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Abstract
The perception of objects, depth, and distance has been repeatedly shown to be divergent between
virtual and physical environments. We hypothesize that many of these discrepancies stem from
incorrect geometric viewing parameters, specifically that physical measurements of eye position
are insufficiently precise to provide proper viewing parameters. In this paper, we introduce a
perceptual calibration procedure derived from geometric models. While most research has used
geometric models to predict perceptual errors, we instead use these models inversely to determine
perceptually correct viewing parameters. We study the advantages of these new psychophysically
determined viewing parameters compared to the commonly used measured viewing parameters in
an experiment with 20 subjects. The perceptually calibrated viewing parameters for the subjects
generally produced new virtual eye positions that were wider and deeper than standard practices
would estimate. Our study shows that perceptually calibrated viewing parameters can significantly
improve depth acuity, distance estimation, and the perception of shape.
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1 Introduction
The viewing model used in Virtual Reality (VR) provides a head-tracked, stereo display to
the participant. Conceptually, the virtual cameras are placed where the participant’s eyes are,
providing a view that reproduces the “natural” viewing conditions. The parameters of this
model, illustrated in Figure 1, include the center of projection offset (PO) that measures the
displacement between the position of the head tracker to the center of the virtual eyes, and a
binocular disparity (BD) that measures the distance between the center of projection of each
camera. In principle, this model should provide a viewing experience that matches the
natural world, allowing the participants to use visual cues to correctly perceive depth, shape,
and the motion of objects.

In practice, the viewing experience in virtual reality is a poor approximation to the real
world. Well documented artifacts include depth compression, a lack of depth acuity, poor
perception of shape details, and “swimming” effects where stationary objects appear to
move as the participant changes their viewpoint. The literature provides much speculation
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about the sources of these artifacts, but little concrete evidence to their causes or suggestions
on how to best address them [28]. Our goal is to improve the VR viewing experience by
mitigating these artifacts. In this paper, we consider how to make such improvements by
generating a novel method to determine viewing parameters.

Conventional wisdom suggests that the plasticity of the perceptual system can accommodate
errors in the viewing parameters. Therefore, standard practice in Virtual Reality typically
uses the participant’s measured inter-pupilary distance (IPD) as the binocular disparity
(BD), and uses fixed values for the tracker offset. Indeed, many VR systems simplify these
parameters further: using nominal standard values for IPD (and therefore BD), and/or
ignoring the center-of-projection offset (PO). Empirically, these simplifications have not
been shown to be problematic: the limited experiments in the literature fail to show
sensitivity in these parameters.

Our premise is that having proper viewing parameters is important to the VR viewing
experience. If we can determine the viewing parameters (PO, BD) properly, we can reduce
many of the troublesome viewing artifacts in virtual reality. We reconcile this premise with
the prior literature by noting that the limited prior attempts to improve the viewing
experience through determination of viewing parameters simply did not provide adequate
quality in the estimation of the parameters. Therefore in this paper we consider both parts of
the viewing parameter problem. First, we introduce a perceptual calibration procedure that
can accurately determine participant-specific viewing parameters. Second, we introduce a
series of measurements to quantify virtual reality viewing artifacts. These measurements are
used in a study to determine the effect of the perceptually calibrated viewing parameters.

One of our key observations is that the viewing parameters are specific to the participant and
internal. Even if we were to locate the optical centers of the participant’s eyes, they would
be somewhere inside their head and could not be measured from external observation. In
actuality, we do not believe that there is a simple optical center for the eye: the pinhole
camera (or thin-lens) approximation is simplistic, and the actual viewing geometry is only
part of the interpretation by the visual system. Therefore it is important to determine the
parameters psychophysically. That is, we need to make subject-specific measurements to
determine the parameters based on what they perceive.

This paper has three key components. First, we provide a perceptual calibration procedure
that can accurately determine the subject-specific viewing parameters by asking them to
perform a series of adjustments. Second, we describe a series of measurement techniques
that allow us to empirically quantify several of the problematic artifacts in VR. Third, we
describe an experiment that uses the artifact quantification measurements to show the
improvement of using our perceptual calibration procedure over the standard practice of
using physical measurements to approximate viewing parameters.

Our contributions include:

• A novel method to psychophysically calibrate an immersive display environment
that has been empirically demonstrated to reduce viewing artifacts;

• A novel set of methods to quantify the viewing artifacts in a virtual environment;

• Evidence of the importance of accurately determining viewing parameters for the
VR experience, providing an explanation for some of the causes of these artifacts.
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2 Background
Much work has focused on general human vision, perception, and psychology [6, 30, 34].
Our work is primarily focused on virtual environments and is motivated from several
different areas described below.

2.1 Geometric Models for Virtual Environments
While geometric models of viewing are known, very little research has gone into
understanding how these models affect perception in virtual environments. Woods et al.
used geometric models to describe the distortions with stereoscopic displays [37]. Pollock et
al. studied the effect of viewing an object from the wrong location, meant to better
understand the perception of non-tracked users in a virtual environment [23]. They found
that the errors were in fact smaller than what the models would have suggested.

