin sites in the DNA, followed by the loading of pairs of Mcm2-7
molecules. If in a given cell licensing of a certain origin is not completed by the time the S
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phase starts, that origin is unable to function [2]. Also regulated are the number of origins
that are activated in a given S phase and timing of the replication of specific regions on a
chromosome [3].

There has been much interest recently in the mathematical modeling of DNA replication [4–
15]. Two different modeling approaches have been used: simulations to capture the
replication dynamics at a single cell level [8–12], and probabilistic models that characterize
the dynamics of replication at a population level [5,7,13–15]. Although valuable insights
have been gained from previous works on mathematical modeling, they ignore the
possibility that origins can fail to license, and we will show that this has a crucial effect on
the system’s dynamics [4,5]. In addition, most of the existing models are numerical.

In this work, we analyze an analytical model of eukaryotic DNA replication which fully
takes into account the stochastic nature of both the licensing process and origin activation
[5]. We start by formulating a general model for organisms with multiple chromosomes and
multiple origins; then we analyze in detail the kinetics of replication for an idealized
chromosome with two origins, where the most important features of the replication
dynamics can be studied in its simplest nontrivial case. We focus on quantities which are of
biological interest: replication profiles, average number of active origins, replicon sizes, and
others; and we derive explicit analytical expressions for them.

Genome replication has been comprehensively studied in the model organism
Saccharomyces cerevisiae (brewer’s yeast). High-throughput experiments have allowed the
measurement of replication times as a function of chromosomal position for the whole
genome [16]. These methods yield average replication times at distinct chromosomal
positions, over large cell populations (typically >107 cells), and therefore can mask the cell-
to-cell variability present in the system [17]. To date single cell and single molecule studies
are not able to measure the kinetics of whole genome replication [17,18]. The low
abundance of the molecules involved in triggering origin activation strongly suggests that
origins have stochastic activation times [19], with origins having different relative activation
probabilities [20].

Replication origins in eukaryotic organisms must successfully complete the process of
licensing in order to be able to replicate during the S phase. Licensing involves a number of
orchestrated binding events between origin sites and molecules, some of which are present
in low numbers in the cell. Once the S phase starts, no further licensing is allowed, so each
origin has a relatively short time window in which to complete licensing. This suggests that
a given origin will not manage to complete licensing in every cell within a population before
the onset of the S phase, due to inhomogeneities in the abundance of key molecules caused
by stochasticity in their expression. We anticipate that different origins will have different
licensing efficiencies, due to known differences in affinities to the various species involved
in licensing [21], as well as stochasticity in the chemical dynamics of licensing. This leads
us to the concept of origin competence [4], which is the probability that a given origin in a
population will finish the licensing process before the S phase, and is thus eligible for
originating replication forks. The competence of an origin is hard to measure directly,
although plasmid replication efficiency experiments suggest that many origins in yeast have
low competence, making the concept relevant to the study of the dynamics of replication.
The concept of competence introduces an additional parameter to each origin in a
chromosome, which has the technical disadvantage that it makes parameter estimation from
data somewhat problematic, as discussed in [4]. Despite this, we feel there are compelling
biological reasons to take this effect into account and investigate its consequence for DNA
replication dynamics; this is one of the main goals of this work.
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We note that this idea of origins with less than 100% competence is compatible with the
hypothesis that origins have a probability distribution of having different numbers of
Mcm2-7 molecules, which is proposed in [20] to determine their activation times. But any
mechanism generating a stochastic distribution of Mcm2-7 numbers in an origin will have a
nonzero probability of not having a pair of Mcm2-7 molecules in any particular origin; this
corresponds exactly to the origin having failed to license, and therefore having a competence
below 100%.

We notice that the dynamics of DNA replication has many similarities with the process of
nucleation, and some models of DNA replication [7,14] are closely related to Kolmogorov’s
classical model of nucleation [22]. The model we propose here can be regarded as an
inhomogeneous model of nucleation with quenched disorder, where nucleation starts at
specific sites. Inhomogeneous models of nucleation have been studied in the context of
statistical physics and have relevance to surface science and other areas [23,24].

II. THE MODEL
In our model we consider a chromosome with N origins, where each origin i is defined by
the following parameters: its chromosomal position xi; the probability qi that the origin
achieves licensing (in a given cell within a population), and is thus capable of activating,
i.e., competence; and the activation time probability distribution pi(t), which is the
probability density of origin i activating and starting bidirectional replication forks at time t
[4]. Since an origin may not be competent in every cell within the population, in general qi <
1, and pi satisfies

The fundamental quantity from which all statistical properties of this system can be
calculated is the probability density P(x,t), defined such that P(x,t)dt is the probability that
chromosomal position x is replicated between times t and t + dt. If only origin i were
present, P would be given by P(x,t) = pi(t – |x – xi|/ν), where ν is the fork velocity, which
we assume to be a constant.

In the presence of all N origins, the calculation of P(x,t) is complicated by the fact that
position x can be replicated by forks originated from any of the origins [4,14]. Let us assume
that position x is replicated between times t and t + dt by a fork from origin i. This requires
that (i) origin i activated at time t – |x – xi|/ν, so that the fork arrives at x at time t; and (ii)
all other origins j ≠ i either have not activated or they have activated but their forks would
arrive at x later than t. This allows us to account for passive replication—i.e., an origin is
inactive due to replication by a fork that originated at another origin The probability density
for event (i) is

(1)

and the probability for event (ii) is

(2)

where Mi is the probability that a fork from origin i arrives later than t, or fails to activate:
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(3)

where si = 1 – qi is the probability of origin i not being competent. Therefore, the probability
density Pi(x,t) that position x is replicated by origin i at time t is

(4)

Finally, the probability density that position x is replicated at time t, irrespective of which
origin the fork started from, is [5]

(5)

Using Eq. (5), expressions for various quantities of biological interest can be found. We
notice here that similar expressions have been derived before for the case where all the
origins are 100% competent [14].

