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The automatic detection of white blood cells (WBCs) still remains as an unsolved issue in medical imaging. The analysis of WBC
images has engaged researchers from fields of medicine and computer vision alike. SinceWBC can be approximated by an ellipsoid
form, an ellipse detector algorithmmaybe successfully applied in order to recognize such elements.This paper presents an algorithm
for the automatic detection ofWBC embedded in complicated and cluttered smear images that considers the complete process as a
multiellipse detection problem.The approach, which is based on the differential evolution (DE) algorithm, transforms the detection
task into an optimization problemwhose individuals represent candidate ellipses. An objective function evaluates if such candidate
ellipses are actually present in the edgemap of the smear image. Guided by the values of such function, the set of encoded candidate
ellipses (individuals) are evolved using the DE algorithm so that they can fit into theWBCs which are enclosed within the edgemap
of the smear image. Experimental results from white blood cell images with a varying range of complexity are included to validate
the efficiency of the proposed technique in terms of its accuracy and robustness.

1. Introduction

Medical image processing has become more and more
important in diagnosis with the development of medical
imaging and computer technique. Huge amounts of medical
images are obtained by X-ray radiography, CT, and MRI.
They provide essential information for efficient and accurate
diagnosis based on advanced computer vision techniques
[1, 2].

On the other hand, white blood cells (WBCs) also known
as leukocytes play a significant role in the diagnosis of
different diseases. Although computer vision techniques have
successfully contributed to generating new methods for cell
analysis, which, in turn, have led tomore accurate and reliable
systems for disease diagnosis, high variability on cell shape,
size, edge, and localization complicates the data extraction
process. Moreover, the contrast between cell boundaries and
the image’s background may vary due to unstable lighting
conditions during the capturing process.

Manyworks have been conducted in the area of blood cell
detection. In [3] amethodbased onboundary support vectors

is proposed to identify WBC. In such approach, the intensity
of each pixel is used to construct feature vectors whereas
a support vector machine (SVM) is used for classification
and segmentation. By using a different approach, in [4],
Wu et al. developed an iterative Otsu method based on the
circular histogram for leukocyte segmentation. According to
such technique, the smear images are processed in the hue-
saturation-intensity (HSI) space by considering that the hue
component contains most of the WBC information. One of
the latest advances in white blood cell detection research
is the algorithm proposed by Wang [5] that is based on
the fuzzy cellular neural network (FCNN). Although such
method has proved successful in detecting only one leukocyte
in the image, it has not been tested over images containing
several white cells. Moreover, its performance commonly
decays when the iteration number is not properly defined,
yielding a challenging problem itself with no clear clues on
how to make the best choice.

Since white blood cells can be approximated with an
ellipsoid form, computer vision techniques for detecting
ellipses may be used in order to recognize them. Ellipse
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detection in real images is an open research problem long
time ago. Several approaches have been proposed which
traditionally fall under three categories: symmetry-based,
Hough transform-based (HT) and random sampling.

In symmetry-based detection [6, 7], the ellipse geometry
is taken into account. The most common elements used in
ellipse geometry are the ellipse center and axis. Using these
elements and edges in the image, the ellipse parameters can be
found. Ellipse detection in digital images is commonly solved
through the Hough transform [8]. It works by representing
the geometric shape by its set of parameters and then
accumulating bins in the quantized parameter space. Peaks
in the bins provide the indication of where ellipses may be.
Obviously, since the parameters are quantized into discrete
bins, the intervals of the bins directly affect the accuracy
of the results and the computational effort. Therefore, for
fine quantization of the space, the algorithm returns more
accurate results, while suffering from largememory loads and
expensive computation. In order to overcome such a problem,
some other researchers have proposed other ellipse detectors
following the Hough transform principles by using random
sampling. In random sampling-based approaches [9, 10], a
bin represents a candidate shape rather than a set of quantized
parameters, as in the HT. However, like the HT, random
sampling approaches go through an accumulation process
for the bins. The bin with the highest score represents the
best approximation of an actual ellipse in the target image.
McLaughlin’s work [11] shows that a random sampling-based
approach produces improvements in accuracy and compu-
tational complexity, as well as a reduction in the number of
false positives (nonexistent ellipses), when compared to the
original HT and the number of its improved variants.

As an alternative to traditional techniques, the problem of
ellipse detection has also been handled through optimization
methods. In general, they have demonstrated to give better
results than those based on the HT and random sampling
with respect to accuracy and robustness [13]. Such approaches
have produced several robust ellipse detectors using different
optimization algorithms such as genetic algorithms (GAs)
[14, 15] and particle swarm optimization (PSO) [16].

Although detection algorithms based on optimization
approaches present several advantages in comparison to
traditional approaches, they have been scarcely applied to
WBC detection. One exception is the work presented by
Karkavitsas andRangoussi [12] that solves theWBCdetection
problem through the use of GA. However, since the evalu-
ation function, which assesses the quality of each solution,
considers the number of pixels contained inside of a circle
with fixed radius, the method is prone to produce misde-
tections particularly for images that contained overlapped or
irregular WBC.

In this paper, the WBC detection task is approached
as an optimization problem and the differential evolution
algorithm is used to build the ellipsoidal approximation.
Differential evolution (DE), introduced by Storn and Price
[17], is a novel evolutionary algorithm which is used to
optimize complex continuous nonlinear functions. As a
population-based algorithm, DE uses simple mutation and
crossover operators to generate new candidate solutions and

applies one-to-one competition scheme to greedily decide
whether the new candidate or its parent will survive in the
next generation.Due to its simplicity, ease of implementation,
fast convergence, and robustness, the DE algorithm has
gained much attention, reporting a wide range of successful
applications in the literature [18–22].