Banks et al. showed that these models could predict perceptions in virtual environments and
users were unable to compensate for incorrect viewing parameters [1]. Didyk et al. created a
perceptual model for disparity in order to minimize disparity while still giving a perception
of depth [3]. Held and Banks studied the effects when these models fail, such as when the
rays and retinal images do not intersect [7].

We use these geometric models in a very different way from the previously mentioned work.
Instead of using these models to determine a perceived point in space, we instead enforce a
perceived point in space and inversely compute the correct viewing parameters. For
example, while Pollock et al. used geometric models to determine the degradation the virtual
experience for non-tracked individuals, we instead attempt to improve the experience for the
individual who is tracked.

2.2 Calibration of Virtual Reality Systems
Commonly, Virtual Reality systems attempt to calibrate BD, while less interest has been
shown in attempting to calibrate PO. While some research has shown that incorrect BD can
be adapted to [35] and does not significantly change a user’s experience in a virtual
environment [2], other research has shown this is not the case. As an example, Utsumi et al.
were able to demonstrate that the perception of distance did not show adaptation when a
participant was given an incorrect BD [31]. Furthermore, it has been shown that for tasks in
which the user must switch back and forth between the virtual and physical environment,
perceptual mismatches can lead to detrimental performance and leave the participant in a
disoriented state [33].

Other research has analyzed more calibration mechanisms outside of BD. For instance,
Nemire and Ellis used an Open-Loop pointing system to attempt to calibrate an HMD
system [20]. Others have used optical targets to calibrate gaze tracking systems [21]. The
majority of work for the calibration of Virtual systems has mostly been studied in the field
of Augmented Reality [5]. Tang et al. provide evaluations of different techniques for
calibrating augmented reality systems [29].

Recently, Kellner et al. used a point and click method for a geometric determination of
viewing parameters for a see-through augmented reality device [10]. While Kellner et al.
were able to show a great deal of precision in determining the position of the eyes, these
viewing parameters were only able to aid in distance estimation tasks, while depth
underestimation was still prominent.

While Kellner et al. were able to improve greatly on the precision of geometric calibration
techniques compared to previous work, Tang et al. suggested that errors in human
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performance tend to make these types of methods very error prone [29]. Additionally, Tang
et al. suggest that calibration procedures for two eyes should be designed to ensure that there
is no bias towards either of the eyes. We use these recommendations in the design of our
perceptual calibration procedure that utilizes perceptual alignment described in Section 3.
This method removes human psychomotor errors and as shown by Singh et al., humans can
perform alignment tasks with very little error (less than one millimeter) in the physical
environment [27].

2.3 Perceptual Judgment in Virtual Reality
Artifacts occur in Virtual Reality when the participant’s experience does not match their
expectations. We describe three well-known artifacts and methods for quantifying them.

2.3.1 Depth Acuity—The ability of subjects to perceive objects in virtual spaces has been
shown to produce discrepancies between the physical and virtual worlds. Mon-Williams and
Tresilian determined depth estimations using reaching tasks [19]. Rolland et al used a forced
choice experience to determine depth acuity [26]. Liu et al. monitored the movements of
subjects locating nearby targets, comparing the time to completion for virtual and physical
tasks [17]. Singh et al tested the depth acuity for near field distances of 0.34 to 0.5 meters
[27] comparing both physical and virtual environments. Singh et al. found that while users
were very good at perceptual matching techniques in physical environments, but tended to
over-estimate in the virtual case.

Our measure of depth acuity, described in Section 4.5.1, uses object alignment, similar in
concept to [4] and [27]. We built our testing setup to account for the recommendations of
Kruijff et al. [14]. As opposed to using a single point in space, we used a disparity plane to
determine the perceived position from the user. Additionally we measured another VR
artifact, we call “swimming”. While swimming is often associated with tracker lag, we
define swimming more broadly, as occurring whenever a static object appears to change
position as the participant’s viewpoint changes. We quantitatively measure this as the
change in distance of a static virtual object changes as the participant moves in the virtual
space. To our knowledge, this artifact, while prominent, has not been quantified inside of a
virtual environment.

2.3.2 Distance Estimation—Distance estimation has been well studied in virtual
environments [9, 10, 15, 28, 36, 38]. Many studies have found that depth compression
occurs in virtual environments, resulting in objects appearing at a closer distance [15, 36].
The principal factors responsible for distance compression have remained relatively
unknown [28].

Unfortunately, many of the previous methods to monitor distance estimation were unfeasible
given the limited space of our immersive display environment (described in Section 4).
While Klein et al. attempted to use triangulated blind walking as a means to test walking in
small spaces, their results were very mixed [12]. Based on our constraints we designed a
novel method of measuring distance estimation that does not rely on locomotion, described
in Section 4.5.2.

2.3.3 Perception of Shape—The ability of subjects to perceive the shape of objects in
virtual spaces has been shown to produce discrepancies between the physical and virtual
worlds. Luo et al. studied size consistency in virtual environments [18] by having subjects
attempt to match the shape of a virtual Coke bottle using a physical bottle as reference.
Kenyon et al. also used Coke bottles to determine how well subjects could determine size
consistency inside of a CAVE environment finding that the surrounding environment
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contributed a significant effect [11]. Leroy et al. found that increasing immersion, such as
adding stereo and head tracking improved the ability of subjects to perceive shape [16].