III. GENERAL RESULTS FOR THE MODEL
Now we will derive expressions for important quantities characterizing the replication
dynamics, which are of great interest to biologists working in this area: the mean replication
time; the efficiency of origins, that is, in what fraction of cells a given origin has activated in
a round of replication; the fraction f of total DNA replicated (or the relative DNA content) at
any given time in the S phase; the rate of origin initiation in a population; the number of
replication forks and active origins as a function of time; the probability of fork termination
and how it depends on the chromosomal position; and the interorigin distance distribution
between active origins. All these quantities are derived below from the fundamental
expression Eq. (5).

A. Mean replication time
One of the most important quantities in the area of DNA replication biology is the
replication profile, which is the mean replication time T(x) at the chromosomal position x;
here the average is over a large population of cells, which is the typical situation in
experiments. There are a number of techniques for obtaining whole-genome replication
profiles, such as the density transfer method or by measuring relative DNA copy number
using microarray [16,25] or next generation sequencing [26,27] techniques. In the biological
literature, the term “replication profile” has a number of different but related meanings:
mean replication time, mean percentage replicated, mean copy number at a chromosomal
position; or the so-called S:G1 ratio, where cells in the G1 and S phases of the cell cycle are
sorted and numbers of cells in both phases are compared for each sequence [27–33]. All of
those quantities are closely related to the mean replication time T(x), and they contain
essentially the same information. Therefore in this paper the term “replication profile” will
mean T(x).

From Eq. (5), we can write the mean replication time as

(6)

where the normalization factor  is the that at least one of the
origins probability will activate. In Eq. (6) we are thus excluding the situation where all
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origins simultaneously fail from the definition of the average; the probability of this
happening is very remote in real cells. The probabilities will be defined in this way in all the
remaining expressions in this paper.

The replication profile ([T(x) curves] has been measured in a number of organisms.
However, caution is required when interpreting T(x) curves. In some of the biological
literature T(x) curves are used to directly infer origin parameters [16]. For example, it is
widely accepted that the values of T at xi are the average activation times of origins.
However, Eq. (6) shows that T(x) is determined collectively by all origins [4,5], which
suggests that simple interpretations of T(x) are likely to be misleading. This issue will be
discussed in more detail in Sec. VII.

B. Fraction of DNA replicated
The fraction of cells in a population which have position x on the chromosome replicated by
time t can be calculated by integrating the probability P(x,t) with respect to t [5]:

(7)

The higher the value of the fraction replicated, the earlier the chromosome position
replicates on average during the S phase [16].

Replication dynamics has also been studied by measuring the copy number change by
differentiating between replicated and nonreplicated stages of the cell cycle [25,27]. The
copy number C(x,t) of the position on the genome at a particular time t is given by

(8)

A twofold increase in copy number is required as the cell progresses from the G1 to the G2
phase.

A relationship between mean copy number  and mean replication time T(x) for the S
phase which starts at time T1 and finishes at time T2:

(9)

for details see Appendix A.

The replicated fraction f(t) of a genome of length L is given by the average over the whole
length of the chromosome of the probability that a piece of DNA has replicated by time t:

(10)

As the population of cells enters into the S phase and replication starts, the chromosomal
content is equal to one copy of the genome, and the replicated fraction f(t) is 0. As
replication progresses, f(t) increases and towards the end of the S phase the DNA content
doubles, ensuring a full complement of DNA for each daughter cell. By measuring the
fraction of replicated DNA as a function of time, it is possible to determine the rate of total
DNA synthesis during the cell cycle [34].

Figure 1(a) shows the simulated replicated fraction for a virtual chromosome with a length
100 kilobase pairs (kb) with ten origins periodically positioned along a chromosome. In this
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example, each origin has a Gaussian activation distribution with a mean of 15 min and a
standard deviation of 5 min. We see that the fraction of DNA replicated as a function of time
has a sigmoidal shape.

C. Rate of origin initiation
The probability density of a single isolated origin i activating and starting bidirectional
replication forks at time t is pi(t) (Sec. II). Any given origin i can activate only if forks from
neighbor origins j ≠ i arrive at position xi later than time t, or fail to activate, and this

probability is given by , with Mj defined by Eq. (3). Then the rate of origin
initiation g(t) is defined as the sum over all origins of the probability densities of the origins
activating at a time t:

(11)

The importance of this quantity lies in the fact that in a large population of cells, the number
of origins activating in a small time window (t,t + dt) is proportional to g(t); hence the term
“rate” used above.

Population-averaged measurements of replication initiations per time unit per unit length of
unreplicated DNA have been obtained for a number of organisms, including S. cerevisiae,
Schizosaccharomyces pombe, Drosophila melanogaster, Xenopus laevis, and Homo sapiens
[34,35]. All profiles have been observed to possess a strikingly similar shape: increasing
during the first half of the S phase and then decreasing before the end of the S phase.