This paper presents an algorithm for the automatic
detection of blood cell images based on the DE algorithm.
The proposedmethod uses the encoding of five edge points as
candidate ellipses in the edge map of the smear. An objective
function allows to accurately measure the resemblance of a
candidate ellipse with an actual WBC on the image. Guided
by the values of such objective function, the set of encoded
candidate ellipses are evolved using the DE algorithm so that
they can fit into actual WBC on the image. The approach
generates a subpixel detector which can effectively identify
leukocytes in real images. Experimental evidence shows
the effectiveness of such method in detecting leukocytes
despite complex conditions. Comparison to the state-of-the-
art WBC detectors on multiple images demonstrates a better
performance of the proposed method.

The main contribution of this study is the proposal of
a new WBC detector algorithm that efficiently recognizes
WBC under different complex conditions while considering
the whole process as an ellipse detection problem. Although
ellipse detectors based on optimization present several inter-
esting properties, to the best of our knowledge, they have not
yet been applied to any medical image processing up to date.

This paper is organized as follows: Section 2 provides a
description of the DE algorithm while in Section 3 the ellipse
detection task is fully explained from an optimization per-
spective within the context of the DE approach.The complete
WBC detector is presented in Section 4. Section 5 reports the
obtained experimental results whereas Section 6 conducts a
comparison between state-of-the-art WBC detectors and the
proposed approach. Finally, in Section 7, some conclusions
are drawn.

2. Differential Evolution Algorithm

The DE algorithm is a simple and direct search algorithm
which is based on population and aims for optimizing global
multimodal functions. DE employs the mutation operator to
provide the exchange of information among several solutions.

There are various mutation base generators to define
the algorithm type. The version of DE algorithm used in
this work is known as rand-to-best/1/bin or “DE1” [23]. DE
algorithms begin by initializing a population of 𝑁𝑝 and D-
dimensional vectors considering parameter values that are
randomly distributed between the prespecified lower initial
parameter bound 𝑥𝑗, low and the upper initial parameter
bound 𝑥𝑗, high as follows:

𝑥𝑗, 𝑖, 𝑡 = 𝑥𝑗, low + rand (0, 1) ⋅ (𝑥𝑗, high − 𝑥𝑗, low) ;

𝑗 = 1, 2, . . . , 𝐷; 𝑖 = 1, 2, . . . , 𝑁𝑝; 𝑡 = 0.

(1)

The subscript 𝑡 is the generation index, while 𝑗 and 𝑖 are
the parameter and particle indexes, respectively. Hence, 𝑥𝑗, 𝑖, 𝑡
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is the jth parameter of the 𝑖th particle in generation 𝑡. In order
to generate a trial solution, DE algorithm first mutates the
best solution vector xbest, 𝑡 from the current population by
adding the scaled difference of two vectors from the current
population:

k𝑖, 𝑡 = xbest, 𝑡 + 𝐹 ⋅ (x𝑟
1
, 𝑡 − x𝑟

2
, 𝑡) ; 𝑟1, 𝑟2 ∈ {1, 2, . . . , 𝑁𝑝}

(2)

with k𝑖, 𝑡 being the mutant vector. Indices 𝑟1 and 𝑟2 are
randomly selected with the condition that they are different
and have no relation to the particle index 𝑖 whatsoever (i.e.,
𝑟1 ̸= 𝑟2 ̸= 𝑖). The mutation scale factor 𝐹 is a positive real
number, typically less than one. Figure 1 illustrates the vector-
generation process defined by (2).

In order to increase the diversity of the parameter vector,
the crossover operation is applied between the mutant vector
k𝑖, 𝑡 and the original individuals x𝑖, 𝑡. The result is the trial
vector u𝑖, 𝑡 which is computed by considering element to
element as follows:

𝑢𝑗, 𝑖, 𝑡 = {
V𝑗, 𝑖, 𝑡, if rand (0, 1) ≤ CR or 𝑗 = 𝑗rand,
𝑥𝑗, 𝑖, 𝑡, otherwise,

(3)

with 𝑗rand ∈ {1, 2, . . . , 𝐷}. The crossover parameter (0.0 ≤

CR ≤ 1.0) controls the fraction of parameters that themutant
vector is contributing to the final trial vector. In addition,
the trial vector always inherits the mutant vector parameter
according to the randomly chosen index 𝑗rand, assuring that
the trial vector differs by at least one parameter from the
vector to which it is compared (x𝑖, 𝑡).

Finally, a greedy selection is used to find better solutions.
Thus, if the computed cost function value of the trial vector
u𝑖, 𝑡 is less than or equal to the cost of the vector x𝑖, 𝑡, then such
trial vector replaces x𝑖, 𝑡 in the next generation. Otherwise, x𝑖, 𝑡
remains in the population for at least one more generation:

x𝑖, 𝑡+1 = {
u𝑖, 𝑡, if 𝑓 (u𝑖, 𝑡) ≤ 𝑓 (x𝑖, 𝑡) ,
x𝑖, 𝑡, otherwise.

(4)

Here, 𝑓( ) represents the objective function. These pro-
cesses are repeated until a termination criterion is attained or
a predetermined generation number is reached.

