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Abstract
Background—Results from genome-wide association studies (GWAS) represent a potential
resource for etiological and treatment research. GWAS of obesity-related phenotypes have been
especially successful. To translate this success into a research tool, we developed and tested a
“genetic risk score” (GRS) that summarizes an individual’s genetic predisposition to obesity.

Methods—Different GWAS of obesity-related phenotypes report different sets of single
nucleotide polymorphisms (SNPs) as the best genomic markers of obesity risk. Therefore, we
applied a 3-stage approach that pooled results from multiple GWAS to select SNPs to include in
our GRS: The 3 stages are (1) Extraction. SNPs with evidence of association are compiled from
published GWAS; (2) Clustering. SNPs are grouped according to patterns of linkage
disequilibrium; (3) Selection. Tag SNPs are selected from clusters that meet specific criteria. We
applied this 3-stage approach to results from 16 GWAS of obesity-related phenotypes in
European-descent samples to create a GRS. We then tested the GRS in the Atherosclerosis Risk in
the Communities (ARIC) Study cohort (N=10,745, 55% female, 77% white, 23% African
American).

Results—Our 32-locus GRS was a statistically significant predictor of body mass index (BMI)
and obesity among ARIC whites (for BMI, r=0.13, p<1×10−30; for obesity, area under the receiver
operating characteristic curve (AUC)=0.57 [95% CI 0.55–0.58]). The GRS improved prediction of
obesity (as measured by delta-AUC and integrated discrimination index) when added to models
that included demographic and geographic information. FTO- and MC4R-linked SNPs, and a non-
genetic risk assessment consisting of a socioeconomic index (p<0.01 for all comparisons). The
GRS also predicted increased mortality risk over 17 years of follow-up. The GRS performed less
well among African Americans.

Conclusions—The obesity GRS derived using our 3-stage approach is not useful for clinical
risk prediction, but may have value as a tool for etiological and treatment research.

INTRODUCTION
Genome-wide associations study (GWAS) results represent a potentially rich source of
information for etiological and treatment research that builds bridges between genome
science and clinical and public health practice 1,2. Given the large number of such studies,
sufficient GWAS data exist to support such translational research for a number of common
chronic health conditions, including obesity 3,4. Infrastructure is in place at the start of the
translational pipeline with GWAS data banked and curated in continuously updated
searchable databases 3,5. Likewise, at the other end of the pipeline, evidence from
translational research is evaluated to establish the clinical utility of genomic information and
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to issue guidelines for clinical practice 6. However, significant gaps remain in the middle of
the translational pipeline and approaches are needed to support research at this juncture,
where population-based samples with rich environmental and phenotypic measurements can
be used to follow-up disease markers identified in GWAS. Specifically, systematic
approaches are needed to sift the results of numerous association studies and distill the most
promising set of markers for further investigation. These approaches must be able to harness
the power of existing resources and to flexibly accommodate new data produced by the fast
pace of discovery in genome science.

A key hurdle for research using GWAS results is that risk SNPs identified in GWAS may
not cause adverse health outcomes, but may instead be proxies for (correlated with)
unmeasured disease-causing variation in the genome 7,8. GWAS methods exploit LD across
the genome to leverage measurement of 100,000 – 1 million SNPs to capture variation in the
10 million plus SNPs the genome is estimated to contain. The very large sample sizes in
GWAS permit detection of risk associations even when proxy SNPs are in imperfect LD
with disease-causing variation (correlation<1). GWAS findings are generally applied to
smaller samples designed to elucidate etiological and clinical correlates of discovered genes.
When GWAS SNPs are translated to research using smaller samples, the measurement error
resulting from imperfect LD with disease causing variants can attenuate associations below
levels these samples are powered to detect. Genetic risk scores (GRSs) summarize risk-
associated variation across the genome 9 by aggregating information from multiple risk
SNPs (the simplest GRSs count disease-associated alleles). Because GRSs pool information
from multiple SNPs, each individual SNP is less important to the summary measurement
and the “signal” from the GRS is robust to imperfect linkage for any one SNP. For the same
reason, GRSs are less sensitive to minor allele frequencies for individual SNPs. As the
number of SNPs included in a GRS grows, the distribution of values approaches normality,
even when individual risk alleles are relatively uncommon 10. Therefore, the GRS can be an
efficient and effective means of constructing genome-wide risk measurements from GWAS
findings.