The initiation rate, i.e., the rate of origin initiations per time unit per unit length of
unreplicated DNA, is obtained by dividing Eq. (11) by the chromosome length L and by the
fraction of DNA still unreplicated at time t [obtained from Eq. (10)]:

(12)

To test if the model reproduces the behavior of the initiation rate observed in the
experiments described in [35], we have applied Eqs. (11) and (12) to the virtual
chromosome described in Sec. III B. We consider a virtual chromosome with a length of 100
kb replicated from ten origins periodically positioned along the chromosome; each origin
has a Gaussian activation distribution function with a mean of 15 min and a standard
deviation of 5 min. The general shape of the curve predicted for the initiation rate per time
unit per unreplicated unit of DNA [I(t); Fig. 1(c)] is in good agreement with the
experimental results [35]. In the case we have analyzed, the initiation rate I(t) increases
during the first 4/5 of the S phase and then declines for the last 1/5 of the S phase. This late
decrease is due to the rate of the origin initiation function g(t) reaching its maximum just
after mid-S-phase (at 14 min). The end of the S phase is the time at which the fraction of
DNA replicated, f(t), reaches 1 (at 25 min).

D. Origin efficiency and average number of active origins
The efficiency of an origin i is the fraction of cells in a population that actually activated that
origin in any given S phase [36]. In any given cell, not all origins will be activated during
the S phase; for example, in some mammalian cells most origins are used in less than 10%
of cell cycles [26].
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The efficiency of origin i is the probability that origin i activates at any time, and is therefore
given by the integral of the probability that the ith origin initiates between times t and t + dt
multiplied by the probability that none of the other origins has replicated position xi before
time t [4,14]:

(13)

It has been observed in experiments that the efficiency of origins depends heavily on the
distance and timing of activation of neighboring origins [37]. This is seen directly from Eq.

(13), where the term  encodes the influence of other origins on the
chromosome.

Another quantity describing the collective dynamics of DNA replication is the average
number nO of active origins, that is, on average how many origins have activated in a cell
within a population. The presence of multiple origins creates redundancy and the average
number of activated origins will be less than the total number of origins present on a
chromosome.

The average number of active origins is readily obtained from the origin initiation rate given
by Eq. (11):

(14)

Applying Eq. (11) to Eq. (14) and using Eq. (13), we can relate the average number of active
origins to origin efficiencies:

(15)

Figure 2 shows the probability distribution for a number of activated origins on S. cerevisae
chromosome VI, based on origin efficiencies determined experimentally [19] and
calculations based on normal activation distribution and parameter values from [4]. The
average number of active origins nO on chromosome VI, calculated using Eq. (15) based on
experimental data and parameter estimation, gave 3.8 and 3.6 origins per cell cycle,
respectively.

E. Describing the dynamics of replication forks
As replication progresses through the S phase, replication forks originate at activated
origins, and disappear when two forks moving in opposite directions in the chromosome
collide. The average number of forks moving at some time t is a quantity that can yield
valuable insights into the replication dynamics. If there were only a single fork moving in
the chromosome, the rate df(t)/dt of replication would be simply ν, the fork velocity; nf
forks thus correspond to a replication rate of nfν, which leads to the expression

where f(t) is the fraction of replicated DNA at time t. This expression was also derived for
DNA replication in X. laevis [38]. By applying Eqs. (7) and (10) in above equation we have
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(16)

where L is the length of the chromosome.

The direction of replication fork movement can be analyzed using a distribution for the
proportion of left moving forks at each position x:

(17)

where  is the indicator function, which takes a value equal to 1 if the condition X is
satisfied and 0 otherwise.

Figure 3(a) shows the probability distribution for the proportion of leftward traveling forks
at position x for S. cerevisae (chromosome VI), computed using Eq. (17), with origin
parameters estimated in [4]. All regions except for the start and the end of the chromosome
are replicated by both leftward and rightward moving forks.

The difference between the proportion of right and left moving forks gives the average fork
polarity fpl(x). The average fork polarity is the product of the derivative of the mean
replication time and the replication fork velocity [15]:

Taking into account that the sum of the proportion of left and right moving forks is equal to
1, this gives the relationship between the proportion of left moving forks and mean
replication time:

When two forks collide, they both terminate and replisome proteins are released from the
DNA molecule. In Escherichia coli termination sites are regulated and fixed, but in
eukaryotes termination is less well defined than in bacteria, and specific sites are rare [39].

To find the probability density of termination events at position x and at time t, we first
consider any given pair of origins i and j with i < j—so their positions satisfy xi < xj. For the
forks originating at i and j to terminate exactly at position x at a time t, the following
conditions must be met: (a) x must lie between xi and xj; (b) i and j must have activated at

times  and , respectively; and (c) the position x must not be replicated
by any other origin k, with k ≠ i,k ≠ j, at time t. The total probability density of fork
termination at position x and time t is the sum of the termination probabilities for all
possible pairs (i,j) satisfying xi ≤ x ≤ xj; since i < j, it is enough to consider indices in the
sum given by i = 1,…,N and j = i + 1,…,N – 1. Finally, the probability (density) that forks
will terminate at x is found by integrating over all times, yielding the expression
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(18)

where  is a normalization constant.

Figure 3(b) shows the probability distribution of fork termination at position x for S.
cerevisae (chromosome VI), computed using Eq. (18), with origins activating according to a
normal distribution with mean and variance values estimated in [4]. For a comparison, we
have plotted a histogram of fork termination sites based on 106 Monte Carlo simulations
[Fig. 3(c)], the solution based on Eq. (18) agrees with the simulation results within statistical
limits.

F. Distribution of distances between active origins
The distribution of distances between active origins (between origins that have actually
activated) in a population of cells is an important quantity for biology. Its importance is
related to the fact that the stochastic nature of origin activation can result in large distances
between active origins, with the consequence that sections of the genome would take too
long to replicate; this can result in portions of the genome remaining unreplicated when cells
enter the M phase [40] or causing instability in fragile sites [41].

For organisms such as yeast where the replication origins have fixed positions in any given
chromosome, the inter-active-origin distance can assume only a discrete set of values. For
example, about 120 early inter-active-origin distances in fission yeast and between 250 and
300 in budding yeast [42] have been observed to have a typical spacing of between 30 and
100 kb [43]. In normal human primary keratinocyte cells, the mean value for inter-active-
origin distances is about 124 kb [44].

