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Abstract
We review recent developments of fast analytical methods for macroscopic electrostatic
calculations in biological applications, including the Poisson–Boltzmann (PB) and the generalized
Born models for electrostatic solvation energy. The focus is on analytical approaches for hybrid
solvation models, especially the image charge method for a spherical cavity, and also the
generalized Born theory as an approximation to the PB model. This review places much emphasis
on the mathematical details behind these methods.
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1. Introduction
Over the past few decades, increasingly large-scale simulations of macromolecular systems
at the atomic level have been conducted in investigating the structure, function, and
properties of biological molecules and their complexes; molecular dynamics (MD)
simulation techniques have served as a principal tool [107, 170]. Classical MD simulations
using Newton's second law calculate the trajectories of interacting atoms in a system
comprising biomolecules and surrounding solvents. This computational method provides
detailed information on conformational changes of the biomolecules; thus, macroscopic
properties can be accurately obtained by sampling microscopic properties along a
sufficiently long trajectory. The forces in MD simulations are generated from atom-atom
interactions, which are often given by an empirical potential energy function,
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(1.1)

where the first three summations are contributions due to, respectively, deviations of bond
lengths b from their equilibrium values b0, deviations of valence angles θ from their
equilibrium values θ0, and torsional potentials from bond rotations (dihedral angles ω with
phase shifts γ of the n-fold term). The fourth summation is composed of the van der Waals
(vdW) interactions represented by Lennard–Jones 6–12 potentials, and the Coulomb
electrostatic interactions. The functional form and parameter set for each type of atom in
(1.1) is called a force field, which is derived from experimental observations and quantum
mechanical calculations. Popular force fields, such as those in Amber [207, 217],
CHARMM [29, 136], GROMACS [193, 87], and OPLS [99], have been developed and
widely applied to energy minimization and dynamic simulation of biomolecules. The first
three terms and the vdW potential in (1.1) are all short-range interactions that are negligible
when interparticle distances are greater than a certain small value. Since there are many
efficient methods to treat these short-range interactions, in this paper we will discuss only
the calculation of the long-range electrostatic interactions, which is the main challenge in
current algorithmic developments and plays an essential role in investigating structure,
function, and properties of biopolymers [167, 47, 204, 194, 178, 9, 106, 205, 197].

For a realistic biomolecule model in an aqueous environment, in order to take into account
the solvent effects, classical electrostatic models use explicit representations of solvent
molecules around the solute and place the solute-solvent system inside a simulation box on
which periodic boundary conditions are usually imposed. The periodic conditions represent
an open system with infinitely many images of the particles in the box; thus, only the
particles in the box are simulated. Acceleration methods such as Ewald [61, 1, 55], particle-
mesh Ewald (PME) [44, 60, 55], particle-particle particle-mesh (P3M) [174, 135], and fast
multipole methods (FMM) [80, 38, 184, 221] can be employed for electrostatic interactions.
However, with explicit solvent models in MD, especially in large-scale simulations, the
computational cost of all-atom descriptions is significantly high due to the large size of the
simulation box required to minimize artifacts induced by the interactions of unphysical
periodic images. For a typical setting for an average protein from the genomic databases
with approximately 5500 atoms, an extra 20–30 thousand solvent atoms have to be added to
the simulation in order to have a standard 10–12 Å of discrete water molecules surrounding
the protein [9, 100]. The computational expense of these “extra” atoms far exceeds that of
the protein itself.

Alternatively, continuum electrostatic models for the solvent [69, 63], which model it using
a high dielectric continuum medium, are attracting attention. Their advantage is that they
can greatly reduce the number of degrees of freedom of the simulated biological system; see
Figure 1.1 for the surfaces of a biomolecule. In the continuum models, the solute
background is also described by a dielectric medium with a fixed atomic charge distribution,
and the system is then governed by the Poisson–Boltzmann (PB) equation, which can be
numerically solved for irregular dielectric interfaces between the solute and solvent. Direct
numerical solutions in three-dimensional space (3D) or on the biomolecular surface using
boundary integral formulations are still expensive; therefore, various accelerated techniques
and theoretical approaches have been developed. The generalized Born (GB) theory [182,
17, 151] has been widely accepted as an alternative to the PB theory due to its high
efficiency in implementations. The GB method approximates the PB free energy through an
analytical pairwise formula, and the numerical solutions of the discretized PB equation thus
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can be avoided. Due to its simplicity, the GB method has been widely used in MD
simulations.

The analytical method in the continuum solvent framework also includes the hybrid implicit/
explicit solvation model [146]; this model includes several water layers close to the solute in
a fixed volume, which is often taken to be a spherical cavity surrounded by a continuum
solvent. The analytical Kirkwood series expansion [105] is available for solving the PB
equation for such a simple geometry.

In this article, we will review recent developments in analytical methods for the electrostatic
free energy calculations in the framework of the macroscopic PB continuum solvent
representation, since these methods are widely used in MD simulations. We will focus on
the GB theory and the hybrid solvation models, in particular, the image charge methods for
the reaction field of a dielectric sphere.

2. Poisson–Boltzmann Electrostatic Model for Biomolecular Solvation
The electrostatic force is one of the most important forces in the structure and stability of
biomolecules in an aqueous environment [91, 69]. The classical electrostatic theory applies
to a medium composed of the solute macromolecule and the surrounding solvent
environment. In the classical continuum approach, the solute is described as a region with a
low dielectric constant ∊i, typically ∊i = 1 ~ 4, and partial charges qj are assigned to atomic
locations rj, giving a charge density

(2.1)

where the partial charges qj can be computed through quantum mechanical calculations [47]
or from molecular mechanics force fields [107], and the atomic locations rj are taken as the
nuclear centers of the atoms inside the solute. The solute boundary Γ is defined by the
molecular surface (see Figure 1.1), which is given by either the vdW surface composed of
the sum of overlapping vdW spheres or the solvent accessible surface (SAS) generated by
rolling a small sphere on the vdW surface [125]. The solvent, occupying the exterior of the
solute, is assigned a higher dielectric constant ∊o ≈ 80 and in general is an ionic liquid with
mobile ionic charges ni(r) for ions of type i, in contrast to the fixed charges inside the solute.

Therefore, the macroscopic potential Φ(r), due to the embedded fixed charges in the solute,
the mobile ionic charges in the solvent, and the polarization effects of the solvent from the
solute charges, is governed by the Poisson equation

(2.2)

where n(r) = Σi ni(r). To complete the model, two interface conditions on Γ for the
continuities of the potentials and the normal displacements are required, i.e.,

(2.3)

for r ∊ Γ, where r− and r+ are, respectively, the inner and outer limits at position r and n is
the outward unit normal to the surface of the solute.
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The mobile ionic charges will be subject to the influence of the electric field of the solute
charges. The ions are assumed to obey the Boltzmann distribution [153], under a potential of
mean force (PMF) wi(r) [88], for the ith type of ions in the solvent,

(2.4)

where  is the number density of ions of type i in the bulk solvent in the absence of the
solute, T is the temperature, and kB is the Boltzmann constant.