Obesity is a public health problem that is well suited to risk assessment using a GRS. It is
highly prevalent 11; it is a significant source of health-care costs, morbidity, and
mortality 12–14; it is under strong genetic influence 15; and GWAS are beginning to elucidate
its molecular genetic roots 16. Therefore, translational research in obesity genomics may
ultimately help to address a public-health priority. A key challenge is that obesity’s genetic
roots are diffuse, multifactorial, and non-deterministic; many variants scattered across the
genome each contribute small risks for obesity 17. In other words, information from multiple
genetic variants is needed to characterize genetic susceptibility to obesity. Thus, a GRS may
be useful. A further challenge is uncertainty about the specific genetic variants to be
included in an obesity GRS. Different GWAS identify different genomic loci and, when loci
are replicated across GWAS, the specific SNPs identified may be different 18. To address
this challenge, we developed a 3-stage approach to review GWAS results and select specific
SNPs to include in a GRS. We devised our approach to be systematic and replicable and to
leverage the discovery potential of GWAS while minimizing risk for including false-positive
markers. In this article, we describe this 3-stage approach, apply it to develop a GRS for
obesity, and test the GRS as a measure of obesity risk using data from the population-based
Atherosclerosis Risk in the Communities (ARIC) Study.

METHODS
Sample

The ARIC sample is described elsewhere 19,20. Briefly, ARIC is a prospective
epidemiologic cohort study sponsored by the National Heart, Lung, and Blood Institute to
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investigate the etiology of atherosclerotic disease. The study draws from 4 US communities:
Minneapolis MN, Washington County MD, Forsyth County, NC, and Jackson MS.
Participants were examined first during 1987–1989, and at 3 subsequent occasions (1990–
1992, 1993–1995, and 1996–1998), with ongoing follow-up conducted annually by
telephone. ARIC cohort genotype data from the Affymetrix Affy 6.0 Chip and selected
phenotypes were obtained for this study from the NIH dbGaP.

The original ARIC sample includes 15,792 participants (27% African American, 55%
female). The publicly available dataset obtained from dbGaP for this study includes
genotype and phenotype data for 12,771 individuals. Of this sample, 1,212 participants had a
missing call rate >2% for SNPs called successfully in ≥95% of the sample and were
excluded from subsequent analyses per quality control recommendations of the GENEVA
ARIC Project 21. In addition, although the ARIC study design did not aim to include
relatives, genomic analysis by the ARIC investigators revealed familial relationships at the
level of half-siblings or closer among 1,674 participants. One member was selected at
random from each of the 105 “families” to form a sample of unrelated persons. After these
exclusions, the sample consisted of 10,745 participants (23% African American, 55%
female, hereafter the “analysis sample”).

Body Mass Index and Obesity
Body mass index (BMI: kg/m2) was calculated from measurements of weight to the nearest
pound and height to the nearest centimeter. Obesity was defined according to U.S. Centers
for Disease Control and Prevention Criteria as BMI≥30. Anthropometric measurements
were collected from participants wearing a scrub suit and no shoes at the 4 in-person data
collections.

Genotypes
Details on the genotyping of the ARIC sample are available through dbGaP and are
described elsewhere 22. Briefly, genotyping was conducted by the Broad Institute using the
Affymetrix Affy 6.0 SNP array and the Birdseed calling algorithm 23. Following guidelines
for the use of genotypic data provided by the ARIC GWAS team, data were extracted for all
SNPs with a sample-wide call rate ≥95%, fewer than 5 discordant calls across duplicated
DNA samples in the quality control subsample (n=334), and in Hardy-Weinberg
Equilibrium (p>0.001).