The distance yij between origins i and j is equal to yij = |xi – xj|, where xi is the position of
origin i and xj is the position of origin j. Our goal is to obtain an expression for the
probability distribution of distances between active origins  for the interorigin distance
y. Consider first a given origin pair (i,j), with i < j, then the probability density that this
particular pair activates in one replication round, and no other origin activates in between
them—this event contributes to  with yij. The probability density that origin i activated at
time t and neighboring origins on the left either have not activated or they have activated but

their forks would arrive at xi later than t, is given by pi(t) . The
probability density that origin j has activated at time t and neighboring origins on the right
either have not activated or they have activated but their forks would arrive at xj later than t;

this is given by . Since yij = yji it is sufficient to consider origin pairs
with indices i and j with ranges given by i = 1,…,N and j = i + 1,…,N – 1. Further, if i and j
are such that j – i > 1, i.e., these origins are not adjacent, we need to ensure that all origins k
lying between them (i < k < j) will not activate at all (otherwise there would be an origin
activating between i and j, and this would split the interval [xi,xj] into two); this probability

is equal to . The probability density function for inter-active-origin
distances is given by the integral over all times of the product of these probabilities:
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(19)

where  is a normalization constant. The probability density function  takes nonzero
values for y equal to distances separating any two origins on the chromosome.

Figures 4(a) and 4(b) show the probability distribution of distances between active origins
for S. cerevisae (chromosome VI), computed using Eq. (19) and a histogram for 105 Monte
Carlo simulation, with normal activation distribution and parameter values estimated in [4].
Based on this distribution, we calculate that the mean distance between active origins is 55
kb. Whole-genome analysis has shown that the average distance between active replication
origins in the S. cerevisiae genome is approximately 58 kb [45]. We note that the
distribution of inter-active-origin distances has a long tail; ~4% of cells have an inter-active-
origin distance >130 kb. Similar & large inter-active-origin distances have been observed
experimentally [45,46]. To prevent under-replication (or delay to cell cycle progression)
these large inter-active-origin distances much be replicated prior to cell division. S.
cerevisiae cells have about 60 min available to complete DNA replication before cell
division starts, i.e. two forks converging at 2 kb/min can potentially replicate 240 kb during
that time; therefore under-replication is unlikely according to our model.

IV. PARAMETER REGIMES
We want to use the general theory presented above to study replication dynamics in a simple
setting. From now on we focus on the case of a hypothetical linear chromosome with just
two origins. We define the chromosomal coordinates so that one of the origins has position
x1 = 0; the other origin has position x2 = D. We assume that each origin can activate within
a time window Δti with uniform probability; we will argue later that our conclusions are
largely independent of the precise shape of the probability distribution. We select the time
axis in such a way that the average activation time of the first origin is 0. The other origin
has an average activation time τ, and we assume without loss of generality that τ ≥ 0. Thus
the activation time distributions are

(20)

where i = 1,2,  and , and p1 and p2 are set to zero outside the stated intervals.

Using Eqs. (6) and (20), we canwrite analytical expressions for the probability density P(x,t)
and other quantities of interest. From Eqs. (20) and (5), P(x,t) vanishes outside the intervals

 and  given by
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A. States of replication
There are six possible states of the replication at each position x on the chromosome,
defined by the order in which forks from the two origins can replicate x. These are
summarized in Fig. 5, where each position has a probability to be replicated at any time t by
origin 1, origin 2, or by either origin depending on the distance from each origin and other
parameters. The different possibilities are denoted by “states” A to F, as defined in Fig. 5.

State A corresponds to the situation where forks from origin 1 arrive at x before any fork
coming from origin 2; if the competence q1 of origin 1 is equal to 1, then this position is
completely replicated by the first origin. For q1 < 1, x is replicated by origin 2 only when
origin 1 fails to activate. The replication probability density P(x,t) is given in this case by

(21)

In similar manner, state B corresponds to forks from origin 2 arriving at x before forks from
origin 1:

(22)

For the states C and D, there is an overlapping time window, when forks originating at either
of the origins can get to x first. States E and F show that the time window where x is
replicated by forks originating at one of the origins is contained in the time window of the
other fork; this latter state is possible only if Δt1 ≠ Δt2.

If we denote by [tl,tu] the overlapping time window in cases C–F, then the replication
probability densities for these four cases are given by the expression below, with i and j
having different meanings for each state: C (i = 1,j = 2), D (i = 2,j = 1), E (i = j = 1), and F (i
= j = 2):

(23)

Expressions for tl and tu for the different states are given in the table below:

State tl tu

C ∣ D − x ∣
v

+ τ −
Δt2

2
∣ x ∣

v
+

Δt1
2

D ∣ x ∣
v

−
Δt1

2
∣ D − x ∣

v
+ τ +

Δt2
2

E ∣ D − x ∣
v

+ τ −
Δt2

2
∣ D − x ∣

v
+ τ +

Δt2
2
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F ∣ x ∣
v

−
Δt1

2
∣ x ∣

v
+

Δt1
2

From the above table we can see that the state changes as position is changed along the
chromosome. Based on these states it is possible to classify the replication dynamics into a
number of parameter regimes. Figure 6 shows such regimes for Δt1 = Δt2 = Δt and Δt1 ≠
Δt2. In the first case [Fig. 6(a)], the number of parameters is reduced and we can look at the
full dependencies between τ, Δt, D, and ν. When Δt1 ≠ Δt2, we will look at regimes for a
few values of τ, Δt1, and Δt2 [Figs. 6(b)–6(d)].