3. Ellipse Detection Using DE

3.1. Data Preprocessing. In order to detect ellipse shapes,
candidate images must be preprocessed first by an edge
detection algorithm which yields an edge map image. Then,
the (𝑥𝑖, 𝑦𝑖) coordinates for each edge pixel 𝑝𝑖 are stored inside
the edge vector 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑁

𝑝

}, with𝑁𝑝 being the total
number of edge pixels.

3.2. Individual Representation. Just as a line requires two
points to completely define its characteristics, an ellipse is
defined by five points. Therefore, each candidate solution E
(ellipse candidate) considers five edge points to represent
an individual. Under such representation, edge points are

selected following a random positional index within the edge
array 𝑃. This procedure will encode a candidate solution as
the ellipse that passes throughfive points𝑝1, 𝑝2, 𝑝3, 𝑝4, and𝑝5
(𝐸 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5}).Thus, by substituting the coordinates
of each point of𝐸 into (5), we gather a set of five simultaneous
equations which are linear in the five unknown parameters
𝑎, 𝑏, 𝑓, 𝑔, and ℎ:

𝑎𝑥
2
+ 2ℎ𝑥𝑦 + 𝑏𝑦

2
+ 2𝑔𝑥 + 2𝑓𝑦 + 1 = 0. (5)

Considering the configuration of the edge points shown by
Figure 2, the ellipse center (𝑥0, 𝑦0), the radius maximum
(𝑟max), the radiusminimum (𝑟min), and the ellipse orientation
(𝜃) can be calculated as follows:

𝑥0 =
ℎ𝑓 − 𝑏𝑔

𝐶
,

𝑦0 =
𝑔ℎ − 𝑎𝑓

𝐶
,

𝑟max = √
−2Δ

𝐶 (𝑎 + 𝑏 − 𝑅)
,

𝑟min = √
−2Δ

𝐶 (𝑎 + 𝑏 + 𝑅)
,

𝜃 =
1

2
arctan( 2ℎ

𝑎 − 𝑏
) ,

(6)

where

𝑅
2
= (𝑎 − 𝑏)

2
+ 4ℎ
2
, 𝐶 = 𝑎𝑏 − ℎ

2
,

Δ = det(


𝑎 ℎ 𝑔

ℎ 𝑏 𝑓

𝑔 𝑓 1



) .

(7)

3.3. Objective Function. Optimization refers to choosing the
best element from one set of available alternatives. In the
simplest case, it means to minimize an objective function or
error by systematically choosing the values of variables from
their valid ranges. In order to calculate the error produced by
a candidate solution E, the ellipse coordinates are calculated
as a virtual shape which, in turn, must also be validated, if
it really exists in the edge image. The test set is represented
by 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑁

𝑠

}, where 𝑁𝑠 are the number of points
over which the existence of an edge point, corresponding to
E, should be tested.

The set 𝑆 is generated by the Midpoint Ellipse Algorithm
(MEA) [24] which is a searching method that seeks required
points for drawing an ellipse. For any point (x, y) lying on the
boundary of the ellipse with 𝑎, ℎ, 𝑏, 𝑔, and f, it does satisfy the
equation𝑓ellipse(𝑥, 𝑦) ≅ 𝑟max𝑥

2
+𝑟min𝑦

2
−𝑟
2

max𝑟
2

min, where 𝑟max
and 𝑟min represent the major and minor axes, respectively.
However,MEAavoids computing square-root calculations by
comparing the pixel separation distances. Amethod for direct
distance comparison is to test the halfway position between
two pixels (subpixel distance) to determine if this midpoint
is inside or outside the ellipse boundary. If the point is in the
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𝑥2

𝑥1

x𝑟1,𝑡 − x𝑟2,𝑡

x𝑟1,𝑡

x𝑟2,𝑡
𝐹 · (x𝑟1,𝑡 − x𝑟2,𝑡)

v𝑖,𝑡

,𝑡xbest

Figure 1: Two-dimensional example of an objective function show-
ing its contour lines and the process for generating v in scheme
DE/best/l/exp from vectors of the current generation.

𝑦

𝑥

𝜃

𝑝1

𝑝2

𝑝3

𝑟min
𝑟max

𝑝4
𝑝5

(𝑥0, 𝑦0)

Figure 2: Ellipse candidate (individual) built from the combination
of points 𝑝1, 𝑝2, 𝑝3, 𝑝4, and 𝑝5.

interior of the ellipse, the ellipse function is negative. Thus, if
the point is outside the ellipse, the ellipse function is positive.
Therefore, the error involved in locating pixel positions using
the midpoint test is limited to one-half the pixel separation
(subpixel precision). To summarize, the relative position of
any point (x, y) can be determined by checking the sign of
the ellipse function:

𝑓ellipse (𝑥, 𝑦)
{{

{{

{

<0 if (𝑥, 𝑦) is inside the ellipse boundary
=0 if (𝑥, 𝑦) is on the ellipse boundary
>0 if (𝑥, 𝑦) is outside the ellipse boundary.

(8)

The ellipse-function test in (8) is applied to midpositions
between pixels nearby the ellipse path at each sampling step.
Figures 3(a) and 3(b) show the midpoint between the two
candidate pixels at sampling position. The ellipse is used to
divide the quadrants into two regions; the limit of the two
regions is the point at which the curve has a slope of −1 as
shown in Figure 4.