Genetic Risk Scores
Current mid-pipeline translational studies use either a “best guess” approach or a “top hits”
approach to select genetic markers to include in GRSs. The “best guess” approach selects
markers identified in association studies that are located in or near genes with plausible
biological relationships to the pathophysiology of a phenotype or that demonstrate strong
and replicable association signals 24–26. The “top hits” approach selects markers with the
strongest association signals in a single GWAS, independent of their biological
plausibility 27,28. Early studies have illustrated the promise of translational research with
GWAS markers, but as the field moves forward, more systematic approaches are needed that
can better integrate new information from the latest studies. Neither the top-hits nor the best-
guess approach provides a systematic and replicable means of integrating results from
multiple GWAS. Meta-analysis can accomplish this, but comprehensive meta-analyses are
not always available. Moreover, the top-hits and best-guess approaches do not provide a
means to select specific SNPs for follow-up, and this problem is not solved by meta-
analysis. The approach of selecting the “lead” SNP at a locus, usually the SNP with the
lowest p-value in the largest GWAS, is problematic because different GWAS can report
different lead SNPs for the same locus because of differences in GWAS chips, genotyping
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quality, and data handling and analysis decisions. Thus, an approach is needed that
facilitates systematic and replicable SNP selection from results of multiple GWAS.

Our 3-stage approach integrates public-access resources including continuously updated
databases of GWAS results, web-based whole-genome analysis tools, and genome-wide data
to identify the most promising set of single nucleotide polymorphisms (SNPs) for follow-up.
Most importantly, the 3-stage approach addresses key limitations of the top-hits and best-
guess approaches: It provides a systematic and replicable means of integrating findings
across multiple GWAS and of selecting SNPs for follow-up in new samples. The 3 stages
are:

Stage 1) Extraction: All SNPs associated with one of the selected phenotypes at a given
significance threshold are “extracted” from each GWAS and retained for further
analysis.

Stage 2) Clustering: Extracted SNPs are “clustered” according to patterns of linkage
disquelibrium (LD) determined from a reference population that matches the population
in the GWAS included in Stage 1. Clustering yields a set of “LD blocks.”

Stage 3) Selection: Statistical significance and replication are evaluated at the level of
the LD block. The original GWAS results are used to assign a minimum p-value and a
replication count for each LD block. The minimum p-value is the lowest p-value
reported for any SNP in the LD block in any GWAS contributing data in Stage 1. The
replication count is the number of GWAS that reported an association for any SNP in
the LD block at the threshold defined in Stage 1.

We applied our 3-stage approach to construct two GRSs for obesity. First, we considered
only GWAS published in print or online through December 31, 2008. We chose these
GWAS because they were used in previous research that created “top-hits” and “best-guess”
obesity GRSs. Thus, we used these GWAS to construct a GRS using our 3-stage approach
and compared it to two published GRSs 29,30. Second, we considered all GWAS published
through December 31, 2010. We applied our 3-stage approach to results from the full set of
GWAS and compared the resulting GRS to a top-hits GRS generated from the largest meta-
analysis of BMI GWAS published to date 31 and to a best-guess GRS generated from the
full set of obesity-associated SNPs reported in the National Human Genome Research
Institute (NHGRI) GWAS Catalog 18. The derivation of the GRS using the 3-stage approach
is described in detail in the supplemental material. Analyses described in the supplemental
material revealed that the 3-stage approach created GRSs that were at least as predictive of
BMI and obesity as GRSs created with the top-hits and best-guess approaches. Further
analyses to refine the 3-stage approach GRS yielded a final set of 32 SNPs (see
supplemental material). We applied 2 weighting schemes to the 32 SNPs before summing
them to create our obesity GRS: 1) equal weighting, under which the score was a simple
count of BMI-increasing alleles; and 2) effect-size weighting, under which BMI-increasing
alleles were weighted by the effect size reported for that locus in the GIANT Consortium 31

or DeCode 32 BMI GWAS. Effect-size weights were adjusted for LD between the SNP
tested in the GWAS and the SNP genotyped in the ARIC sample. Each of the 32 SNPs in the
GRS was missing for fewer than 1% of participants in any gender/ethnicity cell. GRSs were
prorated by dividing the GRS by the number of SNPs contributing data and multiplying by
32. The SNPs included in the final obesity GRS, their BMI-increasing (“effect”) alleles,
nearby genes, and weights are reported in Table 1.