B. Regimes for Δt1 = Δt2
In total there are five regimes (depending on the relative values of τ, Δt, D, and ν) that
differ in the dynamics of how the chromosome is replicated [shown in Fig. 6(a)]. For regime
R1 only state A occurs for the whole chromosome.

Most relevant to biological systems is regime R2, since this is the case for many pairs of
origins in real chromosomes. In this regime, the condition τ + Δt < D/ν is satisfied, meaning
that origins activate at a similar time and the variations in the activation time Δt are small
enough that a fork from one origin can replicate the other origin only if that origin is not
competent. Regime R2 is formed from states A, B, C, and D. Changes occur at positions

] (from A to C), ) (from C to D), and ] (from
D to B).

Regime R2 describes the situation where two origins are sufficiently apart that they are not
passively replicated by each other. It is quite common, however, to find two origins located
close to each other in a chromosome, such that the condition τ + Δt < D/ν is violated. In this
case, regimes other than R2 describe the replication dynamics of the system.

In regime R3, in some cells origin 2 actives just before forks from origin 1 arrive at position
x = x2 = D and in some cells both origins compete to replicate positions on the right of

]. At this point the behavior changes from state A to C.

For regime R4 state A occurs up to position ], then it changes to state C.

In a similar way, regime R5 changes from state C to state D at position . More
details on the dynamics of replication for different sets of parameters are shown in Fig. 6(a).

For a fixed value of Δt < D/ν, as the difference in average activation time between origins,
τ, increases, the replication dynamics undergoes the following changes:

Change τ Change τ Change τ

R2 → R3
D
v

− Δt R3 → R4
D
v

R4 → R1
D
v

+ Δt

For any fixed τ < D/ν, increasing the width Δt of the activation time distribution leads to

change of the regime from R2 to R3 at  and from R3 to R5 at .

A discussion on regimes for Δt1 ≠ Δt2 is given in Appendix C.
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V. DYNAMICS OF REPLICATION FORKS
The proportion of left and right moving forks will depend on the properties of the origins
and fork velocity, as indicated by Eq. (17). The analytical expression for the proportion of
left moving forks, nleft, for regime R2, is given by Eq. (C1) in Appendix C. In regime R2 the
proportion of left moving forks takes a sigmoidal shape. Figures 7(a), 7(c), and 7(e) show
the effect of varying parameters on proportion of left moving forks in regime R2: as a
function of competence q2 [Fig. 7(a)], as a function of time τ [Fig. 7(c)], and as a function of
the width of the activation time distribution Δt1 = Δt2 = Δt [Fig. 7(e)]. Parameter values are
q1 = q2 = 1, τ = 0, Δt1 = 5, Δ2 = 5, and ν = 1, if not otherwise stated. The consequences of
differences in parameter values can be clearly distinguished: with decreasing competence,
the curve is pushed down; increasing τ shifts the curve closer to the second origin;
decreasing Δt increases the gradient of the sigmoidal function.

We have also looked at other regimes—in Fig. 7(g) the parameter values Δt2 = 10 and Δt2 =
15 correspond to R7, while Δt2 = 20 and Δt2 = 25 correspond to R9; here q1 = q2 = 1, τ = 0
and Δt1 = 5. Unlike regime R2, these regimes passive replication of one (R7) or both (R9)
origins. It can be seen that for these regimes the proportion of left moving forks between the
two origins becomes linear with respect to position on the chromosome.

Recently, high-resolution analysis of Okazaki fragment synthesis was performed in S.
cerevisiae [47]; this allows determination of the lagging strand proportion and hence the
proportion of left moving forks. Figure 7(i) shows the experimentally determined proportion
of left moving forks for a part of chromosome VII from 700 to 780 kb (gray lines) with a
curve based on Eq. (17) (black) [48]. This demonstrates the close agreement between our
model prediction and an independent experimental data set.

VI. RESULTS FOR THE FORK TERMINATION POSITION PROBABILITY
DISTRIBUTION

Although the forks all start at the same locations (the origins), they meet each other and
terminate at different locations in each cell, because of the stochastic activation times. Only
forks traveling in opposite directions between the two origins can collide. This condition
limits positions of fork termination to the interval [0; D] (excluding the two ends of the
chromosome). (If one of origins is activated much later in time, i.e., the dynamics is in
regime R1, only one origin activates and therefore there are no termination events between
the two origins.) The fork termination position distribution will have nonzero values in the
areas of the space-time diagram where the probability of that position being replicated by
forks from both origins is nonzero. An analytical expression for the fork termination
position probability distribution function (PDF) is given in Appendix D.

Figures 7(b), 7(d), 7(f), and 7(h) illustrate the effect of varying the parameters q2, τ, Δt, and

Δt2. For τ = 0, the maximum of the PDF is at position  and takes the value

. If τ is increased, the maximum moves to the right by . The area

under the PDF is  for values ; for increasing τ it starts

decreasing until zero is reached at .

The biological literature commonly suggests that termination sites are disperse, but there is
limited evidence for discrete termination sites [39]. Our model indicates that termination
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sites have a continuous distribution. Equation (D1) can help identify the most probable
positions of fork termination sites on the chromosome. Figure 7(j) shows the prediction of
the fork termination position probability distribution for a part of chromosome VII from 700
to 780 kb.

VII. SIGNATURES OF STOCHASTICITY IN REPLICATION PROFILES
In this section we will discuss how information about the stochasticity of the activation
times of origins—the width of the activation window—can be obtained from the mean
replication time as a function of chromosomal position, T(x). Because the parameter space
in the generic case is very big, from now on we will consider only the case Δt1 = Δt2 = Δt.