The negative gradient of the PMF wi(r) gives the average force on a given ion of type i due
to all other charges in the system, and it is defined by a Gibbs average over all other ions
and charge configurations, i.e., by a Boltzmann factor weighted integration over the
positions of all other ions/charges in the phase space [88]. In the Debye–Hückel theory [48]
on electrolyte solutions, it was proposed that the PMF on an ion of type i be approximated
by the ion charge multiplied by the macroscopic electrostatic potential Φ(r) of the solute-
solvent system,

(2.5)

thus, the distribution of the ith type of ion is

(2.6)

By substituting (2.6) into (2.2), we obtain a nonlinear PB equation for the electrostatic
potential Φ(r) in the solute-solvent system:

(2.7)

For an ionic solution containing a 1:1 salt (e.g., NaCl), the PB equation for dimensionless
electrostatic potential in the solvent region (ρ(r) = 0 and ∊(r) = ∊o in this region) can be
rewritten [131] as

(2.8)

In (2.8), λ is called the Debye–Hückel inverse length and is defined by

(2.9)

where NA is Avogadro's number, e is the electron charge, and I is the ionic strength of the
bulk solution. When the electrostatic field is weak, the hyperbolic sine function can be
linearized using a Taylor series expansion, leading to the linearized PB equation [88]:

(2.10)

Although in some biological systems the fundamental assumption of small Φ is not justified,
the linearized PB equation has been widely used instead of the nonlinear version in
biomolecular applications due to the former's simplicity; its mathematical analysis [114],
numerical solutions [131], and dynamics simulations [64] are currently under investigation.
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The PB theory in the context of electrostatic solvation energy [47, 91] as described here has
been used in various other areas and is known as the Gouy–Chapman theory [77, 34] in
electrochemistry, the Debye–Hückel theory [48] in solution chemistry, and the DLVO
(Derjaguion–Landau–Verwey–Overbeek) theory [53, 195] in colloidal chemistry. However,
it should be emphasized that the nonlinear and linear PBs, which ignore the finite size effect
of ions and the ion-ion correlations, are approximations that capture the properties of
monovalent ion solutions reasonably well at low salt concentrations, but they fail to deal
with mixtures or divalents with reasonable accuracy [16, 62, 21, 22]. Specifically, it has
been shown [102] that the PB model fails to predict the charge inversion phenomenon in
double layers near charged surfaces [127, 190] and the similar charge-charge attractions of
double layers in aqueous electrolyte solutions of divalent ions [88, 103, 141, 166]. Recent
efforts have been made to address the ion size effects in [59], which incorporates the finite
size effect of ions in solvents and ion channels through an energy variational formulation,
and also in [27, 183, 113].

In the framework of the nonlinear PB electrostatic model for the solute-solvent system, the
electrostatic energy of the system can be defined by a variational principle for an energy-
density functional Wed [172, 68, 104],

(2.11)

where

(2.12)

It can be shown that the nonlinear PB equation (2.7) can be obtained as the Euler–Lagrange
equation of (2.11).

Using Gauss' law, Wed can be shown [227] to be equivalent to

(2.13)

which can be further simplified for the linearized PB equation (2.10) when S becomes a
linear function:

(2.14)

Moreover, (2.13) is equivalent to the charging energy Wch of the solute atomic charges from
zero values to their full values [227], i.e.,

(2.15)

where Φ(r, η) is the potential of the charging state η (η = 0 is the zero charged state; η = 1
is the fully charged state) obtained by solving (2.7) when ρ(r) is replaced by ηρ(r). Note that
for the linearized PB model, Φ(r, η) = ηΦ(r), and thus (2.15) is reduced to (2.14).

In physical chemistry, free energy is one of the most important quantities; it describes the
tendencies for a molecular system to associate and react. Being able to calculate the free
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energy quickly and accurately is of primary importance and is a key goal in algorithm
development for computer simulations of molecular systems. In a biomolecular system, the
chemical processes usually happen in a solvent environment. One important aspect of these
processes is to predict the solvation free energy, ΔGsol, which corresponds to the free energy
associated with the transfer of a solute molecule from a vacuum (gas) phase to a solvent
phase. In practical calculations, the solvation energy is most conveniently decomposed into
two components, ΔGpol and ΔGnp, which are referred to as polar and nonpolar solvation
energy, respectively [162]. The nonpolar part, usually related to the SAS of the solute, is
associated with the first step of the insertion process, where an empty space is created to
form the solute cavity to accommodate the solute atoms whose charges have been nullified.
The polar solvation energy is the more computationally expensive part in calculating ΔGsol
and represents the bottleneck in dynamic simulations of biomolecules. Depending on
whether or not free ions are present in an aqueous solution, the PB or Poisson solvent
representation is one of the most important theories used to find ΔGpol within the
framework of continuum electrostatics in inhomogeneous media.

The polar electrostatic solvation energy ΔGpol results from the polarization of the solvent
and redistribution of the mobile ion charges through the polarization reaction field,
reflecting the interaction of the solute charges and the polarization in the solvent. As
mentioned above, ΔGpol can also be identified as the difference between the energy needed
to charge the solute atomic charge from zero to its full charge value in the ionic solvent
environment and that in a reference environment (usually the vacuum or a homogeneous
dielectric environment)[148, 172, 227, 69], i.e.,

(2.16)

In the classical Born solvation energy [26] for an ion with an atomic radius a and a charge q
immersed in a solvent with a dielectric constant ∊o, the solvent is polarized by the ion charge
producing a reaction field, Φrf (r), whose value at the center of the ion is given by (see
(3.14) in section 3.1.1)

(2.17)

here a dielectric constant ∊i = 1 is often assigned to the a-sphere containing the ion. The
Born solvation energy is then obtained by using (2.14) and (2.16) (see also (2.19)),

(2.18)

For a general solute molecule, (2.7) is solved twice to produce a reaction field Φrf, while the
dielectric constant ∊(r) is described with a two-constant model, i.e., ∊(r) = ∊i inside the
solute and ∊(r) = ∊ext for the exterior of the solute. First, the equation is solved with ∊ext =
∊o to produce a potential Φ(r) in the solvent environment; second, it is solved with ∊ext = ∊i
to produce a potential in a reference environment [17], denoted by Φref(r). The difference
between these two potentials gives the reaction field Φrf = Φ − Φref, which is used to define
the electrostatic free energy ΔGpol through (2.14) and (2.16). To be exact, ΔGpol is the
electrostatic energy needed to transfer the solute from the reference environment to the
solvent dielectric [172, 227, 17, 177]:
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(2.19)

In most cases, the exact solution of the reaction field Φrf(r) in the PB equation (2.7) is
unknown due to the complexity of the equation and the geometric shape of the solute
biomolecule. To obtain an approximate solution, various numerical methods have been
developed, mostly for the linearized PB equation, including finite difference, finite element,
and boundary element methods. Among them the most widely used method is the finite
difference method [93, 91, 206, 132, 229], which has been incorporated into popular
software for biomolecular electrostatics, such as Amber, CHARMM, DelPhi, and UHBD,
due to its simple approach to mesh generalization and refinement using uniform grid
divisions. Because of the jump in the dielectric constants on the solute's boundary, it is
necessary to accurately define the molecular surface so dielectric values at each grid point
can be assigned. The “rolling ball” algorithm [175] usually uses a probe sphere of a
particular radius, typically 1.4Å, which rolls over the vdW surface of the biomolecule. The
process yields an SAS area, sometimes called the Lee–Richards molecular surface [108].
The domain inside this surface is then considered to be the solute region (as shown in Figure
1.1). A low dielectric constant is assigned to the grid points in this domain and all other grid
points are assigned a high dielectric value. Another tricky issue is to assign the charges
inside the solute to grids, because they are usually not located at grid sites and are singular,
taking the form of a Dirac delta function. To overcome this difficulty, each charge is split up
and assigned to the eight nearest grid points. The accuracy of the finite difference method
depends on the grid size, the mesh used to sample the irregular interface, and the ability to
not merge opposite charges for dipoles at one node. The finite difference method leads to
expensive linear algebraic systems with large numbers of degrees of freedom, even with
acceleration techniques such as multigrid solvers. Adaptive finite element methods [90, 10,
11] have also been developed to provide local refinement using an error indicator. Multigrid
techniques are available for the solution of the resulting linear system, leading to a linear
scaling method in both memory and computational complexity [3]. An alternative
approximation is based on surface integral representation of the linearized PB equation and
leads to boundary element methods [196, 226, 25, 28, 98, 117, 128, 129], which reduce the
3D problem to a 2D problem on the molecular surface. However, some essential difficulties
remain, such as the mesh generation over the surface and the treatment of singular integrals.
The biggest challenge is that the full matrix produced by the boundary element method
requires large storage and large computational time to solve. Recently, progress has been
made in speeding up the calculation, in particular, using the FMM [28, 128, 129], the
treecode algorithm [115], or other fast direct solvers [81, 5] to achieve a linear-scaling or
approximately linear-scaling algorithm in terms of the number of mesh cells.