Our experiment uses some components of these shape matching experiments in the sense
that the subject is able to interactively change the virtual shape of an object using a wand
device. However our test does not use a reference object, instead the information needed to
determine the shape of the object is determined inside of the virtual environment. For our
experiment, described in Section 4.5.3, the participant is given a size in one axis of an object
and must reshape the object so that it is the same size in all dimensions. This allows the
testing of many different sized objects rapidly and removes any issues of familiarity the
subject may have about the shape of an object.

3 Perceptual Calibration
In this section, we discuss our perceptual calibration method. The goal of our calibration
technique is to find a proper PO and BD such that we account for an individuals perception
of the virtual space. As these values are internal to the participant, they can not be physically
measured. Instead we approach this problem using perceptual geometric models.

Constructing perceptual geometric models for immersive display environments is relatively
simple for a single point in space as shown in Figure 2. First the intersection of a ray is
constructed between each virtual camera and the point in space. Next the intersection of
each ray and the projection screen is found. Finally, two new rays are constructed from these
intersection points to the correct location of the eyes (shown in orange in Figure 2). Where
these two rays intersect determines the perceived location of the point.

In this model, two factors are not inherently known: the position of the perceived point and
the correct viewing parameters. As our motivation is to determine the correct viewing
parameters, we can force the perceived point to a desired position. As we utilize both virtual
and physical objects, our methods are designed specifically for CAVE systems. Future work
will aim to provide methods for other types of VR systems.

By aligning the virtual object to a known physical location, we can now determine the
position of the perceived point in space. Unfortunately, simply knowing the position of this
point in space does not provide enough information to fully determine the viewing
parameters. As shown in Figure 3, the correct position of the eyes could lie anywhere along
the rays intersecting the point. We call this the BDZ Triangle which we will use for
calibration purposes described below.

In the remainder of this section we provide series of steps used to determine the viewing
parameters PO and BD based on perceptual experiments. First POx and POy are calibrated in
the environment. Second, a BDZ triangle is generated to determine the relationship of BD
and POz for the participant. This triangle is an important intermediate step to determining
the correct viewing parameters. Finally, using this relationship the calibrated BD and POz
values are determined based on the reduction of viewing artifacts.

3.1 Calibrating POx and POy

The first step in our calibration procedure is to determine the viewing parameters such that
the height (POx) and left-right shift of the eyes (POy) are perceptually aligned. As point and
click calibration procedures have been shown to be error prone [29], we instead derived a
new calibration procedure that utilizes two aspects of the CAVE system:
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• While physically discontinuous, the CAVE environment is meant to be
perceptually continuous (i.e. items should not appear different when projected
between different screens).

• As there is no disparity for virtual objects positioned to lie on the physical display
screen, their depth will appear aligned independently of how well the system is
calibrated.

Using these aspects we constructed a virtual scenario with two infinitely long posts, one
vertically aligned and one horizontally aligned. The posts are positioned so that they were at
the front CAVE wall, making all calibration adjustments affect the surrounding walls only.
When the participant looks at the horizontal post, any incorrect calibration in POy causes the
post to appear to bend up or down at the boundary of the CAVE walls. The participant can
interactively change the POy parameter until the post appears straight. The participant is
given a straight edge for comparison, as shown in Figure 4.

In this case, incorrect calibrations in POz may also affect this perception of the vertical bend,
although most of the perceptual errors generated by POz make the post appear to slant
towards the participant. To compensate for this, we return to this calibration after POz is
determined. POx is calibrated similarly to POy using the horizontal bend of the vertical post.

3.2 Constructing the BDZ Triangle
After temporally fixing POx and POy we can then construct the BDZ triangle based on the
participant’s perception. As mentioned earlier, a BDZ triangle describes the relation between
BD and POz in which a point is perceived at the same position for all values. Understanding
this relationship enables a means to determine perceptually correct viewing parameters. To
construct a BDZ triangle correct for a single point in space, we empirically determine a set
of POz values corresponding to a set of sampled BD values that provide correct perception
of the point.

We used a physical alignment object to enforce the position of the perceived point in the
model. To construct the BDZ Triangle, we first position a physical box 0.51m wide × 0.65m
tall × 0.1m deep at a fixed position of 0.26 meters away from the front CAVE screen and
position the the participant 1.18 meters away from the front CAVE screen, directly behind
the object. We draw a virtual vertical plank that contains a wood texture that provides
enough features to make ocular fusion easier for the participant. This plank is virtually
positioned at a location that matches the alignment object.

While the plank is virtually positioned such that it is always aligned with the physical object,
the viewing parameters dictated whether or not this was perceptually the case. Through the
determination of what viewing parameters allow the virtual plank to appear at the correct
position, the BDZ Triangle described above can be empirically derived.

For each trial, a BD is procedurally assigned and the participant is able to interactively
change POz. For the participant, this created the effect that the plank was moving closer and
farther from the participant, even though the virtual position of the plank was unchanged.
Once the participant had completed the alignment objective, their corresponding BD and
POz information was fed into a linear regression model and a new trial was given.