In MEA the computation time is reduced by considering
the symmetry of ellipses. Ellipses sections in adjacent octants
within one quadrant are symmetric with respect to the
𝑑𝑦/𝑑𝑦 = −1 line dividing the two octants. These symmetry

conditions are illustrated in Figure 4. The algorithm can be
considered as the quickest providing a subpixel precision
[25]. However, in order to protect the MEA operation, it is
important to assure that points lying outside the image plane
must not be considered in S.

The objective function J(E) represents the matching error
produced between the pixels 𝑆 of the ellipse candidate 𝐸 and
the pixels that actually exist in the edge image, yielding

𝐽 (𝐸) = 1 −
∑
𝑁
𝑠

V=1 𝐺 (𝑥V, 𝑦V)

𝑁𝑠

, (9)

where𝐺(𝑥𝑖, 𝑦𝑖) is a function that verifies the pixel existence in
(𝑥V, 𝑦V), with (𝑥V, 𝑦V) ∈ 𝑆 and𝑁𝑠 being the number of pixels
lying on the perimeter corresponding to 𝐸 currently under
testing. Hence, function 𝐺(𝑥V, 𝑦V) is defined as

𝐺 (𝑥V, 𝑦V) = {
1 if the pixel (𝑥V, 𝑦V) is an edge point
0 otherwise.

(10)

A value of J(E) near to zero implies a better response
from the “ellipsoid” operator. Figure 5 shows the procedure
to evaluate a candidate action 𝐸 with its representation as
a virtual shape 𝑆. Figure 5(a) shows the original edge map,
while Figure 5(b) presents the virtual shape 𝑆 representing the
individual 𝐸 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5}. In Figure 5(c), the virtual
shape 𝑆 is compared to the original image, point by point, in
order to find coincidences between virtual and edge points.
The individual has been built from points 𝑝1, 𝑝2, 𝑝3, 𝑝4, and
𝑝5 which are shown by Figure 5(a). The virtual shape S,
obtained by MEA, gathers 52 points (𝑁𝑠 = 52) with only
35 of them existing in both images (shown as darker points
in Figure 5(c)) and yielding ∑𝑁𝑠V=1 𝐺(𝑥V, 𝑦V) = 35; therefore
𝐽(𝐸) = 0.327.

3.4. Implementation of DE for Ellipse Detection. The ellipse
detector algorithm based on DE can be summarized in
Algorithm 1.

4. The White Blood Cell Detector

In order to detect WBC, the proposed detector combines
a segmentation strategy with the ellipse detection approach
presented in Section 3.

4.1. Image Preprocessing. To employ the proposed detector,
smear images must be preprocessed to obtain two new
images: the segmented image and its corresponding edge
map.The segmented image is produced by using a segmenta-
tion strategy whereas the edge map is generated by a border
extractor algorithm. Such edge map is considered by the
objective function to measure the resemblance of a candidate
ellipse with an actual WBC.

The goal of the segmentation strategy is to isolate the
white blood cells (WBC’s) from other structures such as
red blood cells and background pixels. Information of color,
brightness, and gradients is commonly used within a thresh-
olding scheme to generate the labels to classify each pixel.
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𝑏2𝑥2 + 𝑎2𝑦2 − 𝑎2𝑏2 = 0
𝑦𝑘 + 1

𝑦𝑘

𝑦𝑘 − (1/2)

𝑦𝑘 − 1

𝑦𝑘 − 2

𝑦𝑘 − 3

𝑥𝑘 − 1 𝑥𝑘 𝑥𝑘 + 1 𝑥𝑘 + 2

(a)

𝑏2𝑥2 + 𝑎2𝑦2 − 𝑎2𝑏2 = 0
𝑦𝑘 + 1

𝑦𝑘

𝑦𝑘 − (1/2)

𝑦𝑘 − 1

𝑦𝑘 − 2

𝑦𝑘 − 3

𝑥𝑘 − 1 𝑥𝑘 𝑥𝑘 + 2𝑥𝑘 + (1/2)

(b)

Figure 3: (a) Symmetry of the ellipse: an estimated one octant which belongs to the first region where the slope is greater than −1. (b) In this
region the slope will be less than −1 to complete the octant and continue to calculate the same as the remaining octants.

(𝑦, 𝑥)(−𝑦, 𝑥)

(−𝑥, 𝑦)

(−𝑥, −𝑦)

(−𝑦, −𝑥) (𝑦, −𝑥)

(𝑥, −𝑦)

(𝑥, 𝑦)

Figure 4: Midpoint between candidate pixels at sampling position
𝑥𝑘 along an elliptical path.

Although a simple histogram thresholding can be used to
segment the WBCs, at this work the diffused expectation-
maximization (DEM) has been used to assure better results
[26].

DEM is an expectation-maximization- (EM-) based algo-
rithm which has been used to segment complex medical
images [27]. In contrast to classical EM algorithms, DEM
considers the spatial correlations among pixels as a part
of the minimization criteria. Such adaptation allows to
segment objects in spite of noisy and complex conditions.
The method models an image as a finite mixture, where each
mixture component corresponds to a region class and uses a
maximum likelihood approach to estimate the parameters for
each class, via the expectationmaximization (EM) algorithm,
which is coupled to anisotropic diffusion over classes in order
to account for the spatial dependencies among pixels.