A complete description of the development of and advances in numerical PB methods can
be found in a recent review [131]. However, the numerical solution of the PB equation is
still considered too complex for practical MD simulations. The technical problem in force
calculations due to the dielectric boundary also remains unsolved. Only moderate progress
[191, 130, 133, 156] has been reported for dynamics applications, limited to small
biomolecules such as peptides. Several popular analytical models have been introduced for a
more economical and simple implementation of the long-range electrostatics computation.
These include the GB model and the hybrid explicit/implicit model, both based on the PB
theory and reviewed in this paper.
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3. Hybrid Solvation Models
The use of the hybrid explicit/implicit model [201, 202, 101, 19, 4, 146, 18] as an alternative
to the implicit method is based on the fact that solvent ions and molecules close to the
molecular surface have different structural and dynamic properties compared to those in the
bulk solvent, and so should be treated explicitly to accurately capture these properties.
Recent work has highlighted the failure of the implicit solvent model with prescribed solute
surfaces in predicting the correct dependence of binding affinity of a hydrophobic probe
particle and two hydrophobic plates on the charge magnitude on the plates [198], and the
implicit method needs to be further developed to incorporate the interplay of hydrophobic,
dispersion, and electrostatic effects, for example, using a recently developed variational
implicit solvent approach [57, 39].

In the hybrid solvation model, the explicit solvent atoms together with the solute are
enclosed in a fixed cavity, surrounded by a bulk solvent; i.e., the solvent is split by a
dielectric boundary into an explicit part and an implicit part. The simulation system is then
composed of two dielectric media. Mathematically, the electrostatic potential is still
described by the PB equation, but the charge distribution ρ(r) now includes the explicit ions
and water molecules. A typical setting is illustrated in Figure 3.1 with a spherical surface as
the dielectric boundary. The number of explicit water molecules can be flexible, and the
simulation volume can then be a regular shape such as a sphere or a prolate spheroid for
elongated biomolecules. The hybrid methods promise to have advantages of both implicit
and explicit methods in at least three aspects. First, the electrostatic interactions can be
treated as a pairwise sum using image charge approximation for the reaction field, allowing
the use of the FMM. Second, as the hybrid methods treat the bulk water with a reaction
field, the artificial periodicity of all explicit methods is avoided. This results in an accurate
solution, even if the simulation system is very small. Third, the hybrid methods can treat
nonneutral systems [225], for which the explicit methods require some special techniques
leading to possible inaccuracy. Since the spherical and prolate spheroidal shapes are often
used as the simulation volume in the hybrid methods for which exact solutions can be found,
we will review recent progress on this topic.

For simplicity, we define the following notation used throughout this paper:

(3.1)

3.1. Exact Solutions of the Linearized Poisson–Boltzmann Equation
3.1.1. Spherical Geometry—Exact solutions of the linearized PB equation are only
available for simple geometries such as spheres, ellipsoids, and cylinders. These simple
geometries are employed in many of the current methodology developments. Two early
theoretical contributions were the Born [26] and Onsager [149] models, which were used to
study the solvation effects of the electrostatic component of the free energy. They
considered the cases of a single ion and a dipole, respectively, placed at the center of a
spherical cavity of radius a surrounded by a dielectric solvent medium. The exact solutions
of these two cases can then be found by solving the PB equation. The Born solvation energy
(2.18) is the simplest model, successful in dynamics simulations of biomolecules, where a
different spherical cavity centered at each atom in the system is used to compute the reaction
field by choosing a set of cavity radii, usually from crystal structures [23]. The model is also
the starting point of the well-known GB theory which is reviewed in section 4.
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The Born and Onsager models are both special cases of the result derived by Kirkwood, who
considered an array of fixed charges within a spherical cavity immersed in a dielectric
medium. The result is also known as the Tanford–Kirkwood theory [105, 185], which is one
of the earliest treatments of electrostatics in biomolecular systems. Despite its simplicity, the
model has enjoyed remarkable success in electrostatics calculations of biomolecules in a
variety of settings, especially in the context of MD simulations [4, 186, 84].

We consider a spherical cavity Ω of radius a, which contains a set of charges from both the
solute and explicit solvent atoms. Outside Ω, the solvent is represented by a continuum
medium with a dielectric constant ∊o. Due to the principle of linear superposition, we
consider only the potential induced by a single charge q located at rs = (rs, θs, ϕs) inside a
spherical cavity under the spherical coordinate system. Then the potential inside the cavity
satisfies

(3.2)

The equations of Φ outside Ω and boundary conditions are given by (2.3) and (2.10),
respectively.

The potential inside the sphere can be written as a sum of two parts,

(3.3)

where  is the contribution of the Coulombic potential and is the fundamental
solution of the Poisson equation, and the reaction potential Φrf satisfies the Laplace
equation,

(3.4)

The general solution at any point r of the Laplace equation can be expressed in terms of
Legendre polynomials of cos φ, where φ is the angle between r and rs, i.e.,

(3.5)

Here, cos φ satisfies cos φ = cos θ cos θs + sin θ sin θs cos(ϕ − ϕs). The Coulombic field can
be rewritten as an expansion of Legendre polynomials Pn(cos φ). For r > rs, it is given by

(3.6)

Meanwhile, outside the cavity, the general solution of the linearized PB equation can be
written as a series of Legendre polynomials of cos φ, which takes the form

(3.7)

where the function kn(·) is the modified spherical Hankel function [2], defined by
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(3.8)

Now we have represented the potential inside and outside the cavity by two series of
Legendre polynomials. The unknown coefficients An and Bn are determined by the interface
conditions (2.3). By using the orthogonal property of the Legendre polynomials and
substituting the formulas in conditions (2.3), we have

(3.9)

(3.10)

Solving the system of each n ≥ 0 for An and Bn yields

(3.11)

(3.12)

with u = λa and rK = a2/rs being the radial location of the conventional Kelvin image point
(rK, θs, ϕs). We thus obtain the reaction field potential inside the cavity as

(3.13)

With this exact solution, a straightforward way to calculate the reaction potential is to
truncate the infinite series as a finite sum [19]; but this method is usually slow for charges
near the spherical surface. More efficient methods are those based on image charge
approximations, which will be discussed in section 3.2. For a pure solvent, (3.13) reduces to
a simpler formula,

(3.14)

as the parameter u is zero.

3.1.2. Prolate Spheroidal Geometry—In many biological applications, a solute
molecule, such as a DNA molecule, may take an elongated geometric shape. The use of a
spherical cavity to enclose such a solute may introduce too many explicit water molecules to
the simulated system, resulting in a large number of degrees of freedom. In this case, a
prolate spheroidal cavity should be employed. The real challenge is then to quickly and
accurately calculate the reaction field due to a point charge inside a spheroid.

A straightforward way to solve this problem is by using fast spectral boundary integral
methods, tailored to the prolate spheroidal geometry [213]. Exact solutions of similar
electrostatic problems were discussed in [160, 123, 124], where a point charge is put outside
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a dielectric or conducting prolate spheroid. The analytical solution for an ellipsoidal
geometry has also been used for free energy calculations for DNA chip design [6]. Recently,
Deng [49] systematically studied the exact solution of the reaction field for charges inside a
dielectric prolate spheroid surrounded by a bulk solvent with or without ionic effects. Some
detail for the pure water case λ = 0 is given below.

Suppose the horizontal and vertical radii of the spheroid are R and L, respectively. Then the
domain Ω is

in a prolate spheroidal coordinate system (ξ, η, ψ), which can be represented as

(3.15)

where ξ ∈ [1, ∞), η ∈ [−1, 1], ψ ∈ [0, 2π] are the radial, angular, and azimuthal variables,

respectively, the focal distance is , and the dielectric boundary is defined by ξ
= ξ1 = 2L/b.

Again using the linear superposition principle, we consider only one point charge q located
at rs = (ξs, ηs, ψs). Similar to the case of a sphere, the solution Φ can be split into two

contributions, Φ = ΦC + Φrf, where the Coulomb potential  is the fundamental
solution of the Poisson equation and the reaction field satisfies the Laplace equation ΔΦrf(r)
= 0.