After 5 trials, the error of the linear regression model was analyzed. If the R2 value was
shown to be greater than 0.9, the model was considered to contain an acceptable error and
the participant was moved to the next calibration step. If the R2 value was shown to be less
than 0.9, the participant was given four extra trials to attempt to improve the model. If after
nine trials the R2 value was shown to be greater than 0.5, the participant was moved to the
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next step, but the model was recorded as not well fitted and therefore not well trusted. If
after nine trials the R2 value was shown to be less than 0.5, the trust that the linear
regression model would be able to provide correct viewing parameters was considered too
low for the subsequent calibration. In this case, the test was reset and the participant was
allowed to try again.

3.3 Calibrating POz and BD
With the relationship between POz and BD now known for a given participant, the
perceptually correct viewing parameters could be determined. As these viewing parameters
were meant to reduce perceptual artifacts, we chose to use a test which utilized the negative
aspects of incorrect calibration. As defined above, swimming artifacts are created when a
static virtual object appears to move as a participant changes their viewing position. Figure 5
shows how these artifacts also occur for rotations of the head. We note that these swimming
artifacts are perceptually heightened for rotations of the head as a participant has a strong
expectation for the optical flow of a static object.

We presented participants with two rows of virtual pillars in order to give the participants
many distinct points in space in which they monitor the swimming artifact. The participant
was instructed to rotate their head from left and right and to notice the perceived motion of
the pillars. While continuing to rotate their head, the participant was able to interactively
modify their viewing parameters sampling their derived BDZ Triangle. When the pillars
were perceived to no longer be swimming, the viewing parameters were stored. With these
newly determined POz and BD values, the participant was again presented with the posts
described in Section 3.1 so that the POx and POy in order to fine tune these parameters. This
process of determining POz and BD was repeated three times in order to ensure consistency
of the calibrated viewing parameters.

4 Experiment
We hypothesize that with perceptually calibrated viewing parameters, subjects in immersive
display environments will have improved depth acuity, distance estimation, and an improved
perception of shape. To test this hypothesis, we created an experiment in which we could
measure each of these common viewing artifacts.

4.1 Equipment
The study was administered in a 2.93m×2.93m×2.93m six-sided CAVE consisting of four
rear-projection display walls, one solid acrylic rear-projection floor, and one rear-projection
ceiling. Two 3D projectors (Titan model 1080p 3D, Digital Projection, Inc. Kennesaw, GA,
USA) with maximum brightness of 4500 lumens per projector, with total 1920 × 1920 pixels
combined, projected images inside each surface of the CAVE. The displayed graphics were
generated by a set of four workstations (2 × Quad-Core Intel Xeon). Audio was generated by
a 5.1 surround sound audio system.

The data acquisition system consisted of an ultrasonic tracker set (VETracker Processor
model IS-900, InterSense, Inc. Billerica, MA, USA) including a hand-held wand (MicroTrax
model 100-91000-EWWD, InterSense, Inc. Billerica, MA, USA) and head trackers
(MicroTrax model 100-91300-AWHT, InterSense, Inc. Billerica, MA, USA). Shutter glasses
(CrystalEyes 4 model 100103-04, RealD, Beverly Hills, CA, USA) were worn to create
stereoscopic images. The head trackers were mounted on the top rim of the shutter glasses.
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4.2 Subjects
Subjects were recruited with flyers and announcements and were not given monetary
compensation. To ensure that subjects could perform the calibration procedure, a TNO
Stereopsis Test was administered [32]. The subject’s height, height of the subject’s eyes, and
interpupillary distance were all measured and recorded. Subject’s age, gender, dominate
hand, and eye correction were also recorded. Subjects were also asked to report any previous
experiences with virtual reality and 3D movies, issues with motion sickness and exposure to
video games.

The study consisted of 20 subjects, 10 female and 10 male between the ages of 19 and 65,
with an average age of 29. Of the 20 subjects, 10 of them wore glasses, five wore contacts,
four had 20/20 vision and one had previously had Lasik eye surgery. On top of the 20
subjects reported in the paper, two other subjects were recruited, but failed to meet our
screening criteria for depth perception.

4.3 Conditions
The experiment consisted of three different conditions. The first condition, labeled the
measured configuration, used viewing parameters in which BD was set to the measured
IPD value and the POz was set to zero. As the tracker rested very close to the subject’s
forehead, this zero point represented a point that was very close to the front of the subjects
eyes. The second condition, labeled the calibrated configuration, used BD and POz values
derived from the perceptual calibration procedure described in Section 3. The final
condition, labeled as the inverse configuration, was used to bracket the measured and
calibrated configurations. For this configuration the offset from both BD and POz from the
calibrated to measured configuration is found and is doubled to set the viewing parameters
(i.e. inverseBD = 2×calibratedBD – measuredBD)

4.4 Hypothesis
From these conditions, our hypothesis is the psychophysically calibrated configuration will
show smaller perceptual errors than the measured or inverse configurations. Furthermore,
for directional error we expect that the calibrated configuration will be bracketed between
the measured and inverse configurations.