Evaluation of the Obesity GRS
Associations between the GRS and obesity-related traits (BMI, weight, waist circumference,
obesity) were tested with linear and logistic regression models. These and subsequent
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models were adjusted for demographic and geographic control variables: age was specified
as a linear and a quadratic term; a product term was included for the interaction between age
and sex to account for sex differences in BMI and obesity distributions at different ages; the
4 ARIC Study Centers where participants were enrolled in the study were entered as a series
of dummy variables (this collection of variables is referred to hereafter and elsewhere in the
manuscript as demographics and geography). Predictiveness of the GRS was evaluated
using 3 metrics that are established tools for evaluating risk markers in general 33 as well as
for the specific case of genetic risk scores 34: 1) R2, the proportion of variation explained in
BMI. R2 was estimated using demographics and geography-adjusted linear regression
models. 2) AUC, the area under the receiver operating characteristic curve for obesity, also
known as the discrimination index. The AUC corresponds to the probability that a randomly
selected obese case will have a higher GRS as compared to a randomly selected non-obese
control. A marker that discriminates no better than chance has an AUC of 0.50. A marker
that discriminates perfectly has an AUC of 1. A related metric is the partial AUC (PAUC).
The PAUC sets a specificity threshold and calculates an AUC-like statistic specific to that
specificity. Analyses of PAUC for the GRS set specificity at 80% (the bottom 5th of the
ROC curve). AUC and PAUC analyses were stratified by ARIC Study Center using Pepe’s
method 35. To determine whether the GRS improved discrimination over and above
demographic and geographic information, we calculated a second set of statistics, delta
AUC and delta PAUC. Probit regression models were used to generate predicted
probabilities of obesity for each ARIC participant using a baseline model that included
demographic and geographic information and a test model that also included the GRS.
AUCs and were calculated using these predicted probabilities as “risk scores” 36, and
estimates of the differences between the baseline and test models were bootstrapped to
obtain confidence intervals. AUC analyses were conducted using the Stata package
“comproc” 37. 3) IDI, the integrated discrimination index for obesity. The IDI evaluates the
added predictiveness of a marker by comparing predictions made using a baseline set of risk
markers to predictions that also include information about the new risk marker:

where “Prob” is the average predicted probability for a particular group from a particular
model. The IDI measures change in model sensitivity net of change in model specificity and
is a more sensitive measure than delta AUC 38. An IDI of zero indicates that the test model
performs comparably to the baseline model. Positive IDI values index net improvement in
model sensitivity. Baseline and test models for IDI analyses were identical to those used in
delta AUC analyses.

We tested differences between the predictiveness metrics for different risk scores by
bootstrapping confidence intervals around the R2 and AUC metrics (comparing the
difference in estimated metric values across 1,000 random samples drawn with replacement
from the ARIC database 37) and by applying Pencina’s method 38 to test change in the IDI
metric. Comparisons were as follows: Un-Weighted GRS vs. Weighted GRS; Weighted
GRS vs. Simple Genetic Risk Assessment (the sum of risk alleles at the two best-replicated
obesity loci, in the gene FTO and downstream of the gene MC4R, rs9939609 and
rs12970134, respectively); Weighted GRS vs. Socioeconomic Index (Educational attainment
measured in 5 categories: grade-school or less, some high school, high school graduate,
vocational school, college, graduate/professional school, Supplementary Table 8).
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RESULTS
Obesity risk-allele distributions were similar for males and females, but were different for
whites and African Americans. The variance of the un-weighted GRS was greater for whites
as compared to African Americans (SD= 3.50 as compared to 3.25, p<0.001 using Brown
and Forsythe’s method 39), as was the mean (M=28.80 as compared to 24.87, p<0.001 using
t-test for unequal variances; see also Supplementary Figure 1) This difference reflected
lower frequencies of BMI-increasing alleles for several GRS SNPs among African
American ARIC participants (Table 1). Subsequent analyses were stratified by race.