For the WBC’s segmentation, the implementation of
DEM provided in [17] has been used. Since the implemen-
tation allows to segment gray-level images and color images,
it can be used for operating over all smear images with no
regard about how each image has been acquired. The DEM
has been configured considering three different classes (𝐾 =

3), 𝑔(∇ℎ𝑖𝑘) = |∇ℎ𝑖𝑘|
−9/5, 𝜆 = 0.1, and 𝑚 = 10 iterations.

These values have been found as the best configuration set
according to [26].

As a final result of the DEM operation, three different
thresholding points are obtained: the first corresponds to the

WBCs and the second to the red blood cells whereas the third
represents the pixels classified as background. Figure 6(b)
presents the segmentation results obtained by the DEM
approach employed at this work considering Figure 6(a) as
the original image.

Once the segmented image has been produced, the edge
map is computed. The purpose of the edge map is to obtain a
simple image representation that preserves object structures.
TheDE-based detector operates directly over the edgemap in
order to recognize ellipsoidal shapes. Several algorithms can
be used to extract the edge map; however, at this work, the
morphological edge detection procedure [28] has been used
to accomplish such a task. Morphological edge detection is a
traditional method to extract borders from binary images in
which original images (𝐼𝐵) are eroded by a simple structure
element (𝐼𝐸) composed by a matrix template of 3 × 3 with all
its values equal to one. Then, the eroded image is inverted
(𝐼𝐸) and compared with the original image (𝐼𝐸 ∧ 𝐼𝐵) in order
to detect pixels which are present in both images. Such pixels
compose the computed edge map from 𝐼𝐵. Figure 6(c) shows
the edge map obtained by using the morphological edge
detection procedure.

4.2. EllipseDetectionApproach. Theedgemap is used as input
image for the ellipse detector presented in Section 3. Table 1
presents the parameter set that has been used in this work for
theDE algorithm after several calibration examples have been
conducted. The final configuration matches the best possible
calibration proposed in [29], where the effect of modifying
theDE-parameters for several generic optimization problems
has been analyzed. The population-size parameter (𝑚 =

20) has been selected considering the best possible balance
between convergence and computational overload. Once it
has been set, such configuration has been kept for all test
images employed in the experimental study.

Under such assumptions, the complete process to detect
WBCs is implemented as in Algorithm 2.

4.3. Numerical Example. In order to present the algorithm’s
step-by-step operation, a numerical example has been set by
applying the proposed method to detect a single leukocyte
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𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

(a) (b) (c)

Figure 5: Evaluation of a candidate solution E: the image in (a) shows the original image while (b) presents the generated virtual shape drawn
from points 𝑝1, 𝑝2, 𝑝3, 𝑝4, and 𝑝5. The image in (c) shows coincidences between both images which have been marked by darker pixels while
the virtual shape is also depicted through a dashed line.

Step 1: Set the DE parameters 𝐹 = 0.25 and CR = 0.8.
Step 2: Initialize the population ofm individuals E𝑘 = {𝐸𝑘

1
, 𝐸
𝑘

2
, . . . , 𝐸

𝑘

𝑚
} where each decision

variable 𝑝1,𝑝2,𝑝3,𝑝4 and 𝑝5 of 𝐸
𝑘

𝑎
is set randomly within the interval [1,𝑁𝑝]. All

values must be integers. Considering that 𝑘 = 0 and 𝑎 ∈ (1, 2, . . . , 𝑚).
Step 3: Evaluate the objective value J(𝐸𝑘

𝑎
) for allm individuals, and determining the 𝐸best, 𝑘 showing

the best fitness value, such that 𝐸best, 𝑘
∈ {E𝑘} 𝐽(𝐸

best, 𝑘
) = min {𝐽(𝐸𝑘

1
), 𝐽(𝐸

𝑘

2
), . . . , 𝐽(𝐸

𝑘

𝑚
)}.

Step 4: Generate the trial population T = {𝑇1, 𝑇2, . . . , 𝑇𝑚}:
for (𝑖 = 1; 𝑖 < 𝑚 + 1; 𝑖++)
do 𝑟1 = floor(rand(0, 1) ⋅ 𝑚); while (𝑟1 = 𝑖);
do 𝑟2 = floor(rand(0, 1) ⋅ 𝑚); while ((𝑟2 = 𝑖) or (𝑟2 = 𝑟2));
jrand = floor(5⋅rand(0, 1));

for (𝑗 = 1; 𝑗 < 6; 𝑗++) // generate a trial vector
if (rand(0,1)<=CR or 𝑗 = jrand)
𝑇𝑗,𝑖 = 𝐸

best, 𝑘
𝑗

+ 𝐹 ⋅ (𝐸
𝑘

𝑗,𝑟1
− 𝐸
𝑘

𝑗,𝑟2
);

else
𝑇𝑗,𝑖 = 𝐸

𝑘

𝑗,𝑖
;

end if
end for

end for
Step 5: Evaluate the fitness values 𝐽(𝑇𝑖) (𝑖 ∈ {1, 2, . . . , 𝑚}) of all trial individuals. Check all

individuals. If a candidate parameter set is not physically plausible, i.e. out of the
range [1,𝑁𝑝], then an exaggerated cost function value is returned. This aims to
eliminate “unstable” individuals.