4.5 Procedure
The study was a repeated measures randomized block design with a block size of three
trials. In this way, each condition was shown for each group of three trials, but the order in
which the conditions were shown were randomized. This design was selected to detect and
mitigate any effects of learning during the experiment. All subjects were presented with the
tests in the same order. The subject was first presented with the first iteration of the depth
acuity test, then the distance estimation test, then the first iteration of the shape perception
test, then the second iteration of the depth acuity test before finishing with the second
iteration of the shape perception test. The specifics of the tests are described below.

4.5.1 Depth Acuity—This experiment tested our hypothesis that the Calibrated
configuration would improve depth acuity. To determine this we had each subject position a
virtual board against a physical alignment object from four different positions as shown in
Figure 6. The subjects used the joystick to translate the virtual board backwards and
forwards until they felt it was correctly positioned. While the goal of aligning a virtual
object with a physical one was identical to the goal in the calibration step (Section 3.2), the
method to achieve this was quite different. In this case, the object moved as opposed to
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changing the viewing parameters. Most subjects reported that this movement was much
more natural.

The first iteration of this test aligned the physical alignment box (described in Section 3.2)
0.26 meters away from the front wall of the CAVE. The subject was positioned at a distance
of 0.88 meter from the alignment object (Location 1). The subject positioned the board for
nine trials, three times for each method. The subject was then moved back 0.8 meters
(Location 2) and the process was repeated for nine trials, three trials for each configuration.

In the second iteration of this test, the subject and the alignment box were moved to new
locations as shown in Figure 6. The box was moved to a position of 0.72 meters away from
the CAVE screen and the subject was moved to a closer distance of only 0.62 meters away
from the alignment box (Location 3). After nine trials, the subject was moved back 0.8
meters (Location 4) and for nine more trials were given, three trials for each configuration.

On top of determining the subjects ability to correctly position objects, this test was also
designed to test for swimming, defined in Section 2.3.1. To quantify this result across all
subjects, we first found the median value for their three trails and then found the change in
the median for each configuration per location per subject. We then found the average
difference between corresponding alignment positions from the two different locations.

4.5.2 Distance Estimation—This experiment was used to test our hypothesis that the
calibrated configuration would improve the estimation of distance. Unfortunately, the size of
the CAVE prevented many measurement devices from being used.

Based on our constraints we developed a new method of testing distance estimation, using
the idea of measuring the incline of the perceived flat (i.e. level) surface. The concept,
shown in Figure 7, is that a flat surface will appear to incline upwards if depth compression
is occurring as the surface moves away from the viewer. Depth expansion, on the other
hand, would cause the flat surface to appear to inclined downwards. In this way, only when
the system is correctly configured will a flat surface appear flat.

We believe this alternative test for distance estimation has many advantageous features. For
one, the test does not require any locomotion from the subject, thus enabling depth
comparisons in small virtual environments. Secondly, there is a great deal of literature on
the perception of slant for objects such as hills [24, 25]. Proffitt et al. provide a good
overview on the subject [25]. Likewise, the components of the perception of inclination have
been studied by [8, 13]. Finally, research has shown that angular declination is a valid
perceptual tool for subjects to determine distances in physical environments [22].
Additionally, research by Ooi et al. were able to show that shifting the eyes with prisms
could alter the perception of distance, mirroring the results seen for distance estimation in
virtual environments.

The experiment created a scenario in which the subject looked out on five horizontal beams
of size 4.75m wide × 0.46m tall × 0.52m deep (Figure 8). The beams were positioned such
that each was one meter behind the previous with a random perturbation of half a meter
(±0.25m). The beams were also randomly perturbed by ± one meter left and right to prevent
the subject from using perspective cues. The front beam always stayed in the same position
with its top edge at a height of 0.72m from the floor. The subject iteratively is able to change
the position of the beam indirectly by changing the angle of inclination which in turn set the
beams height based on the product of their distance and tangent of the inclination angle. As
an aid, the subjects were also given a physical box matching the height of the front beam.
The test consisted of one iteration of nine trials, three trials for each viewing configuration.
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Additionally we note that our initial iteration of the distance estimation test had subjects
change the tilt of a planar surface until it appeared to be level. Unfortunately, the optical
flow from the rotation added additional cues for depth, thus creating the situation of cue
conflict. Therefore we created the previously mentioned experiment described in Section
4.5.2 that used five horizontal beams. Even though the vertical position of these beams was
determined by the inclination angle, the optical flow corresponding to a rotation was thusly
removed.

4.5.3 Shape Perception—This experiment was used to test our hypothesis that the
calibrated configuration would improve the perception of shape. To accomplish this, we
showed the subject a floating block of wood in the middle of the CAVE environment
(Figure 9). The depth of the block of wood (z direction) was fixed, while the subject was
then able to resize the width and height of the board using the joystick. The goal for the
subject was to resize the block of wood such that it was a cube (i.e. the same size in all
dimensions). The depth, and therefore subsequent size, was randomly set for blocks between
0.15 meters and 0.6 meters in each dimension.

The error for each trial was determined by looking at the L2 Norm of the vector from the
desired cubic corner and the provided result (Equation 1).

For the first iteration, the subject was put at a fixed location at a distance of 1.1 meters away
from the floating block. For the second iteration of the test, the subject was allowed to move
freely around the environment. Each iteration consisted of nine trials, three trials for each
viewing configuration.