The obesity GRSs were weakly but consistently associated with BMI and the probability of
being obese among whites and African Americans, but associations were weaker among
African Americans (Figure 1). Among whites, after adjusting for age, sex, and geography,
the un-weighted GRS was associated with BMI at r=0.12 and the weighted GRS was
associated with BMI at r=0.13 (p<1×10−26 for both). This effect size corresponded to a 0.60
unit increase in BMI per standard-deviation increase in the GRS. For each standard-
deviation increase in their un-weighted and weighted GRSs, a white ARIC participant’s risk
for obesity increased by 19.35% and 20.51%, respectively (p<1×10−18 for both). Among
African Americans, the weighted and un-weighted GRSs were associated with BMI at
r=0.05 (p<0.05 for both). For each standard deviation increase in their un-weighted and
weighted GRSs, an African American ARIC participant’s risk for obesity increased by
3.54% (p=0.059) and 4.92% (p=0.017), respectively. Results were substantively unchanged
when control variables were removed from the models. To determine whether population
substructure influenced our estimates of GRS-BMI or GRS-obesity associations, we
repeated our analyses of the white and black subsamples, including as covariates the first 5
principal components derived for each ethnic group using the method described by Patterson
et al.40 (principal components derived for the white and black subsamples were included as
part of the ARIC database obtained from dbGaP41) Adjustment for these principal
components is a valid method of controlling for population stratification in genetic
association analyses.42 Inclusion of principal components as covariates in regression
analyses did not change results.

We conducted a series of additional sensitivity analyses to evaluate heterogeneity in GRS
associations (described in detail in the Supplement). These analyses supported a linear
association between the GRS and BMI; showed that GRS-BMI associations were similar to
GRS-weight and GRS-waist circumference associations; and revealed no sex or age
differences in GRS-BMI associations.

The obesity GRSs performed similarly on the 3 predictiveness metrics (Table 2). The top
panel of Table 3 addresses clinical validity. It presents the 3 metrics for the un-weighted and
weighted GRSs. Among whites, weighted and un-weighted obesity GRSs explained small,
but statistically significant proportions of the variance in BMI (R2), discriminated obese
from non-obese participants modestly better than chance (AUC), and contributed small net
improvements to the sensitivity of an obesity prediction model over and above demographic
and geographic information (IDI). Among African Americans, the GRS did not contribute to
the explanation of variance in BMI over and above demographic and geographic
information, to the discrimination of obese from non-obese participants, or to the net
sensitivity of the obesity prediction model. Use of weights derived from BMI GWAS
improved the performance of the GRS among whites and African Americans, but this
improvement was not statistically significant (p>0.10 for all comparisons).

The bottom panel of Table 3 addresses research utility. It presents predictiveness metrics for
two comparison measures of obesity risk: the simple genetic risk assessment (weighted
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combinations of rs9939609 in FTO and rs12970134 downstream of MC4R) and the
socioeconomic index (a 5-category measure of educational attainment). The FTO and MC4R
loci and socioeconomic status are robust correlates of BMI and obesity in adult
samples 43,44. Comparison of the 32-locus GRS to a two-locus risk assessment can illustrate
whether the GRS offers value added over a simpler genetic risk assessment. Comparison of
the GRS to socioeconomic status can illustrate how the predictiveness of the GRS compares
to the predictiveness of a social determinant of obesity that is not easily changed but that is
understood to be important in etiological research 45. Among whites, the genetic risk scores
performed better than the comparison measures of obesity risk on all 3 metrics (p<0.01 for
all comparisons). Among African Americans, the GRSs performed no differently from the
simple genetic risk assessment (p>0.10) and performed less well as compared to the
socioeconomic index (p=0.021). When combined with the comparison risk measures and
with demographic and geographic information, the GRS improved predictiveness for whites
but not for African Americans (Supplementary Table 9).

Figure 2 shows the model-based receiver operating characteristic curves for a baseline
model that included demographic and geographic information and a test model that also
included the weighted GRS. The change in AUC from the baseline model to the test model
was greater than zero (Delta AUC=0.048, 95% CI 0.313–0.658, p<10−7), indicating that the
GRS improved discrimination of obese cases. This improvement in discrimination was
concentrated at low specificities, but extended to the portion of the ROC curve of greatest
interest to clinicians. At a specificity of 0.8, the test model including the GRS was
marginally more sensitive as compared to the baseline model (Delta Partial AUC=0.007,
95% CI <0.0003–0.010, p=<0.001). Results for African Americans are presented in
Supplementary Figure 2.