Step 6: Select the next population E𝑘+1 = {𝐸𝑘+1
1
, 𝐸
𝑘+1

2
, . . . , 𝐸

𝑘+1

𝑚
}:

for (𝑖 = 1; 𝑖 < 𝑚 + 1; 𝑖++)
if (𝐽(𝑇𝑖) < 𝐽(𝐸

𝑘

𝑖
))

𝐸
𝑘+1

𝑖
= 𝑇𝑖

else
𝐸
𝑘+1

𝑖
= 𝐸
𝑘

𝑖

end if
end for

Step 7: If the iteration number (𝑁𝐼) is met, then the output 𝐸best, 𝑘 is the solution (an actual
ellipse contained in the image), otherwise go back to Step 3.

Algorithm 1

Step 1: Segment the WBC’s using the DEM algorithm (described in Section 4.1)
Step 2: Get the edge map from the segmented image.
Step 3: Start the ellipse detector based in DE over the edge map while saving best ellipses (Section 3).
Step 4: Define parameter values for each ellipse that identify the WBC’s.

Algorithm 2
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(a) (b)

(c)

Figure 6: Preprocessing process: (a) original smear image, (b) segmented image obtained by DEM, and (c) the edge map obtained by using
the morphological edge detection procedure.

Table 1: DE parameters used for leukocytes detection in medical
images.

𝑚 𝐹 CR 𝑁𝐼

20 0.25 0.80 200

lying inside of a simple image. Figure 7(a) shows the image
used in the example. After applying the threshold operation,
the WBC is located beside few other pixels which are merely
noise (see Figure 7(b)). Then, the edge map is subsequently
computed and stored pixel by pixel inside the vector 𝑃.
Figure 7(c) shows the resulting image after such procedure.

The DE-based ellipse detector is executed using infor-
mation of the edge map (for the sake of easiness, it only
considers a population of four particles). Like all evolutionary
approaches, DE is a population-based optimizer that attacks
the starting point problem by sampling the search space at
multiple, randomly chosen, and initial particles. By taking
five random pixels from vector P, four different particles
are constructed. Figure 7(d) depicts the initial particle dis-
tribution E0 = {𝐸

0

1
, 𝐸
0

2
, 𝐸
0

3
, 𝐸
0

4
}. By using the DE operators,

four different trial particles T = {𝑇1, 𝑇2, 𝑇3, 𝑇4} (ellipses)
are generated and their locations are shown in Figure 7(e).
Then, the new population E1 is selected considering the best
elements obtained among the trial elements T and the initial
particles E0. The final distribution of the new population is
depicted in Figure 7(f). Since the particles 𝐸0

2
and 𝐸0

2
hold (in

Figure 7(f)) a better fitness value (𝐽(𝐸0
2
) and 𝐽(𝐸0

3
)) than the

trial elements𝑇2 and𝑇3, they are considered as particles of the
final population E1. Figures 7(g) and 7(h) present the second

iteration produced by the algorithm whereas Figure 7(i)
shows the population configuration after 25 iterations. From
Figure 7(i), it is clear that all particles have converged to a final
position which is able to accurately cover the WBC.

5. Experimental Results

Experimental tests have been developed in order to evaluate
the performance of the WBC detector. It was tested over
microscope images from blood smears holding a 960 × 720
pixel resolution. They correspond to supporting images on
the leukemia diagnosis. The images show several complex
conditions such as deformed cells and overlapping with
partial occlusions. The robustness of the algorithm has been
tested under such demanding conditions. All the experiments
have been developed using an Intel Core i7-2600 PC, with
8GB in RAM.

Figure 8(a) shows an example image employed in the
test. It was used as input image for the WBC detector.
Figure 8(b) presents the segmented WBCs obtained by the
DEM algorithm. Figures 8(c) and 8(d) present the edge
map and the white blood cells after detection, respectively.
The results show that the proposed algorithm can effectively
detect and mark blood cells despite cell occlusion, deforma-
tion, or overlapping. Other parametersmay also be calculated
through the algorithm: the total area covered by white blood
cells and relationships between several cell sizes.

Another example is presented in Figure 9. It represents a
complex example with an image showing seriously deformed
cells. Despite such imperfections, the proposed approach can
effectively detect the cells as it is shown in Figure 9(d).
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Figure 7: Detection numerical example: (a) the image used as an example, (b) segmented image, (c) edge map, (d) initial particles E0, (e)
trial elements T produced by the DE operators, (f) new population E1, (g) trial elements produced considering E1 as input population, (h)
new population E2, and (i) final particle configuration after 25 iterations.

6. Comparisons to Other Methods

Acomprehensive set of smear-blood test images is used to test
the performance of the proposed approach. We have applied
the proposed DE-based detector to test images in order to
compare its performance to otherWBC detection algorithms
such as the boundary support vectors (BSVs) approach [3],
the iterative Otsu (IO) method [4], the Wang algorithm [5],
and the genetic algorithm-based (GAB) detector [12]. In all
cases, the algorithms are tuned according to the value set
which is originally proposed by their own references.

6.1. Detection Comparison. To evaluate the detection perfor-
mance of the proposed detection method, Table 2 tabulates
the comparative leukocyte detection performance of the BSV
approach, the IO method, the Wang algorithm, the BGA
detector, and the proposed method, in terms of detection
rates and false alarms. The experimental data set includes
50 images which are collected from the ASH Image Bank
(http://imagebank.hematology.org/). Such images contain
517 leukocytes (287 bright leukocytes and 230 dark leukocytes
according to smear conditions) which have been detected and
counted by a human expert. Such values act as ground truth
for all the experiments. For the comparison, the detection rate
(DR) is defined as the ratio between the number of leukocytes

correctly detected and the number leukocytes determined by
the expert. The false alarm rate (FAR) is defined as the ratio
between the number of nonleukocyte objects that have been
wrongly identified as leukocytes and the number leukocytes
which have been actually determined by the expert.