5 Results
We will first present the results from the calibration procedure before presenting the results
of each experiment.

5.1 Calibration
Subjects first completed the perceptual calibration procedure (Section 3) before undertaking
the viewing artifact tests. We found that subjects were able to complete the calibration
procedure on average in 7 minutes and 18 seconds with an average of 14 trials for subject to
generate a linear regression model. While the difficulty of the calibration varied greatly
between subjects, all 20 of the subjects were able to complete the calibration procedure.

5.1.1 Grouping by Trust—While all 20 subjects were able to complete the calibration
procedure, some subject’s calibration data had large amounts of variance. This lead to the
possibility that the calibrated parameters were not fully optimized. We therefore break our
subjects into three separate groups based on the trust of the calibration using the R2

generated from our linear regression model described in Section 3.2.

The first group consisted of those subjects in which we were only moderately trusting their
calibration. We defined this group as any subject who had produced an R2 > 0.5, which
included all 20 subjects. The second group consisted of those subjects in which we were
highly trusting about their calibration, consisting of the set of subjects who had produced an
R2 > 0.9. This group included 11 of the original 20 subjects. Of these subjects, three wore
contacts, five wore glasses, and three reported 20/20 vision. The final group consisted of
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subject in which we were exceptionally trusting about their calibration, consisting of the
subjects who had produced an R2 > 0.95. This group included five of the original 20
subjects. Of these subjects, three wore contacts, one wore glasses, and one reported 20/20
vision

Figure 10 shows the distribution of the viewing parameters labeled for these groupings. For
the entire subject pool, we found an average POz of 96mm a BD of 83mm, on average
24mm wider than their measured IPD. For the subjects who were in the highly trusted group
we found an average POz of 105mm and an average BD of 76mm, on average 16 mm wider
than their measured IPD. For the subjects who had were in the exceptionally trusted group
we found an average POz of 86mm and an average BD of 75mm, on average 15mm wider
than the measured IPD. The adjustment of POx and POy after POz was shown to be very
small, each on average less than a millimeter.

5.2 Depth Acuity
We test our hypothesis that subjects will be able to more accurately position objects when
correctly calibrated. Figure 11 shows the average positioning errors for all locations. We
found these errors to be significantly related to the configuration (F(2,176) = 101.1,
p<0.001). No significant learning effects were observed (i.e. errors not significantly smaller
for later blocks and trials). However, as a significant trend was found between the trust of
the calibration and performance, we present the results of each group based on trust
separately.

For the moderately trusted group, we found that on average subjects overestimated the depth
by 27mm for the calibrated configuration, over-estimated the depth by 51mm for the inverse
configuration, and underestimated the depth by 21mm for the measured configuration.
TukeyHSD analysis showed the difference in error between calibrated and measured
configuration was highly significant (p<0.001) and the difference in error between the
calibrated and inverse was also highly significant (p<0.001).

For the highly trusted group, we found that on average subjects overestimated the depth by
13mm for the calibrated configuration, over estimated the depth by 38mm for the inverse
configuration, and underestimated the depth by 23mm for the measured configuration.
TukeyHSD analysis showed the difference in error between calibrated and measured
configuration was significant (p<0.01) and the difference in error between the calibrated and
inverse was highly significant (p<0.001).

For the exceptionally trusted group, we found that on average subjects overestimated the
depth by 7mm for the calibrated configuration, over estimated the depth by 36mm for the
inverse configuration, and underestimated the depth by 33mm for the measured
configuration. TukeyHSD analysis showed the difference in error between calibrated and
measured configuration was highly significant (p<0.001) and the difference in error between
the calibrated and inverse highly significant (p<0.001).

5.2.1 Swimming—We test our hypothesis that static virtual objects will appear to move
less between different viewing position when the viewing parameters are correctly
calibrated. In our test we generated to pairs in which we can determine this swimming
measurement.

As the distance moved from Location 1 to 2 and from Location 3 to 4 were identical, we
combine the results together to find an average difference in position (Figure 12). We find
that the position change was significantly related to the configuration (F(2,117)=12.69,
p<0.001). TukeyHSD analysis showed the difference between calibrated and measured
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configuration was significant (p<0.01) while the difference in error between the calibrated
and inverse was not significant (p>0.10). No significance was found between the trust of the
calibration and performance and no learning effects were observed.

5.3 Distance Estimation
We test our hypothesis that subjects will only be able to correctly position the beams without
inclination when they are correctly calibrated. We found the inclination of the positioned
beams to be significantly related to the configuration (F(2,177) = 17.22, p<0.001). The
calibrated configuration significantly provided the most accurate perception of inclination as
shown in Figure 13. Given the calibrated configuration, subjects were able to position the
beams with an average inclination of 0.3 degrees when they were perceived to be level. On
the other hand, the measured configuration resulted in subject’s positioning the beams with
an average declination of 1.7 degrees. When given the inverse configuration, the beams
were positioned with an average inclination of 1.1 degrees. TukeyHSD analysis showed the
difference between calibrated and measured configuration was highly significant (p<0.001)
and the difference in error between the calibrated and inverse was not significant (p>0.10).
No significance was found between the trust of the calibration and performance and no
learning effects were observed.