An analytical expression for T(x) for the case where the condition τ + Δt < D/ν is satisfied
has been derived [5]. This corresponds to regime R2 and is the case for many pairs of
adjacent origins in real chromosomes. This is valid when the variations in the activation time
Δt are small enough that a fork from one origin can replicate the other origin only if that
origin is not competent.

A plot of T(x) for various sets of parameters is shown in Fig. 8. We see that T(x) has
discontinuous derivatives at the origin locations. This is due to forks originating only at the
origin locations; there is a discontinuous change in the proportion of left propagating
compared to right propagating forks as one crosses an origin site. At the origins, the mean
replication times are [5]

(24)

It is commonly assumed in the replication literature that T(x) has a minimum at an origin,
and that the value of this minimum directly gives the average activation time for the origin.
However, Eq. (24) shows that this is not the case and, in fact, : the mean
replication time at an origin location is equal to or greater than the origin’s average
activation time. Only when an origin has qi = 1 can , because if an origin fails to
activate in a given cell, the DNA at the origin location will not be replicated until a fork
from another origin arrives. This means that Ti is higher for origins that are more likely to
fail, as seen directly in Fig. 8(a). Another important conclusion is that even when both
origins have the same average activation time (τ = 0), generally we have T(x1) ≠ T(x2), also
shown in [5]. This is again due to the possibility of origins not activating. Therefore, the
origin with the lower minimum of T(x) does not necessarily activate earlier than the other
origin: minima of T(x) cannot be used to draw conclusions on the relative activation times of
the corresponding origins, as previously assumed [9,16]. The equation for mean replication
time shows that in general T(x) at any point depends collectively on the parameters of all
origins. However, if an origin is highly competent, early activating, and isolated from other
origins, T(x) at that origin’s position will be close to the origin’s average activation time.

The expression for mean replication time, Eq. (24), challenges the assumption that there is a
one-to-one correspondence between replication origins and minima of T(x): minima
correspond to origin locations, but there may be origins for which there is no peak. The
slope of T near the first origin (for x > 0) is [5]

(25)
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This expression shows that the slope is a function of the competences qi of both origins as
well as the fork velocity ν. For the origin at x = 0 to be a minimum of T(x), we must have T
′ > 0 for x > 0, from which we get the condition

(26)

In a similar way, the slope of T(x) near the second origin (for x < D) is

(27)

which yields the condition

(28)

This shows that if an origin has low competence compared to its neighbor, it may not be a
minimum of T(x), as illustrated in Fig. 8(a). This phenomenon has been observed in
experimental data [16]. Note that if q1 > 1/2, this condition is always satisfied and a
minimum is guaranteed for this two-origin system and this regime. Figure 9 shows values
for q1 and q2, for which Eqs. (26) and (28) are satisfied, i.e., both origins are local minima in
the replication time curve. In addition, Eqs. (25) and (27) show that the fork velocity is not
given by the slope of T(x), an assumption widely used in the literature [16].

In contrast to the discontinuity of T′(x) at the origin locations, the plots of replication time
curves show that the local maximum of T(x) between two origins is a smooth curve. The
reason is that in different cells in a population forks meet each other and terminate at
different locations on the DNA, as has been shown in Sec. VI. This suggests that the shape
of the maximum of T(x), when it exists, could be used to infer information about the width
of the activation window. We expect that sharp maxima should correspond to forks meeting
within a narrow time window; conversely, a broad maximum corresponds to a high time
window. This can be seen in Fig. 8(b), where T(x) is plotted for various values of Δt.

In order to investigate this more quantitatively, we use the modulus of the second derivative
of T(x) at the maximum to measure how broad the maximum is, because low values of |T′′
(x)| correspond to broad peaks. At the maximum of T(x) [5],

(29)

where

Thus |T′′(x*)| is inversely proportional to Δt. Notice also that |T′′(x*)| does not depend on
τ, which means it is independent of the origins’ average activation times. Figure 8(c) shows
replication time curves for different values of τ, where the position along the chromosome
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has been shifted by  and replication times are shifted downwards by . This figure
clearly shows that the shape of T(x) near maximum is independent of τ.

Expression (29) can be used to calculate Δt from an experimental replication time profile
T(x), if the origin competences and the fork velocity are known. This is a very useful result
because it allows the determination of a quantity characterizing stochastic properties of the
system, Δt, from T(x), which is defined by a population average. This is valuable because
experiments to directly measure Δt are technically difficult [17,18]. We note that this does
not require assuming that all cells in the population are synchronized, since in each
individual cell in an asynchronous population, the statistics of the relative activation times of
origins remains unaltered [4].

VIII. GAUSSIAN AND SKEWED ORIGIN ACTIVATION DISTRIBUTIONS
Although Eq. (29) was obtained using a simple uniform distribution for pi(t), we expect it to
be a good approximation for any single-peaked distribution function pi(t), since Eq. (29)
involves only the second moment (the variance) of the distribution, and the replication
dynamics are mostly determined by the average activation time and the width of the
activation distribution. So we expect two single-peaked distributions with the same tav and
Δt to have very similar T′′(x).

To test this assumption, we used Eq. (6) to numerically compute T(x) for pairs of origins
with Gaussian activation time distribution and with a skewed distribution leading to a
sigmoidal cumulative activation time distribution, described by a Hill’s-type function

(30)

where

(31)

as used in Ref. [14].

Figure 10 shows good agreement of the mean replication time and proportion of left moving
forks for the three distributions mentioned above. Choosing parameters for which all these
distributions have the same mean and variance, we find that in all cases T′′(x) never differs
between distributions by more than 10%. This means that Eq. (29) is a very accurate
prediction of Δt, regardless of the detailed shape of pi(t).