The solution of the Laplace equation can be obtained by the method of separation of
variables in prolate spheroidal coordinates using the basis functions

(3.16)

where  and  are the associated Legendre functions of the first and the second kinds [2,
224], respectively. Due to the boundedness of the potentials, Φrf inside the cavity and Φ
outside can be written as

(3.17)

for r ∈ Ω and

(3.18)

for , where a phase shift ψs to the azimuthal angle ψ is used without loss of
generality. The Coulombic potential has the following expansion [140] under the prolate
spherical coordinate system:
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(3.19)

for ξ > ξs, where the coefficient Hmn is given by

and δm0 is the Kronecker delta.

In (3.17)–(3.19), we have expressed the potentials inside and outside the cavity as series in
terms of sines, cosines, and the Legendre polynomials where, for each m and n, four
unknowns Amn, Bmn, Cmn, and Dmn are to be determined. These can be solved using the
boundary conditions (2.3), which lead to four equations at each m and n of the series due to
the orthogonality of the basis functions,

(3.20)

where  and  are defined by

Solving the system of four equations (3.20), we have Bmn = Dmn = 0 and

This finally yields the exact solution of the reaction field potential inside the prolate
spheroidal cavity:

(3.21)
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Thus, we have derived the exact solution of the Poisson equation inside the prolate
spheroidal cavity immersed in a dielectric medium. Extension to an ionic solvent was also
discussed in Deng [49], but the solution is cumbersome and is thus not presented here.
However, the solution in pure water can be directly applied to the ionic case using the GB
method [17], for which there exist efficient treatments to incorporate the ionic effects into
the resulting pairwise formulation.

3.2. Image Charge Methods for the Dielectric Sphere
For the case of a spherical cavity, the series representation of the exact solution of the
electrostatic potential can reach any desired accuracy, depending on the number of
truncating terms of the series. However, the convergence rate is slow, in particular, for
charges near the cavity boundary. Finding an effective image charge approximation to the
reaction field, which provides simpler analytical expressions, then becomes an important
issue for faster and more accurate computational simulations.

We start with the case of the pure solvent, say, (3.14). The reaction field potential given in
(3.14) can be reformulated as

(3.22)

which can be simplified to the following form, using the Legendre expansion of the distance
[2]:

(3.23)

with

where x = (x, θs, ϕs). Here, the first term on the right-hand side is seen as the Coulombic
potential of a point charge qK at rK, known as the Kelvin image charge [140], while the
second term is the potential due to a line image charge qline(x) that extends from the Kelvin
image point to infinity along the radial direction.

The exact image charge representation (3.23) was given originally in 1883 by C. Neumann
[142] but was little known for around a century. It was rediscovered several times in recent
decades in different fields of application, for example, [222, 67, 58, 155, 121, 30, 145]. A
recent review by Lindell [147] summarizes in more detail the history of Neumann's image
principle.

3.2.1. Single Image Charge Approximation—The widely used image methods [71, 1]
in computer simulations of biological systems are the approximations of the line image
(3.23) at different levels of accuracy. Here we give a brief survey of those methods
popularly employed in simulations, from the point of view of how (3.23) is approximated.
They include image charge methods of Friedman, Abagyan and Totrov, and Kirkwood. A
comparative study of their performance is shown in Figure 3.3(a) and the details can be
found in [52].
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Note that for a usual dielectric environment, γ ≈ −1. The coefficient (1 + γ) contained in the
line charge qline(x) is very small. Therefore, the contribution of the Kelvin image in (3.23),

(3.24)

is an approximation to the reaction field with a first order of error O(κ). This is known as
Friedman's image approximation [71]. Friedman's image approximation can be improved
without much additional computational cost by including a correction term V(1) that
approximates the line image in (3.23), leading to the improved Friedman image
approximation

(3.25)

To obtain V(1), taking 1 − γ ≈ 2 in the power in the line image, we have

resulting in an analytic integration of the line image term,

(3.26)

where μ = rrs/a2 and . Friedman's methods have been widely applied to MD or
Monte Carlo simulations; see [165, 199] for examples.

As rs tends to zero, Friedman's image approximation cannot reproduce the Born formula
(2.18). To remedy this flaw, Abagyan and Totrov [1] proposed a modified approximation
based on Friedman's method. They used a position-independent correction to Friedman's
first-order image approximation

(3.27)

where the correction potential is computed to compensate for the free energy difference at
the Born limit [26]. It is clear that the Abagyan–Totrov image method has lower
computational cost than the improved Friedman's method, while its accuracy is comparable
to the latter. Therefore, this method has been used in a variety of applications [84, 154].

The Kirkwood image approximation [105] slightly changes the charge strength of V(0) in the
Abagyan–Totrov image method, allowing its reaction field energy to reproduce the Born
formula. It is expressed by

(3.28)

A correction potential can also be developed to improve the accuracy of the Kirkwood
image approximation.

3.2.2. Multiple Image Charge Approximation—The methods discussed above
employed by Friedman, Abagyan and Totrov, and Kirkwood all use a single image charge
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which, with or without a correction, represents a crude approximation to the reaction field.
Their accuracy may be limited in some the line applications. Historically, image expression
(3.23) is not the starting point when deriving these image methods. Recently, the multiple
image method [32] has been developed to provide a high-order accurate approximation. A
schematic illustration of the approximation is shown in Figure 3.2. Its basic strategy is to
introduce a numerical integration to the line image. Gauss or Gauss–Radau quadrature can
be employed to approximate the integral in (3.23) to obtain a series of discrete image
charges,

(3.29)

where the magnitude and location of the discrete image charges are defined by

(3.30)

Here, {ωm, sm, m = 1, …, M} are the Gauss or Gauss–Radau weights and points defined on
the interval [−1, 1] that can be computed by various software packages such as ORTHPOL
[74]. Eventually, the multiple image approximation is given by

(3.31)

which in theory can approximate the reaction field to an arbitrary accuracy by increasing the
number, M, of the quadrature points. Figure 3.3(a) illustrates results from different image
approximations, where multiple image approximations use M = 1 and M = 2 Gauss
quadrature points (discrete images). It can be seen that the error in the multiple image
approximations depends on the location of the source charge, and more discrete charges are
required when the source charge is near the boundary in order to yield a desired accuracy.
However, a small number of image charges is usually sufficient for a good enough accuracy;
for example, when rs/a ≤ 0.9, three or fewer discrete image charges are enough to provide a
0.01% relative error in the reaction field potential. In fact, two image charges provide high
accuracy. Moreover, as the first quadrature point x1 of the Gauss–Radau quadrature is
exactly the Kelvin image point rK, the first point image q1 and the Kelvin image can be
combined into one single image charge. From this point of view, the Gauss–Radau
quadrature is a cost-effective approach for real simulations.

The multiple image method evidently speeds up the computation in comparison with the
Kirkwood expansion. It is illustrated in [32] that the pairwise sum of the image method
without any accelerated technique is 20–30 times faster than the direct series expansion
method for the same level of accuracy. Furthermore, once the image charges are generated,
the electrostatic interactions among those charges together with the source charges are
Coulombic, where the inhomogeneity of the simulating system is removed. The interactions
can then be readily handled by the FMM [82, 80, 38, 221]. An order-N algorithm can then
be achieved for the system by combining the FMM and the image charge approximation.

3.2.3. Extension to the Poisson–Boltzmann Equation—No exact line image
representation of the series solution of the PB equation (3.13) is known, due to the
complexity of the special function kn(u). However, approximate representations have been
developed. Let us define a function,
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then (3.13) can be rewritten as

(3.32)

Finding an approximate asymptotic approximation to the function  is the key to
deriving an accurate image charge expression [50, 51, 216, 215, 209].

Note that the ionic strength is often very low in practical applications. The parameter u = λa
can be assumed to be small, say, u < 1, and so a second-order asymptotic formula can be
derived [50]:

(3.33)

With this formula, the reaction field can be represented by a Kelvin image plus a line image
at the first order of accuracy, or at the second order if a position-independent correction
potential is added. Higher-order image approximations [51, 216, 209] were developed
straightforwardly using higher-order asymptotic representations of . For example, in
[51] the following form of the asymptotic formula is used:

(3.34)

This leads to a fourth-order image approximation of the reaction field, composed of a Kelvin
image, two line images, and a position-dependent correction term.