5.4 Perception of Shape
We test our hypothesis that subjects will be able to more accurately understand the shape of
an object when correctly calibrated. For the first iteration of the test in which the subject was
put at a fixed location, the error, shown in Figure 14, was not a significantly related to the
configuration (p > 0.10).

As expected, the second iteration in which the subject was allowed to move freely in the
environment produced definitively smaller errors for all three configurations as shown in
Figure 14. In this iteration we found the error was significantly related to the configuration
(F(2,176)=3.499, p = 0.03). The average error for the calibrated configuration was 54mm,
compared to 70mm for the inverse configuration and 69mm for the measured configuration.
TukeyHSD analysis showed the difference in error between calibrated and measured
configuration was marginally significant (p=0.06) and the difference in error between the
calibrated and inverse was significant (p=0.05). No significance was found between the trust
of the calibration and performance and no learning effects were observed.

6 Discussion
We divide our discussion into two separate subsections in which we will discuss the results
of our experiments, considerations, and future work.

6.1 Discussion of Results
The results of our experiment correspond with our hypothesis demonstrating that these
perceptually calibrated viewing parameters do improve a participant’s virtual experience.

Unfortunately, while all subjects were able to complete the calibration procedure, the BDZ
Triangle step from Section 3.2 proved to be very difficult for some subjects. The effect of
changing POz interactively was difficult for some participants as the movement of objects
understandably felt very strange and unnatural. For the purposes of time in the experiment,
we had allowed subjects to continue the experiment even with a lower confidence that was
not ideal.
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The demographic information we acquired provided little insight into what may have caused
the discrepancy of difficulty for calibration across subjects. Factors such as age, gender,
eyewear, measured IPD, height, previous VR experience, and gaming experience were not
shown to be significantly correlated with R2 value. The only piece of demographic
information which provided any kind of a marginal correlation was between the R2 value
and the subject’s indication of how prone they were to motion sickness (F(1,18)=3.097,
p=0.09). In this case, the subjects who indicated they were prone to motion sickness
averaged an R2 value of 0.79 compared to those who were not who averaged a R2 of 0.89.

The results of the depth acuity test matched our hypothesis that the calibrated configuration
would provide a better depth acuity, although this effect was only true when the confidence
of the calibration was taken into account. The trend between confidence and performance on
this test was shown be highly significant for the calibrated and inverse configurations, but
not significant for the measured configuration. This in turn means that this exclusion for
subjects did not simply represent those who were better than this test.

This also proved to be the only test in which these confidence groups provided a significant
difference in the error measurements. We believe this is because while many of the other
tests utilized more relative judgements, this was the only test in which absolute judgements
were essential, in turn making poorly configured viewing parameters very error prone.

While the swimming test did show significance between the configurations, the
improvement for the calibrated configuration was marginal. However, the fact that the
calibrated configuration was bracketed around the measured and inverse configuration gives
us confidence that with improved calibration and repeated measures this effect would
become more pronounced.

The results of the distance estimation test match our hypothesis that the calibrated
configuration would improve the estimation of distance. From the results of Ooi et al. [22],
we can project that faraway virtual objects in measured configuration will appear closer than
they should (depth compression), while faraway virtual objects will appear farther than they
should for the inverse configuration (depth expansion). The calibrated configuration would
provide a perception in the middle of these two, with objects appearing ever so slightly
farther than they should. The fact that the calibrated configuration was not shown to be
significantly different from the inverse configuration was likely due to the fact that depth
compression and depth expansion are not symmetrical, with depth expansion being a far
weaker effect.

The results of the shape perception test match our hypothesis that the calibrated
configuration would improve the perception of shape, however we only found significance
when the subject was allowed to move around. This could be because when the subject was
put in a fixed location, the shape was determined mostly through the judgement of the
distances to corners. However, when the user was allowed to move around, the effects of
swimming could cause shapes to appear to change when viewed from different positions. In
this regard, it seems possible that swimming may play a larger role than precise depth acuity
in terms of artifacts from the judgement of shapes in virtual environments.

6.2 Considerations and Future Work
While these perceptually calibrated viewing parameters have been shown to produce an
improved virtual experience, the question can be raised of what mechanisms cause these
viewing parameters. For many of the subjects, the POz value corresponds to a position that
is far deeper than one would expect the focal point of eye. It is worth noting that was no
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correlation found between this POz and other demographic information. Future work will
explore the mechanisms that may cause these perceptual viewing parameters.

It would also be of interest to test the difference between the perceptual calibration and the
average value found for the highly calibrated group. While our model would suppose that a
default offset in IPD would be more appropriate than a default static IPD, the standard
deviation between the two was insignificant. In this regard it would be interesting to also test
between these two cases.

While the BDZ Triangle corresponds to a single point in space, a different point in space
would have a uniquely different BDZ Triangle. In theory, as opposed to using the swimming
artifact model to determine BD and POz, a series of BDZ Triangles could be constructed for
many different points in space. The intersection of these triangles would correspond to the
perceptually correct position of the eyes. While initial testing utilized this approach, it was
found that small inconsistencies produced large discrepancies in the derived viewing
parameters.