IX. APPLICATION TO EXPERIMENTAL DATA
We expect Eq. (29) to be a reliable prediction for isolated pairs of origins whose
competences are not too low, so that there are well-defined peaks at the origin positions; this
ensures that most forks traveling in the region between the two origins come from those
origins, which is what is required for Eq. (29) to hold. We also note that there are organisms
with far fewer replication origins than S. cerevisiae, for which the two-origin assumption
involves little or no approximation; in particular, many archaea have only two or three
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origins, and high-throughput methods to study their replication dynamics are available [49–
51].

We will apply the above model to data from S. cerevisiae (brewer’s yeast), which has 16
chromosomes and about 300 origins [52]. A rough criterion for a pair of origins to be
considered “isolated” is if the distance between them is smaller than the distance between
either origin and its immediate neighbor. More precisely, let (xi,xi+1) be a pair of origins in a
chromosome, and di,i+1 be the distance between the origin at xi and the origin at xi+1. Then
our criterion for the pair (xi,xi+1) to be isolated is that it satisfies both di,i+1 < di–1,i and di,i+1
< di+1,i+2. We have used the DNA replication origin database [52] to compute how many
pairs of S. cerevisiae organism satisfy this criterion, and we found that 35% do. Using the
stochastic simulation procedure described in Ref. [14], we found that of the origin pairs
which are isolated, in 40% of those the Δt’s of the two origins are within 2 min of each other
(meaning 14% of the origins overall). If we relax the definition of “close” to a 3 min
difference, this fraction increases to 60% (or 21% overall).

We looked at experimental data [16] for S. cerevisiae chromosome IV (the region containing
origins ARS420 and ARS422), shown in Fig. 11. The smoothness of the curve—ignoring
the fluctuations caused by experimental noise—is direct evidence for stochastic origin
activation, in agreement with other results [17,18]. We fitted a parabola through the data
points and from this determined the value of |T′′|. Using Eq. (29) we estimate the values of
Δt as 15 min [53]. This value is in agreement with the limited number of single cell
measurements that have been made at other S. cerevisiae origins [18].

X. DISCUSSION AND CONCLUSIONS
In this paper we studied the properties of a mathematical model of chromosome replication
that describes genome duplication dynamics in eukaryotic cells. In the first part of the study,
we formulated a general model for replication, which takes into account the fact that origins
activate stochastically, and also accounts for the possibility that origins in individual cells
may not activate at all, because they may have failed to license. We have derived a
probability distribution of replication as a function of position and time, and from this we
have found analytical expressions for many quantities of interest such as mean replication
time, the average number of active origins, and others.

In the second part of the paper, the dynamics of replication was investigated in detail in an
idealized scenario for a chromosome with two origins of replication and the activation
probability distribution given by a uniform distribution. Despite being idealized, this simple
scenario encapsulates much of the essential behavior found in more complex cases; and
although organisms vary enormously in the size, shape, and distribution of genomes, the
case of the chromosome with just two origins is of biological interest: recently an E. coli
mutant with two identical functional replication origins has been constructed [54]. We were
able to derive an analytical expression for the mean replication time and to extract hence
many important properties of the dynamics of DNA replication. Furthermore, we have
proposed a method to determine the width of the activation time probability distribution
from experimentally measured population-averaged data. Our results compare favorably
with experimental measurements in S. cerevisae.
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APPENDIX A: RELATIONSHIP BETWEEN MEAN REPLICATION TIME AND
MEAN COPY NUMBER

For a eukaryotic cell with a fixed S phase, the mean replication time can be calculated:

(A1)

where , T1 is the time when replication starts, and T2 is the time when
replication finishes.

The relationship between copy number C(x,t) and fraction replicated m(x,t) is given by Eq.
(8). Now, the fraction replicated before time t for cells where replication started at T1 is
given by

(A2)

The time average of the function m(x,t) is

Taking into account Eq. (A1) and the fact that the first integral in the parentheses equals

, we get

(A3)

and

(A4)

APPENDIX B: REGIMES FOR Δt1 ≠ Δt2
Some of the regimes for the case Δt1 ≠ Δt2 are shown in Fig. 6(b). Only in this case can the
states E and F (Fig. 5) be observed. Also, regimes R2, R3, and R5 have either state E

occurring between positions  and  for

, or state F between positions  and
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 for Δt1 < Δt2. If Δt1 → Δt2, the length of this interval decreases

until states E and F disappear and position  then separates states C and D.

For regime R6, state A occurs up to position ; then it changes to

state C. At position , state C changes to the state E. In a similar

way, for regime R7 state A also occurs up to position ; and then

it changes to state C. At position , state C changes to the state F.

Other types of regime characteristic for the case Δt1 ≠ Δt2 are regime R8 (Δt1 ≫ Δt2),
where only state E is possible; and regime R9 (Δt2 ≫ Δt1), where only state F occurs.

For a fixed value of  the regime dynamics as Δt2 changes are shown in the upper
panels of Figs. 6(c) and 6(d). The transitions in the dynamics are given in the table below:

τ <
D
v

τ <
D
v

Change Δt1 Change Δt1

R2 → R3 2( D
v

− τ −
Δt2

2 ) R1 → R4 2(τ −
D
v

−
Δt2

2 )
R3 → R5 2( D

v
− τ +

Δt2
2 ) R4 → R6 2(τ −

D
v

+
Δt2

2 )
R5 → R8 2(τ +

D
v

+
Δt2

2 ) R6 → R8 2( D
v

+ τ +
Δt2

2 )

For a fixed value of  the regime dynamics for variable Δt1 is shown in the lower
panels of Figs. 6(c) and 6(d). The transitions are

τ <
D
v

τ <
D
v

Change Δt2 Change Δt2

R2 → R3 2( D
v

− τ −
Δt1

2 ) R1 → R4 2(τ −
D
v

−
Δt1

2 )
R3 → R5 2( D

v
− τ +

Δt1
2 ) R4 → R7 2(τ −

D
v

+
Δt1

2 )
R5 → R9 2( D

v
+ τ +

Δt1
2 ) R7 → R9 2( D

v
+ τ +

Δt1
2 )

In the extreme case where  the only possible regime is R1.