Experimental results show that the proposed DEmethod,
which achieves 98.26% leukocyte detection accuracy with
2.71% false alarm rate, is compared favorably with other
WBC detection algorithms, such as the BSV approach, the
IO method, the Wang algorithm, and the BGA detector.

6.2. Robustness Comparison. Images of blood smear are often
deteriorated by noise due to various sources of interference
and other phenomena that affect the measurement processes
in imaging and data acquisition systems. Therefore, the
detection results depend on the algorithm’s ability to cope
with different kinds of noises. In order to demonstrate
the robustness in the WBC detection, the proposed DE
approach is compared to the BSV approach, the IO method,
the Wang algorithm, and the BGA detector under noisy
environments. In the test, two different experiments have
been studied. The first inquest explores the performance
of each algorithm when the detection task is accomplished
over images corrupted by salt and pepper noise. The second
experiment considers images polluted by Gaussian noise.

http://imagebank.hematology.org/
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(a) (b)

(c) (d)

Figure 8: Resulting images of the first test after applying the WBC detector: (a) original image, (b) image segmented by the DEM algorithm,
(c) edge map, and (d) the white detected blood cells.

(a) (b)

(c) (d)

Figure 9: Resulting images of the second test after applying theWBCdetector: (a) original image, (b) image segmented by theDEMalgorithm,
(c) edge map, and (d) the white detected blood cells.
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Table 2: Comparative leukocyte detection performance of the BSV approach, the IO method, the Wang algorithm, the BGA detector, and
the proposed DE method over the data set which contains 30 images and 426 leukocytes.

Leukocyte type Method Leukocytes detected Missing False alarms DR FAR

Bright leukocytes (287)

BSV [3] 130 157 84 45.30% 29.27%
IO [4] 227 60 73 79.09% 25.43%

Wang [5] 231 56 60 80.49% 20.90%
GAB [12] 220 67 22 76.65% 7.66%
DE based 281 6 11 97.91% 3.83%

Dark leukocytes (230)

BSV [3] 105 125 59 46.65% 25.65%
IO [4] 183 47 61 79.56% 26.52%

Wang [5] 196 34 47 85.22% 20.43%
GAB [12] 179 51 23 77.83% 10.00%
DE based 227 3 3 98.70% 1.30%

Overall (517)

BSV [3] 235 282 143 45.45% 27.66%
IO [4] 410 107 134 79.30% 25.92%

Wang [5] 427 90 107 82.59% 20.70%
GAB [12] 399 118 45 77.18% 8.70%
DE based 508 9 14 98.26% 2.71%

Salt and pepper and Gaussian noises are selected for the
robustness analysis because they represent the most com-
patible noise types commonly found in images of blood
smear [30]. The comparison considers the complete set of
50 images presented in Section 6.1 containing 517 leukocytes
which have been detected and counted by a human expert.
The added noise is produced by MATLAB, considering two
noise levels of 5% and 10% for salt and pepper noise, whereas
𝜎 = 5 and 𝜎 = 10 are used for the case of Gaussian noise.
Such noise levels, according to [31], correspond to the best
tradeoff between detection difficulty and the real existence
in medical imaging. If higher noise levels are used, then
the detection process would be unnecessarily complicated
without representing a feasible image condition.

Figure 10 shows two examples of the experimental set.
The outcomes in terms of the detection rate (DR) and the false
alarm rate (FAR) are reported for each noise type in Tables
3 and 4. The results show that the proposed DE algorithm
presents the best detection performance, achieving in the
worst case a DR of 89.55% and 91.10%, under contaminated
conditions of salt and pepper and Gaussian noises, respec-
tively. On the other hand, the DE detector possesses the least
degradation performance presenting a FAR value of 5.99%
and 6.77%.

6.3. Stability Comparison. In order to compare the stability
performance of the proposed method, its results are com-
pared to those reported by Wang et al. in [5] which is
considered as an accurate technique for the detection of
WBC.

The Wang algorithm is an energy-minimizing method
which is guided by internal constraint elements and influ-
enced by external image forces, producing the segmentation
of WBC’s at a closed contour. As external forces, the Wang
approach uses edge information which is usually represented
by the gradient magnitude of the image. Therefore, the

contour is attracted to pixels with large image gradients, that
is, strong edges. At each iteration, the Wang method finds a
new contour configuration which minimizes the energy that
corresponds to external forces and constraint elements.

In the comparison, the net structure and its operational
parameters, corresponding to theWang algorithm, follow the
configuration suggested in [5] while the parameters for the
DE-based algorithm are taken from Table 1.

Figure 11 shows the performance of both methods con-
sidering a test image with only two white blood cells. Since
the Wang method uses gradient information in order to
appropriately find a new contour configuration, it needs
to be executed iteratively in order to detect each struc-
ture (WBC). Figure 11(b) shows the results after the Wang
approach has been applied considering only 200 iterations.
Furthermore, Figure 11(c) shows results after applying the
DE-based method which has been proposed in this paper.