Later, a series of different asymptotic formulas were proposed in [215] that remove the
requirement u < 1, thanks to the fact that as u → ∞,

(3.35)

(3.36)

and, at the same time, as u → 0,

(3.37)

(3.38)

Substituted into (3.32), the formula (3.35) yields
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(3.39)

with  and , similar to the pure water case. The image expression
obtained from the second asymptotic formula (3.36) is similar, except for one more
correction term,

(3.40)

where , , and , and the correction is a position-
independent constant:

The discretization of the line images into discrete image charges is the same as that in
(3.29). As these line image approximations are accurate for both low and high concentration
regions of ionic effects, numerical evidence [215] indicated that they could perform well for
the intermediate region, giving a solution of image charge approximations of the reaction
field induced by bulk solvent with arbitrary ionic strengths. In Figure 3.3(b), the accuracy
performance for λ = 1 is presented, which shows that the line image (3.40) from (3.36) has
the smallest error, in particular, when rs > 0.5.

More recently, the method of least squares fitting was used to find multiple image
approximations [157]. It is based on the fact that a line image generally starts from the
Kelvin image point to infinity along the radial direction, and thus the locations of the
quadrature points (images) can be fixed, resulting in an approximation of the reaction field:

(3.41)

with xm = (xm, θs, ϕs) and . Here, the Kelvin image is included in the first
image charge due to x1 = rK. As the exact series solution exists, the strength of each charge
can be found by minimizing the overall error for preset N field points,

3.42

Presumably, this method will produce a more accurate result because the analytically based
image charge methods lose some accuracy in approximating the series solution by the line
image, as verified numerically in [157].

3.3. Analytical Methods for Some Nonspherical Geometries
Historically, image solutions of the Poisson and PB equations have been widely studied for a
point charge located in various shapes of dielectric or conducting environments, such as 3D

Xu and Cai Page 17

SIAM Rev Soc Ind Appl Math. Author manuscript; available in PMC 2013 June 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



half space, a cylinder, and a 3D wedge; see [180, 37, 36, 144, 143, 41] for examples and
[122, 31] for reviews. Here we introduce only a few cases which are useful in biomolecular
simulations.

It should be noted that the image charge method of spherical geometry can be directly
extended to a point charge located inside a hemispherical cavity over a conducting half
space. Such a setting is useful in studying electrostatic interactions between biomolecules
and inorganic surfaces, which is of significance in the fields of biomaterial synthesis and
fabrication and biotechnologies [24, 75]. Due to the conducting boundary, the reaction field
of the source charge q can be represented by an image charge −q at the mirror symmetry of
the interface, together with the reaction field of these two charges from the polarization of
the sphere.

There are also studies of analytical multipole methods for systems in the presence of
multipole proteins represented by spheres [126]. Recently, Yap and Head-Gordon [219]
developed a semianalytical PB solver by representing the molecular surface as a collection
of spheres, and thus the Kirkwood expansion technique can be applied to solve the surface
charges iteratively. Due to its analytical treatment and the advantage of the boundary
element method, the semianalytical method performs better than the traditional numerical
PB solvers for irregular biomolecules.

For nonspherical geometries, a rectangular volume can also be used in reaction field
calculations if its solution can be computed simply. Yang and coworders [218, 7] developed
a rectangular image charge method to accurately represent the reaction field of a cubic box
of lengths Lx, Ly, and Lz as the explicit cavity Ω. Let the source charge q be located at rs =
(xs, ys, zs) under the Cartesian coordinate system. The electrostatic potential can be
described by infinite image charges [218] as

(3.43)

with rlmn = ((−1)lxs + lLx, (−)mys + mLy, (−1)nzs + nLz).

Recently, in order to treat biological ion channels with the hybrid solvation model, the
image charge method [211, 118] was developed for a source charge inside a finite length
cylinder due to the electric polarization of the surrounding inhomogeneous continuum,
where the membrane and bulk water are characterized by layers of different dielectric
media. An optimization method was used to find the image representation for the cylinder
by fitting the exact expression in terms of cylindrical harmonics [41], which was then
combined with more images in order to satisfy the boundary conditions at the planar
membrane interfaces. The electrostatic interaction problem defined in a complex
inhomogeneous system is thus converted into one in a homogeneous free space embedded
with discrete charges, which can be solved efficiently by various fast particle-interaction
algorithms such as the FMM.

3.4. Discussion of Hybrid Solvation Models
The hybrid models combine both explicit and implicit treatments of the solvent and seek to
gain a favorable balance between accuracy and speed. There are two main strategies to treat
the explicit-implicit boundary, resulting in two classes of hybrid schemes. The first class is
known as the translational reaction field (TRF) method [15, 14, 186, 92], which centers a
different spherical cavity at each charge (or group of charges), where the solvation energy is
given exactly by the Born formula (2.18). This method allows the use of periodic boundary
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conditions; thus, the surface effects can be eliminated due to unrestricted movement of water
molecules. However, the periodicity requirement of the simulated system limits its accuracy
in treating strongly inhomogeneous systems such as proteins.

The second class of hybrid approach is the fixed reaction field (FRF) method [101, 19, 199,
218], also known as the solvation shell approach, which embeds the entire system within a
fixed boundary, often spherical in shape, and treats the outside solvent as a dielectric
medium. A repulsive potential on the wall, which played an important role in the previous
successes of this method, is applied to maintain the explicit molecules inside the boundary.
The FRF method is particularly useful for biomolecule solutes, where the Kirkwood series
expansion can be used to analytically calculate the reaction field in a spherical cavity, as
shown in early studies [101, 19]. Without the limitation of the periodicity, the FRF method
greatly reduces the system size by introducing fewer explicit water molecules, in
comparison to the lattice-sum methods based on the explicit model. The FMM method with
the image charge approximation can provide a linear-scaling calculation of the long-range
electrostatic interactions. For homogeneous systems [119], the CPU time to compute
electrostatic forces using the FMM based on the hybrid solvation model currently is not
faster than that using PME with the explicit solvent model. The reason is threefold: first, the
periodic boundary condition is acceptable for homogeneous systems, necessary for the PME,
and a small system size is sufficient to provide accurate results; second, the FMM has a
large prefactor in the scaling, which is more efficient only for sufficiently large simulation
systems; third, in equivalent calculations, the FMM system has more particles which include
not only the source charges inside the volume, but also the image charges. However, when
the simulation system is extended to include a biomolecule, especially a nonneutral
molecule, the PME method has to significantly increase the system size to reduce the effects
of the periodic boundary condition, and the savings of the system size with the hybrid
solvation model may then be significant.

As the dielectric on the boundary between explicit and implicit solvent is modeled as a sharp
transition from ∊i to ∊o, singular reaction fields have to be carefully dealt with. A buffer
layer [4] of fixed thickness is usually used to remove the unphysical singularities in the
reaction field. However, simply increasing the size of the simulation volume does not
eliminate unphysical long-range effects which propagate throughout the cavity. A three-
layer model [164, 43] with a constant transition layer was used to reduce these effects.
Mathematically, the artificial discontinuity in dielectric can be completely eliminated with a
smooth transition layer from low to high values. Recently, Qin et al. [157] proposed such a
smooth function where the dielectric profile in the buffer zone is selected to satisfy

, leading to an exact solution of the PB equation; thus its image charge
approximation can be developed.

Once the reaction field is represented by image charges with an analytical formula, it is
straightforward to calculate the electrostatic force on a charge, qi, by

(3.44)

where the potential Φ(r) is the sum of Coulomb potentials of all image charges and source
charges except for the source charge qi itself. Recently, the multiple image charge
representation of the reaction field coupled with the FMM has been incorporated into MD
simulations of aqueous solutions under the FRF framework [119, 120], together with a
periodic boundary condition using a space filling truncated octahedron (TO) box for
nonelectrostatic interactions (see Figure 3.1). Minimal surface effects in MD simulations
were seen in this new hybrid solvation model. A major advantage of this FRF method over
the lattice-sum methods, considered to be the most accurate electrostatics treatments
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currently available, is that there is no need to treat electrostatic interactions of periodic
images, thus it can be used for electrically nonneutral molecules. After extensive
investigations, the method was shown to be in excellent agreement with the PME
simulations [44, 60] for sufficiently large simulation boxes. The effect of model parameters,
which include the size of the cavity, the number of discrete image charges, and the thickness
of the buffer zone, was investigated using the PME simulations as a reference. An optimal
set of parameters was then obtained allowing for a faithful representation of many static,
structural, dielectric, and dynamic properties of the simulated water and ions, while
maintaining manageable computational cost. The novel hybrid solvation model is
particularly well suited for computing pKa values in proteins, which are now most
frequently calculated by numerically solving the PB equation [205] for charged and neutral
versions of ionizable residues, to obtain the reaction field. The advantage of the model is
that the reaction field experienced by a solute molecule is directly accessible in the
simulation. There is no need to perform any additional calculations. Unlike the PB approach,
the method includes the effects of local conformational fluctuations and the discrete nature
of water molecules.