As a final analysis, we asked whether the obesity GRS was associated with mortality risk.
The ARIC study conducted follow-up with participants through December 31, 2004 to
determine whether study members had died. Mortality follow-up data were available for
8,284 of the 8,286 white participants in our analysis sample. 15% of this sample (n=1,253
individuals) died during the 17 years of follow-up from the first study visit. We analyzed
mortality risk using Cox proportional hazard models to adjust for demographic and
geographic factors. Independent of demographics and geography, individuals with higher
genetic risk scores were more likely to die during the follow up period (Hazard Ratio=1.12,
95% CI [1.04–1.15]). Consistent with analyses of BMI and obesity, the GRS was not
associated with mortality among African Americans. Figure 3 presents cumulative mortality
hazards for white ARIC participants in the top, middle, and bottom quintiles of the genetic
risk distribution. The mortality hazard associated with the GRS did not depend on
individuals’ BMIs. Adjustment of the mortality hazard model for BMI only slightly reduced
the mortality hazard associated with genetic risk (Hazard Ratio=1.10 [1.04–1.17]).

DISCUSSION
We used a 3-stage approach to construct an obesity GRS from GWAS results. Our tests of
this obesity GRS in the population-based ARIC cohort revealed it to be a highly statistically
significant predictor of BMI measured at 4 time points across 10 years, of weight and waist-
circumference, and of obesity. In terms of value added, the GRS improved prediction of
BMI and obesity over and above demographic and geographic information, FTO and MC4R
genotypes, and information about socioeconomic status. Thus, the GRS provides a measure
of genetic predisposition to obesity that could inform etiological and treatment research.
Finally, the GRS was associated with mortality risk. Interestingly, higher mortality risk for
individuals with higher GRSs did not depend on their BMI.
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The research utility of the GRS is likely limited to samples of European descent. GRS-BMI
and GRS-obesity associations in African American ARIC participants were much smaller
than comparable associations in white ARIC participants. Although the sample included
fewer African Americans than whites, power to detect effects of equal size to those observed
in whites was well over 80% in the African American sample. Moreover, effect-size
measures (r, R2, relative risk, AUC, IDI) showed little evidence that the GRS predicted BMI
or obesity among African Americans. These results suggest caution in using GWAS of
European-descent populations to derive GRSs for African Americans. Our analyses
indicated the GRS performed similarly among men and women. However, emerging
evidence for gene-sex interactions in obesity 46,47 suggests that future obesity GRSs may
require sex-specific construction.

Our results have implications for theory, research, and clinical practice. With respect to
theory, our results are consistent with the hypothesis that genetic risk for obesity is
quantitatively distributed and can be operationalized in a GRS 48. With respect to research
methods, our findings illustrate one approach to operationalize quantitative genetic risk. A
systematic and replicable approach to selecting SNPs from association studies to follow-up
in etiological and treatment research will be especially important with the advent of next-
generation sequencing approaches. Next generation sequencing is likely to uncover many
new disease-associated loci for obesity and for other phenotypes of interest to clinicians and
researchers. These variants, though rarer in the population, may have higher penetrance and
thus greater clinical relevance. Future research can also make use of the GRS derived in this
study as a measure of inherited obesity risk. With respect to clinical practice, results indicate
that, for persons in middle age, GWAS SNP-based approaches to obesity risk assessment
offer little in the absence of more detailed information about lifestyle and environment.
Although genetic information reliably predicted risk for obesity over and above
demographics and geography, the magnitude of this additional risk was insufficient to
recommend our score for use in clinical risk assessments. This result is especially important
in the context of questions over consumer genomics services 49. Our 3-stage approach
derived a more comprehensive genetic risk assessment for obesity than those currently used
by companies marketing genomics services directly to consumers. The very modest risk
information furnished by our GRS recommends caution on the part of health professionals in
interpreting risk information provided by consumer genomics companies. The standard of
evidence used here—multi-method assessment of predictiveness in large, population-based
samples--should be considered a minimum standard for the validity of such risk information.