While our method is able to account for incorrect positioning of the tracking system,
incorrect orientations of the tracking system are currently not accounted for. Initial testing
using point and click models found that the rotational inaccuracies were minimal when the
tracking device was mounted on top of the stereo glasses. However, in other tracking setups,
these errors may be much larger. Future work will aim to create a perceptual experiment to
determine these rotational components without point and click methods.

While the current set of methods utilizes the physical discontinuities of the CAVE
environment, our calibration method can be easily adapted for tracked stereoscopic displays.
By showing linear objects, such as posts, that virtually transition in-and-out of a screen,
calibration offsets can still be perceived. Future work will examine alternative methods for
these types of devices.

Unfortunately, as many of the methods in this paper use a mix of physical and virtual
objects, they are not well suited for Head Mounted Display devices. Additional
considerations would need to be taken into account for a similar perceptual calibration
technique for these types of devices. However, this calibration technique would be well
suited for augmented and mixed reality devices. Furthermore, we believe that perceptual
calibration may be necessary for augmented and mixed reality systems to reach their full
potential.

While our approach aimed to create a quantitative metric for virtual experiences, it would
also be interesting to determine the subjective changes for a participant’s experience when
using different viewing configurations. For instance, it would be useful to study how
perceptual calibration effects the sense of presence a participant has while inside of a virtual
environment. Furthermore, studying if perceptual calibration could mitigate negative effects,
such as simulator sickness, could prove incredibly useful for the greater VR community at
large.

7 Conclusion
We present a perceptual calibration procedure that is derived from geometric models. Our
method enables participants to empirically determine perceptually calibrated viewing
parameters. Through a 20 subject study we are able to observe these calibrated viewing
parameters are able to significantly improve depth acuity, distance estimation and the
perception of shape. Future work will aim to create new methods to more easily determine
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these perceptually calibrated viewing parameters and will examine how else these viewing
parameters affect a participant’s virtual experience.
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Fig. 1.
The position of the eyes is described via two parameters. The binocular disparity (BD)
represents the perceptual distance between the eyes. The Center of Projection Offset (PO),
represents the point in the middle of the eyes. The coordinated system for these points is
defined egocentrically such that the z-direction points along viewing direction.
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Fig. 2.
A geometric model is demonstrated for the perception for a single virtual point (shown in
blue). In the case in which the virtual cameras are positioned with the incorrect Binocular
Disparity (BD), the virtual point will be perceived at a different location (shown in green).
Cases in which the virtual cameras are positioned with the correct BD but have the incorrect
center of projection offset (PO) will also cause the virtual point to be perceived in a different
location (shown in red).
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Fig. 3.
BDZ triangle: the collection of camera position providing the same perceptive depth.
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Fig. 4.
Participant calibrating POx and POy with the help of a straight edge. The participant is able
to modify POx and POy so that the posts are perceptually straight between different CAVE
walls.
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Fig. 5.
Swimming artifact: A static virtual object appears to move in space as the viewer moves
their head. This artifact is caused when the viewing parameters are not correctly calibrated.
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Fig. 6.
Diagram showing the location of the subject and placement of the alignment object for all
four locations in the object positioning test. The subject was tasked with moving the virtual
object to edge of the purple alignment object for the first two trials and the yellow object for
the third and fourth trials. The average error and change between the positions for different
locations were measured.
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Fig. 7.
Modeling distance estimation based on perceived inclination of an large planar floor. If the
subject is looking down at the floor and depth compression is occurring, the floor will
appear to slant upwards. Conversely, if the depth expansion is occurring the floor will
appear to tilt downwards.
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Fig. 8.
The subject attempts to position the horizontal beams so that they are all level across. The
beams move according to an inclination angle. The resulting misperception of level informs
depth compression.
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Fig. 9.
A participant undertaking the shape test. The participant uses the joystick to reshape the
floating block with the goal of making the block a perfect cube. For the first iteration of the
of the test the participant was put at a fixed location. In the second iteration of the test the
participant was allowed to move freely inside of the CAVE environment. The tracker has
been put on the camera to for photographic purposes.
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Fig. 10.
Comparing the positions of BD and POz for the measured configuration and the calibrated
configuration. The results are grouped by our trust that the viewing parameters have been
correctly calibrated.
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Fig. 11.
The average directional error for the object positioning test all locations. Results are grouped
by the trust in the viewing parameters have been correctly calibrated. The error bars
represent the 95% confidence interval.
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Fig. 12.
The average difference in the perceived position of the same object position from Location 1
to Location 2 and Location 3 to Location 4. The error bars represent the 95% confidence
interval.
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Fig. 13.
The average inclination of the beams which the subject perceives to be level. The
declination represents of measured configuration represents a compensation for the effects
of depth compression, while the inclination angle for the inverse configuration represents
depth expansion. The small angle for the calibrated configuration represents a very small of
depth expansion for far away objects. The error bars represent the 95% confidence interval.
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Fig. 14.
The error between the correct position of the edge of a box and where the subject positioned
the corner. While the test did not show significance when the subject was placed in a static
location (top), the calibrated configuration was significantly better when the subject was
allowed to move around (bottom). The error bars represent the 95% confidence interval.
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