APPENDIX C: PROPORTION OF LEFT MOVING FORKS IN REGIME R2
This is given by
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(C1)

APPENDIX D: PROBABILITY OF THE FORK TERMINATION POSITION
DISTRIBUTION

This is given by

(D1)

APPENDIX E: SENSITIVITY ANALYSIS OF AN EXPRESSION FOR THE
SECOND DERIVATIVE OF THE MEAN REPLICATION TIME

We rewrite Eq. (29) as , where , and g = Δt. Then the
change in the value of G with respect to differences in the parameter g is

For the parameter g in the range (7,18) min [14], a difference of 2 min results in a difference

of up to 2.5% in .

Normalization errors and noisy data result in errors in the calculated mean replication time
[T(x)]. We have used a simple Monte Carlo simulation technique to roughly estimate how
the Δt predicted from formula (29) is affected by errors in the replication time profile T(x).
For this simulation we added Gaussian-distributed noise of mean 0 and standard deviation 5
min to each simulated replication profile of a two-origin chromosome, thus mimicking the
effects of experimental error (we expect 5 min to be a reasonable estimate of the error for
the experiments we use). We then numerically calculate the second derivative of a fitted
parabola through the resulting mean replication time curve, and use formula (29) to calculate
the “predicted” Δt*, which we can compare with the actual value Δt used to generate T(x)
in the first place. We then repeat this procedure 100 times, generating a distribution of
Δt*’s, and we do this for a few values of Δt to see how the error affects origins with
different variabilities in activation time.
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Errors in the estimation of Δt are greatest for origins with low variation in the activation
time, as is to be expected. For origins with Δt ≈ 10 min, which is the value we estimated in
the example discussed in the paper, the error is around 10%, which shows that formula (29)
is quite robust to experimental errors.
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FIG. 1.
Results for a virtual chromosome of length 100 kb with ten origins periodically positioned
along the chromosome. Origin activation follows a Gaussian distribution with a mean of 15
min, a standard deviation of 5 min, and a fork velocity 1.5 kb/min. (a) Fraction of replicated
DNA f(t), (b) rate of origin initiation g(t), and (c) initiation rate I(t).
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FIG. 2.
Probability distribution for a number of activated origins on S. cerevisae chromosome VI:
experimental results from [19] (black full circles) and calculations based on parameter
values from [4] (gray empty circles).
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FIG. 3.
Probability distribution for (a) the proportion of left moving forks, (b) fork termination at
position x on S. cerevisae chromosome VI based on Eq. (16), and (c) histogram of fork
termination sites based on 106 Monte Carlo simulations. Parameter values from [4].
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FIG. 4.
Probability distribution of distances between active origins on S. cerevisae chromosome VI:
(a) as a solution of Eq. (19), and (b) histogram for 105 Monte Carlo simulation. Parameter
values from [4].
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FIG. 5.
A particular position along a chromosome in different cells can be replicated by forks from
origin 1 (light gray), origin 2 (dark gray), or either origin (black). The order in which this
happens (indicated in A–F above) as time progresses from left to right defines the possible
states of replication.
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FIG. 6.
Plots showing parameter regime diagrams based on the spatiotemporal dynamics of
replication: gray areas indicate where the activation time distribution of origin 1 or 2 has
nonzero values, and dark gray regions are where distributions for the two origins overlap. (a)
Regimes for Δt1 = Δt2. (b) Some of the regimes for Δt1 ≠ Δt2. (c) Regimes for variable Δt1
(fixed value of Δt2 ≪ D/ν) and Δt2 (fixed value of Δt1 ≪ D/ν) for τ < D/ν. (d) Regimes for
variable Δt1 (fixed value of Δt2 ≪ D/ν) and Δt2 (fixed value of Δt1 ≪ D/ν) for τ > D/ν.
Parameter values for (c) and (d) where replication dynamics undergoes changes are given in
Appendix C.

Retkute et al. Page 28

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2013 June 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



FIG. 7.
The effect of varying parameters on the proportion of left moving forks and fork
termination: (a),(b) as a function of competence q2, (c),(d) as a function of time τ, (e),(f) as a
function of width of activation Δt1 = Δt2 = Δt, and (g),(h) as a function of width of
activation Δt2. (i) Experimentally measured proportion of left moving forks (gray) [47] on
the S. cerevisiae chromosome VII (700–780 kb) with a curve based on Eq. (17) (black) and
(j) prediction of the fork termination position probability distribution based on Eq. (D1).
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FIG. 8.
Replication time curves for (a) differing values of competence q1; (b) different widths of the
activation time window; (c) different values of τ, with position y = x + ντ/2.
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FIG. 9.
Gray area indicates the sets of competencies q1 and q2 for which both origins are local
minima in the replication time curve.
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FIG. 10.
Plots showing mean replication time (a) and proportion of left moving forks (b) for three
different distributions: Uniform distribution ( ,Δti = 8), Gaussian distribution (μi 15,σi
= 2.31), and skewed distribution given by Eq. (30) (t1/2i = 15.35,twi = 2.77), i = 1,2. For all
three cases q1 = 0.9,q2 = 0.7,ν = 1.
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FIG. 11.
Replication time curves [16] for S. cerevisiae chromosome IV (620–715 kb) with a fitted
parabola
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