The Wang algorithm uses the fuzzy cellular neural net-
work (FCNN) as optimization approach. It employs gradient
information and internal states in order to find a better
contour configuration. In each iteration, the FCNN tries,
as contour points, different new pixel positions which must
be located nearby the original contour position. Such fact
might cause the contour solution to remain trapped into a
local minimum. In order to avoid such a problem, the Wang
method applies a considerable number of iterations so that a
near optimal contour configuration can be found. However,
when the number of iterations increases, the possibility to
cover other structures increases too. Thus, if the image has a
complex background (just as smear images do) or theWBC’s
are too close, the method gets confused so that finding the
correct contour configuration from the gradientmagnitude is
not easy.Therefore, a drawback ofWang’smethod is related to
its optimal iteration number (instability). Such number must
be determined experimentally as it depends on the image
context and its complexity. Figure 12(a) shows the result of
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(a) (b)

(c) (d)

Figure 10: Examples of images included in the experimental set for robustness comparison: (a) and (b) original images, (c) image
contaminated with 10% of salt and pepper noise, and (d) image polluted with 𝜎 = 10 of Gaussian noise.

Table 3: Comparative WBC detection among methods that considers the complete data set of 30 images corrupted by different levels of salt
and pepper noise.

Noise level Method Leukocytes detected Missing False alarms DR FAR

5% salt and pepper noise
517 leukocytes

BSV [3] 185 332 133 34.74% 26.76%
IO [4] 311 206 106 63.38% 24.88%

Wang [5] 250 176 121 58.68% 27.70%
GAB [12] 298 219 135 71.83% 24.18%
DE based 482 35 32 91.55% 7.04%

10% salt and pepper noise
517 leukocytes

BSV [3] 105 412 157 20.31% 30.37%
IO [4] 276 241 110 53.38% 21.28%

Wang [5] 214 303 168 41.39% 32.49%
GAB [12] 337 180 98 65.18% 18.95%
DE based 463 54 31 89.55% 5.99%

applying 400 cycles of Wang’s algorithm while Figure 12(b)
presents the detection of the same cell shapes after 1000
iterations using the proposed algorithm. From Figure 12(a),
it can be seen that the contour produced byWang’s algorithm
degenerates as the iteration process continues, wrongly cov-
ering other shapes lying nearby.

In order to compare the accuracy of both methods, the
estimated WBC area, which has been approximated by both
approaches, is compared to the actual WBC size considering
different degrees of evolution, that is, the cycle number for
each algorithm. The comparison considers only one WBC
because it is the only detected shape in Wang’s method.

Table 5 shows the averaged results over twenty repetitions for
each experiment. In order to enhance the analysis, Figure 13
illustrates the error percentage versus iterations evolution
from an extended data set which has been compiled from
Table 5.

7. Conclusions

In this paper, an algorithm for the automatic detection of
blood cell images based on the DE algorithm has been
presented. The approach considers the complete process as
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Table 4: Comparative WBC detection among methods which considers the complete data set of 30 images corrupted by different levels of
Gaussian noise.

Noise level Method Leukocytes detected Missing False alarms DR FAR

𝜎 = 5 Gaussian noise 517 leukocytes

BSV [3] 214 303 98 41.39% 18.95%
IO [4] 366 151 87 70.79% 16.83%

Wang [5] 358 159 84 69.25% 16.25%
GAB [12] 407 110 76 78.72% 14.70%
DE-based 487 30 21 94.20% 4.06%

𝜎 = 10 Gaussian noise 517 leukocytes

BSV [3] 162 355 129 31.33% 24.95%
IO [4] 331 186 112 64.02% 21.66%

Wang [5] 315 202 124 60.93% 23.98%
GAB [12] 363 154 113 70.21% 21.86%
DE-based 471 46 35 91.10% 6.77%

(a) (b)

(c)

Figure 11: Comparison of the DE andWang’s method for white blood cell detection inmedical images: (a) original image, (b) detection using
the Wang’s method, and (c) detection after applying the DE method.

(a) (b)

Figure 12: Result comparison for the white blood cells detection showing (a) Wang’s algorithm after 400 cycles and (b) DE detector method
considering 1000 cycles.
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Figure 13: Error percentage versus iterations evolution from an
extended data set from Table 5.

Table 5: Error in cell’s size estimation after applying the DE algo-
rithm and Wang’s method to detect one leukocyte embedded in a
blood-smear image. The error is averaged over twenty experiments.

Algorithm Iterations Error%

Wang

30 88%
60 70%
200 1%
400 121%
600 157%

DE-based

30 24.30%
60 7.17%
200 2.25%
400 2.25%
600 2.25%

a multiple ellipse detection problem. The proposed method
uses the encoding of five edge points as candidate ellipses
in the edge map of the smear. An objective function allows
to accurately measure the resemblance of a candidate ellipse
with an actual WBC on the image. Guided by the values of
such objective function, the set of encoded candidate ellipses
are evolved using the DE algorithm so that they can fit
into actual WBC on the image. The approach generates a
subpixel detector which can effectively identify leukocytes in
real images.

Theperformance of theDEmethod has been compared to
other existingWBC detectors (the boundary support vectors
(BSV) approach [3], the iterative Otsu (IO) method [4], the
Wang algorithm [5], and the genetic algorithm-based (GAB)
detector [12]) considering several images which exhibit dif-
ferent complexity levels. Experimental results demonstrate
the high performance of the proposed method in terms of
detection accuracy, robustness and stability.
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