Figure 3.4 shows some of the results of recent MD calculations for pure water systems with
the hybrid solvation model [119, 120], in comparison to those of the PME method. In Figure
3.4(a), the local particle densities along the diagonal of TO boxes for varying thickness τ of
the buffer zone are illustrated, where two image charges M = 2 are used for each source
charge. The plot shows that the results of the hybrid model converge as thickness τ
increases, and taking τ between 4 ~ 6Å is enough to significantly reduce the surface effects
of the spherical cavity. The right-hand side of the figure shows the dielectric constant ε(R)
of the pure water, which is a macroscopic property of a material, as a function of the sample
radius R in the simulation box. Ideally, the curve of ε(R) is expected to have a plateau
starting at some radius and to remain around 80, i.e., the dielectric constant of the bulk
water. In the results reported in [119], the plateau values for both M = 1 and 2 are between
70 ~ 80, while the curve of M = 0 falls back to a low dielectric constant of around 24 after
an initial increase. In comparison, the plateau value of the PME simulation is 91±10.
Therefore, the calculations with the image-charge-based hybrid model produce the correct
dielectric constant for the bulk water, consistent with the PME results within allowed
statistical variations. Moreover, the data show that the reaction field is essential for
maintaining the dielectric property throughout the simulation volume, as emphasized in
many previous studies [199]. For a complete description and validation of the hybrid model,
please refer to [119]. The hybrid model was also validated for ions solvated in pure water
[120].

So far the image-based reaction field method has been successful in reproducing structural
and dynamical properties of pure water and ions in pure water, but many issues remain to be
investigated. For example, it is yet unknown how to take into account ionic effects [70, 163],
which play an important role in biomolecular simulations and are relevant for many
problems in organic chemistry and biochemistry. MD simulations based on periodic
boundary conditions for those problems may lead to significant artifacts [220]. A boundary
integral formulation of biomolecular electrostatics of explicit ions [210] has been proposed
under the framework of the PB theory. For the hybrid solvation model discussed above,
related issues also include the determination of the number of explicit ions and their
positions, for which Monte Carlo simulations [138, 220] can be used to provide an enhanced
sampling. Moreover, despite the fact that a spherical cavity is widely used as a simulation
volume, the simulation system may be too large because large numbers of water molecules
are needed to fill the spherical cavity for some biomolecules, particularly elongated
molecules such as DNA. An alternative could be a cuboidal shape, for which the image
charge method was developed by Yang, Liaw, and Lim [218]; the method represents the
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reaction field by a summation of an infinite number of images for each source charge. Many
approaches based on irregular simulation cavities have been developed to reduce the number
of explicit water molecules. A straightforward strategy to compute the reaction field for an
arbitrary geometry is to solve the PB equation directly [94]. The GB approximation,
reviewed below, was developed by Lee and coworkers [112, 110]; this approximates the
reaction field by a pairwise sum, and a sum-over-spheres approach is used to define the
simulation volume. The multigrid approximation [179] was employed to reduce the
computational cost of the pairwise summation.

4. Generalized Born Methods
The need for faster computational methods for implicit models in MD simulations has
motivated other more efficient alternatives to solving the PB equation numerically.
Empirical distance-dependent dielectric models [203, 89, 159, 173, 97] have been widely
used in MD simulations. These models take into account the influence of the solvent by
using Coulomb's law with the dielectric constant being a function of the interparticle
distance, thus providing very fast calculations; however, limited accuracy is unavoidable due
to their inability to measure buried and solvent-exposed regions of the solute. The GB theory
[40, 182] has been accepted as one of the most successful approaches to producing an
accurate approximation to the Poisson result, while still being fast enough to be applied in
MD simulations. Here, we present a brief overview of the main purpose and methodology of
the GB methods. Interested readers may consult Bashford and Case [17], Feig and Brooks
III [64], Onufriev [150, 151], and Chen, Brooks, and Khandogin [35] for more systematic
reviews and discussions.

4.1. Generalized Born Formalism
The GB method approximates the solvation free energy by an analytical pairwise sum over
the molecular atoms proposed by Still et al. [182]:

(4.1)

where

(4.2)

g is a positive constant, and Ri is the so-called effective Born radius of atom i, defined
through its self-energy by generalizing the Born solvation energy formula (2.18),

(4.3)

Equation (4.1) is an interpolation between two extreme cases, for which (4.1) is exact, of the
interparticle distance: the Born limit (2.18) [26] at small distances (rij = 0) and the Coulomb
limit at large distances. The ionic effects can be incorporated by simply substituting e−λrij /
∊o for 1/∊o in the formulation, which also satisfies the limit conditions at the Debye–Hückel
level [181]. Here, λ is the inverse Debye–Hückel screening parameter in the linear PB
equation (2.10). The inverse of parameter g in (4.1) can be a value from 0.1 to 0.5; 0.25 is
used most commonly for historical reasons [182]. The zero limit of g = 0 was suggested by

Grycuk [83], resulting in a simpler function . Other variations of Still's

Xu and Cai Page 21

SIAM Rev Soc Ind Appl Math. Author manuscript; available in PMC 2013 June 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



pairwise formula (4.2) were also used, such as fij = rij + 0.5(Ri + Rj) exp[−2rij/(Ri + Rj)],
which has better performance than the original one for the spherical case [112].

Ideally, the self-energy  of atom i in (4.3) would be computed directly from the
Poisson equation by setting the atomic charges of all atoms except the atom i itself to zero,
leading to the so-called “perfect” effective Born radius [152]. This approach is impractical
for an irregular geometry due to its high computational cost, though it can be used as an

error measure for other approximate methods. An alternative is to express  using an
integral formulation [17, 76] over an appropriate volume or surface, which can then be
calculated using some fast algorithm based on either grid-based or analytical pairwise
implementations. The volume integral formulation takes the form

(4.4)

or their combinations. In (4.4), the origin of coordinates is at location ri. For a charge
centered at a spherically symmetric cavity, the formulas are all exact, i.e., they can all
reproduce the Born radius; but for more complex geometries, deviations may be too large.

4.2. Derivation of Integral Expressions
In the early GB models, the Coulomb field approximation (CFA) [17] was usually
employed. The basic assumption of the CFA is that the electric displacement flux D due to
charge qi at r = 0 remains in Coulombic form,

(4.5)

even when dielectrics vary from ∊i to ∊o during the solvation process. Thus, the work of
assembling the charge i at its location within the molecule can be approximated by

(4.6)

where the origin is set at the charge location and a linear response D = ∊(r)E is used to
define the relation between the electric field E and the displacement flux D. The formula for
the work given by (4.6) using E and D is equivalent to the electrostatic solvation energy
(2.19) after excluding the infinite self-energy terms associated with point charges (refer to
section 4.7 of [96]). The electrostatic free energy of solvation is then obtained by taking the
difference in work Wi between the solvent environment ∊ext = ∊o and the reference
environment ∊ext = ∊i of the exterior domain of the molecule,

(4.7)

which leads to an integral expression of (4.4) with N = 4 that approximates the inverse
effective Born radius. However, it is widely known that the CFA heavily overestimates the
effective Born radii for off-center charges in a spherical solute; a straightforward calculation
of the sphere model shows the maximum error can reach a 50% relative error for some
atoms near the spherical surface [111, 83].