Results should be considered in light of the following limitations: First, some ARIC
participants were included in the samples of some of the GWAS used to construct the GRS.
However, these ARIC participants represented a minority of the GWAS samples and results
in the ARIC sample are similar to results from samples not included in any of the
GWAS 29,30. Second, some risk loci identified by our 3-stage approach could only be
genotyped in the ARIC sample using relatively weak proxies. Given the small improvement
to predictiveness associated with each additional SNP included in the GRS, it is unlikely that
this limitation influenced the substance of our results, but it is possible that our GRS is
moderately more predictive than analyses in the ARIC cohort suggest. Third, our analyses
were limited to African American and white Americans. The ARIC cohort does not contain
Asian-descent or Hispanic individuals. It remains unclear whether the relatively greater
similarity between these and European populations 50 would support the generalization of
our GRS. However, GWAS of Asian and Hispanic samples 28,51 suggest that a European-
descent population-derived GRS may omit important risk loci for these populations. As
more GWAS of non-European populations become available, our 3-stage approach can be
used to derive additional population-specific GRSs. Fourth, there is mounting evidence that
many genetic factors predisposing individuals to obesity are sex specific 52 and that GWAS
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that fail to model such sex specificity may not detect important risk variants 53. Results from
GWAS modeling gene-by-sex interaction support this hypothesis 47,54,55. As more such
GWAS become available, our 3-stage approach can be used to derive sex-specific GRSs for
obesity. Finally, the ARIC sample is limited to individuals in middle age. There is evidence
that genetic risk for obesity has dynamic consequences across development 56,57. It will be
important in subsequent investigations to evaluate our obesity GRS in longitudinal cohorts
that capture a broader section of the life course, and particularly in young people, as they are
a key prevention target 58.

We constructed a GRS for obesity and showed that it predicted BMI and obesity in a
population-based sample of middle-aged adults. We further showed that this GRS was
longitudinally associated with mortality risk. These associations suggest that future research
into obesity etiology and treatment can make use of genetic information. However, our
analyses do not support the use of genetic testing for individual-level obesity-risk prediction.
Future research with this GRS should characterize the expression of genetic risk across the
life course and particularly during childhood, when intervention to prevent the development
of obesity may be most effective.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Panel A. BMI for African American and White ARIC Participants Plotted Against the
Weighted Obesity Genetic Risk Score Dashed outlines represent 95% confidence
intervals. Pearson correlations (r) were adjusted for gender, age and ARIC Study Center
where data were collected. Removal of outliers (not shown) did not alter correlation
estimates at the third decimal point. Correlations were statistically significant for white
(p<1×10−30) and African American (p=0.014) ARIC participants.
Panel B. Percentage White and African American ARIC Participants Who Were
Obese (BMI≥30 kg/m2) at the First Study Visit, by Quintile of Genetic Risk Score.
Quintiles were determined separately for whites and African Americans. Error bars
represent 95% confidence intervals. Risk ratios are for comparisons of highest to lowest
quintiles of genomic risk and were estimated with adjustment for gender, age, and ARIC
study center where data were collected. Dashed lines represent sample means. Among white
ARIC participants, all quintile to quintile differences are statistically significant (p<0.01),
with the exception of the 3rd and 4th quintiles. Among African American ARIC participants,
the percent obese in the lowest quintile was lower than in the third and fourth quintiles
(p<0.05).
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Figure 2. Receiver Operating Characteristic Curves for Obesity Among White ARIC
Participants (n=8,286)
Baseline Model = gender, age (quadratic), gender x age interaction, ARIC study center; Test
Model = baseline model + weighted obesity genetic risk score. ROC Curves were
constructed using predicted values from probit regressions of obesity (BMI≥30) on the
model terms. Delta AUC (AUCTest − AUCBaseline) = 0.048, 95% CI 0.031–0.066,
p<1×10−7. Delta Partial AUC at 80% specificity=0.007, 95% CI 0.003–0.010, p<0.001.
AUCs, partial AUCs, and delta AUCs were estimated using Pepe’s method 35,37.
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Figure 3. Cumulative Mortality Hazards for White ARIC Participants in the Highest, Middle,
and Lowest Genetic Risk Score (GRS) Qunitiles
Hazards were estimated from a Cox proportional hazard model adjusted for age, sex, the
age-sex interaction, and the ARIC Study Center where data were collected. The dashed line
represents sample-wide mortality at the end of follow-up (15%). By the end of follow-up,
unadjusted mortality was 12.17% in the lowest GRS quintile, 15.48% in the middle GRS
quintile, and 17.32% in the highest GRS quintile.
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