A rigorous derivation for the spherical cavity in Grycuk [83] gave a simple yet very precise
formula, termed the R6 model, which has an error around only 1% with a single integral α6
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and is exact for the conductor limit of the solvent dielectric. For a sphere, the “perfect”
effective Born radii can be obtained exactly from the series solution (3.14) of the PB
equation by letting r = rs = ri,

(4.8)

and p = r/a. The coefficient 1 + γ is small, so the effect of the series on the right-hand side
can be negligible. The R6 model approximates the series solution of the self-energy by

(4.9)

where δ ≈ 0 is also used in order to reproduce the Born radius. The R6 radius is actually
equivalent to the Kirkwood image approximation (3.28) for the spherical case, while the
integral expression α6 can be extended to irregular geometries. For complex geometries in
realistic biomolecules, the model also achieved a very high accuracy [139, 188, 189, 137],
allowing for potentially wide application in MD simulations, though the theoretical reason
behind this advantage remains an open problem.

More accurate integral expressions have been created from a combination of several single
integrals of (4.4). Early empirically obtained expressions that contain combinations of
several αN terms, such as α4 and α5 [111] or α4 and α7 [109], were seen to provide good
approximations to the “perfect” Born radii. Several other expressions were proposed that
contain as many as four integrals [161], formulated over the surface of a solute molecule
rather than over its volume. However, these methods are all empirical and include
parameters obtained by fitting a set of small proteins. Recently, a theoretical method [214]
has been developed to derive optimal combinations of these volume integrals, starting from
the spherical case. The basic strategy of the derivation is to derive the series representation
of the “perfect” Born radii in terms of a finite volume integral:

(4.10)

As expressed in (4.8),  is a polynomial series of p. And αn(p) can be integrated out to
show the dependence on p, as

(4.11)

and, for n ≥ 5,

(4.12)

The coefficients in (4.10) can be then determined by the method of undetermined
coefficients by truncating high-order terms of pn for an arbitrary combination of specified
integrals. The combination of only two integrals of α6 and α4 can provide a very accurate
approximation to the “perfect” radius, where the inverse radius is given by
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(4.13)

Since γ ≈ −1, the α6 term in (4.13) is a dominant term, thus (4.13) is actually the R6 model
with a CFA correction.

4.3. Incorporation of Varying Dielectric Effects
Historically, GB models were designed for a typical dielectric environment with solute
dielectric of ∊i = 1 and solvent dielectric around 80. These models may be problematic for
varying dielectrics in applications of such as free energy transfer of a solute between two
solvents or MD simulations of supercritical water [42], where the solvent dielectric can be
very small. Feig, Im and Brooks [65] proposed an empirical formula using a dielectric-
dependent combination of two volume integrals α4 and α7, expressed as

(4.14)

where optimized parameters are given by C0 = 0.3255, C1 = 1.085, D = −0.14, and E =
−0.15. Wojciechowski and Lesyng [208] developed a modified R6 model with a volume of a
noninteger power,

(4.15)

which incorporates the varying dielectric into the power N and reduces to the R6 model for
the standard dielectric environment ∊i = 1. Wojciechowski and Lesyng's formula gives an
even better approximation to the reference PB solutions. Sigalov and coworkers [177, 176,
151] developed an efficient analytical extension, accounting for the dielectrics of the solute
and solvent, from the exact Kirkwood's series solution to reproduce the Born radii,
applicable for arbitrary geometric shapes. More recently, the combination formula (4.13)
was proposed to incorporate the effect of dielectric environments; this formula is extremely
precise for sphere-like shapes and also very accurate for arbitrary geometries after
introducing a correction parameter. Recently, Still's equation was treated by introducing a
scaling formula [177, 187] in order to incorporate the dependence of dielectrics.

4.4. Calculations of Integral Expressions for Effective Born Radii
The GB methods have been widely studied in the last two decades owing to their easy
applicability and fast performance in MD simulations [17, 66, 64, 35]. However, the
calculation of the effective Born radius represented by the volume integrals, a key quantity
in the GB theory, remains a major challenge. A straightforward way to construct the Born
radii solver is to use the methods based on 3D grids or 2D molecular surfaces, which are
known to be accurate but not fast enough for large macromolecular dynamic simulations.
The available methods include volume integration of the molecule based on a cubic grid
[168], or surface integral [76, 161, 8], or quadrature techniques from density functional
theory [111]. We will review in some detail an FFT accelerated grid-based method [33, 171]
and a pairwise approximation approach [72, 73].

4.4.1. An FFT-Based Acceleration Method—Recently, a grid-based method using the
FFT was proposed in [33] to provide an O(N log N) algorithm for the effective Born radii.
Here, N is the number of grid sites in the 3D space. Although it is straightforward to extend
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the method to arbitrary volume integrals (for example, [171]), we describe the basic idea
from the CFA as in [33].

The idea of the FFT-based method is to rewrite the exterior integral as a combination of
three contributions,

(4.16)

where the singular kernel  is modified by a window smoothed function G(r) within a
sphere Si of radius a centered at ri. As a result, the volume integral within Ωin is without
singularity. The radius a is usually taken to be a relatively large number so that the integrand
can be sufficiently smooth, though it may cause a portion Bi of the sphere Si to protrude
outside Ωin for an atom close to the boundary. In (4.16), the integrand G(r) is defined by

(4.17)

and  is a function yielding the nth order derivative continuity of G(r) at r = a; for
example,

The first term in (4.16) is composed of an integral of the window function within the sphere
Si and an integral of 1/r4 outside the sphere. Both integrals can be integrated exactly. The
third contribution in (4.16) can be approximated by an analytical formula assuming that
domain Bi is small and can be approximated by a spherical cap. Therefore, the only time-
consuming contribution in (4.16) is the second integral defined on the molecular domain Ωin,
which can be calculated by the FFT as follows.

As the dielectric boundary is fixed, the second term in the inverse effective Born radius
formula (4.16), denoted by I(r), is actually a scalar function defined on the whole domain,

(4.18)

If the scalar function R−1(r) is calculated on a 3D grid, the atomic Born radius of each atom
can be obtained explicitly by a simple interpolation from the nearby data on the lattice sites
surrounding the atom. Now, the function I(r) can be rewritten as an integral over the full
space,
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(4.19)

where f(r) is the indicator function of the molecular volume that takes 1 for r inside the
volume and zero, otherwise. Thus, the convolution of functions G and f can be evaluated
using the Fourier transform. Furthermore, as function G is defined explicitly on a regular
domain, its Fourier transform can be obtained analytically. In addition, to speed up the
convergence when calculating the frequency spectral of the indicator function f, a smoothing
technique can be used to reduce the sharp discontinuity on the molecular boundary; this
technique was also used in other GB methods [95], or the finite difference PB solver [93].

The FFT approach is a grid-based method and is thus not suitable for straightforward force
calculations of MD simulations due to the lack of Born radii derivatives with respect to
charge locations. However, since the effective Born radii are computed on grid sites, these
derivatives can be simply constructed from difference formulas. The construction of the
Born radii derivatives is also a necessary step in implementing the treecode algorithm, as
shown recently in [212], to reduce the computational cost from quadratic to linear
complexity for pairwise charge-charge interactions.

4.4.2. Pairwise Descreening Approximation—Other than the grid-based approaches,
many methods have been developed to approximate the integral as a sum of overlapping
spheres [85, 158, 54] of Gaussians [169, 72, 79] (see Figure 1.1 for a molecular surface
composed of overlapping vdW spheres), such as the analytical pairwise descreening
approximation, which is very fast because the spherical integrals centered at each atom are
easily computed; however, accuracy may be lost due to the difficulty in compensating for
the overlap region of spheres. Because the effective Born radii are given analytically, the
force calculation can be easily obtained by a differentiation; see, for example, [72]. Let us
discuss how the analytical pairwise approximation is achieved.

In the pairwise descreening approximation, suppose the volume is composed of a set of
atomic spheres Aj with vdW radius aj; the volume integral in (4.4) is approximated by a
pairwise sum of integrals,

(4.20)

where

(4.21)

is an analytically solvable integral. However, a straightforward summation of each spherical
integral overstates the molecular region due to the possible overlap of atomic spheres,
leading to a significant overestimation of the effective Born radius. To treat the overlap
regions, scaling factors sji are introduced to reduce the influence of the descreening, giving
the following modified form of (4.20):

(4.22)

A number of strategies [85, 72, 86, 56, 192] have been developed to calculate the scaling
factors, each one depending on a different approximation of the overlap regions, and we
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now introduce one of them [72] in detail. An accurate definition of the overlap regions starts
from the inclusion-exclusion principle (also known as the Poincaré formula or the sieve
principle) in combinatorics:

(4.23)

where  is the spherical volume of atom i and Vij and Vijk are, respectively, second-
and third-order intersection volumes. In Gallicchio and Levy [72], the self-volume  of
atom i is defined by

(4.24)

so that , resulting in , the ratio between the self-volume and the spherical
volume of atom i, which is a measure of the molecule volume. The scaling factor sji is
approximately calculated by adding back a correction to the ratio sj to yield

(4.25)

which satisfies the consistent condition, sji = 1, when no other atoms intersect atom j.
However, exact calculations of high-order intersection volumes are expensive, so an
approximate algorithm developed by Grant and Pickup [78] was used, in which the volume
of each atom is described by a Gaussian density function,

(4.26)

where  and μ is a dimensionless parameter. The overlap volume of atoms i1, …, im can
then be approximated by the integral of the product of their density functions, which can be
evaluated analytically as

(4.27)

where

(4.28)

The parameter μ was set to be 2.227, which was accurate in reproducing the molecule
volume [78]. Recently, Tjong and Zhou [188] used a pairwise approximation based on the
R6 model and obtained a parameterized model, called GBr6, which reproduces the PB
solvation energy with an accuracy of about 0.6% in unsigned relative errors; it can also
reproduce the nonlinear PB energy by introducing more empirical parameters [189].
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5. Conclusions and Perspectives
We have surveyed fast analytical methods for electrostatic interactions with focus on two
important classes of macroscopic solvation models: hybrid explicit/implicit reaction field
models and implicit GB models. To conclude and give a perspective on future research, it
may be useful to briefly highlight the hierarchy of approximate models.

When we start a realistic molecular simulation, an important issue is to find an effective
model suitable to our problem, drawn from the hierarchical structure of approximations, that
will achieve a balance between speed and desired accuracy. As is well known, a
straightforward choice if computing power is adequate is an all-atom solvent model with a
large enough simulation box, which will produce accurate results. However, given the
increase in system size and complexity, the demand on computer facilities increases
exponentially. A tradeoff between speed and accuracy has to be achieved. Implicit solvent
models are successful in reducing the degrees of freedom by using a continuum model to
treat the solvent molecules as a homogeneous medium, though at the expense of accuracy.

Implicit solvent models provide an estimation of the mean influence that the solvent exerts
on a solute, and have become an attractive tool to treat long-range electrostatic interactions.
They are particularly superior in the calculation of solvation free energies because the
solvent molecules are taken into account macroscopically. An attractive feature of using the
PB method lies in it ability to compute pKa values of amino acid side chains of proteins
when the charge state of the system is often changed during a simulation.

However, the large cost of numerically solving the PB equation limits its application in
dynamics simulations, so simplified implicit models have been developed. Empirical
distance-dependent dielectric models [203, 89, 159, 173, 97] have been used to produce
long-range pairwise Coulombic interactions in the inhomogeneous environment. The models
with a distance parameter successfully simulate problems without high accuracy
requirements, but they are usually not accurate enough to study many useful physical and
chemical properties of the simulated system due to their inability to distinguish buried and
solvent exposed regions of the molecule. Other simplified models include induced multipole
models [46, 45], dielectric screening models [134, 116], and surface-based models [200].

With the continuous development of both methodology and algorithms for implicit models,
the GB model has become the primary choice of implicit model in biomolecular simulations
due to its favorable accuracy and computational efficiency, allowing analytical calculations
of electrostatic solvation energies and forces, and it achieves successful reproduction of the
numerical PB solution. Although the GB model has been commonly used in MD simulations
due to its efficiency, the intrinsic limitations of continuum solvent models remain; in
particular, the continuum model breaks down at small length scales where the size of the
solvent molecule becomes nonnegligible [228]. Growing evidence has shown that the
common description with a sharp dielectric boundary to separate the solute and solvent
mediums is not well justified [20]. It was also reported that the continuum models fail to
describe the formation of a salt bridge between oppositely charged amino acids in proteins
[223, 20]. It is clear that it is necessary to treat explicitly some parts of the solvent at the
atomic scale, for example, those water molecules close to the protein surface.

There are many issues yet to be addressed in regard to more accurate and rapid treatments of
macroscopic electrostatics. For the GB methods, although mathematical tools have been
used to construct more accurate formulations and design more powerful algorithms, many
questions remain to be answered before a better understanding of various integral
expressions is achieved. Attempts [12, 13] have been made to explain how different GB
models improve the accuracy; however, a systematic understanding of the GB methods is
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still an open question. In particular, a theoretical interpretation of the pairwise sum of the
energy formula is still needed. Another important topic is the fast computation of the pair
energies. For larger biomolecular systems, the cost of the pairwise sum could be a
bottleneck and an accurate linear-scaling algorithm is required.

Hybrid explicit/implicit models are promising ways to take into account the influence of
water molecules near the solute surface, while performing dynamics simulations at a
reduced cost. More importantly, the number of water molecules can be flexible, thus regular
cavities, often of spherical shape, are used and electrostatic interactions are obtained
analytically, as described in this article. It should be noted that, although the hybrid models
have been shown to be successful in modeling short peptides, successful application to
bigger and more complicated systems remains to be carried out. In principle, the hybrid
solvation model can be extended to any geometry with analytical representation of the
reaction field. In some applications, such as ion channels, a cylindrical explicit region is
preferred, and thus accurate analytical methods are needed in this setting.
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Fig. 1.1.
Molecular surfaces of the carbonic anhydrases-II [125]. (Left) The van der Waals (vdW)
surface of the domain composed of the sum of overlapping vdW spheres. (Right) The
solvent accessible surface (SAS) generated by rolling a small sphere on the vdW surface. In
the macroscopic theory, the molecular domain inside the surface is given a low dielectric
constant and the enclosed atoms are treated explicitly, while the exterior domain is treated as
a homogeneous continuum medium with a higher dielectric constant. Poisson–Boltzmann
models often use the SAS to define the molecular boundary, while generalized Born
methods usually take the vdW surface.
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Fig. 3.1.
Illustration depicting a typical setting of a hybrid solvation model. The solute and solvent
molecules inside the spherical cavity are treated explicitly, while the solvent outside is
treated as a homogeneous continuum medium. A buffer layer of thickness τ is used to
eliminate the singularity in reaction fields and surface effects due to the jump in the
dielectric constants. The space-filling truncated octahedron (TO) box is used to implement
the periodic boundary condition treatment of nonelectrostatic interactions.
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Fig. 3.2.
A 2D schematic illustration of the multiple image approximation of the reaction field for a
dielectric sphere of radius a embedded in a bulk solvent. A source charge q is located at rs,
and its reaction field at r inside the sphere due to the bulk water is represented by the
potential of discrete point image charges on a ray starting from the Kelvin image point along
the radial direction of rs.
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Fig. 3.3.
Relative errors of image approximations with the source locations. (a) Accuracy
performance of Friedman, improved Friedman, Abagyan–Totrov, and Kirkwood image
approximations, and multiple image approximations (M = 1 and 2), for the Poisson equation.
(b) Accuracy performance of line image approximations to the exact series solution of the
PB equation for λ = 1 using different asymptotic formulas, where M = 20 is used in order to
discretize the line image with high accuracy to give “exact” values. Asyms. A, B, and C
represent formulas (3.33), (3.35), and (3.36), respectively.
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Fig. 3.4.
MD results of the hybrid model for varying geometric parameters of the simulation volume,
taking PME results as the reference solutions. (a) Relative local particle density along the
diagonal of TO boxes with varying buffer layer thicknesses. (b) Dielectric function as a
function of sample radius R for increasing image charges.

Xu and Cai Page 44

SIAM Rev Soc Ind Appl Math. Author manuscript; available in PMC 2013 June 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


