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Abstract

Significance: Mitochondria are fundamental to the life and proper functioning of cells. These organelles play a
key role in energy production, in maintaining homeostatic levels of second messengers (e.g., reactive oxygen
species and calcium), and in the coordination of apoptotic cell death. The role of mitochondria in aging and in
pathophysiological processes is constantly being unraveled, and their involvement in neurodegenerative pro-
cesses, such as Alzheimer’s disease (AD), is very well known. Recent Advances: A considerable amount of
evidence points to oxidative damage to mitochondrial DNA (mtDNA) as a determinant event that occurs during
aging, which may cause or potentiate mitochondrial dysfunction favoring neurodegenerative events. Con-
comitantly to reactive oxygen species production, an inefficient mitochondrial base excision repair (BER) ma-
chinery has also been pointed to favor the accumulation of oxidized bases in mtDNA during aging and AD
progression. Critical Issues: The accumulation of oxidized mtDNA bases during aging increases the risk of
sporadic AD, an event that is much less relevant in the familial forms of the disease. This aspect is critical for the
interpretation of data arising from tissue of AD patients and animal models of AD, as the major part of animal
models rely on mutations in genes associated with familial forms of the disease. Future Directions: Further
investigation is important to unveil the role of mtDNA and BER in aging brain and AD in order to design more
effective preventive and therapeutic strategies. Antioxid. Redox Signal. 18, 2444–2457.

Introduction

The susceptibility of mitochondrial DNA (mtDNA) to
damage is much higher than that of nuclear DNA

(nDNA), resulting in higher mutation rates in mtDNA (135).
mtDNA has multiple copies, and each mitochondrion con-
tains 2 to 10 molecules of DNA, which are organized as nu-
cleoids (51). The existence of several copies of mtDNA means
that mutated and wild-type mtDNA can co-exist, a condition
known as heteroplasmy (188). The ratio between wild-type
and mutant mtDNA may define a threshold where a bio-
chemical abnormality may determine a pathological pheno-
type. Indeed, it is estimated that in many patients with clinical

manifestations of mitochondrial disorders, the proportion of
mutant mtDNA exceeds 50% (138). The mitochondrial ge-
nome contains 37 genes, 13 of which encode for subunits of
electron transport chain (ETC) complexes, 22 for transfer
RNAs, and 2 for ribosomal RNAs (115, 59). Therefore,
mtDNA integrity is mandatory for normal function of ETC, as
it encodes several subunits of mitochondrial respiratory chain
complexes as well as other mitochondrial proteins (19). If a
proper ETC function is not ensured, reactive oxygen species
(ROS) production is largely increased, as observed in mito-
chondrial diseases, or in experimental and animal models of
oxidative phosphorylation (OXPHOS) deficiencies (125, 196).
Increased generation of ROS and oxidative damage occur
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during aging as well as several age-related degenerative dis-
eases, including Alzheimer’s disease (AD) (20, 10, 165). Fur-
thermore, it has been suggested that age-associated
deficiencies in the repair of oxidative DNA damage correlate
with cognitive decline and neurodegenerative diseases that
are prominent in the aged population (199, 177).

This review addresses several aspects of mitochondrial
(dys) function and the involvement of mitochondria in aging,
and AD is also discussed. Special attention is given to mtDNA
and its repair mechanisms.

Mitochondria: Cell Keepers or Executioners?

The survival of eukaryotic cells greatly relies on mito-
chondrial function. The classical appraisal of mitochondrial
function is based on energy-producing capacity. Never-
theless, the importance of mitochondria to the cells is far more
complex and includes a number of functions that span from
energy production, calcium (Ca2 + ) homeostasis, and pro-
duction of second messengers, to the control of apoptotic cell
death (Fig. 1). In addition, the canonical view of mitochondria
as bean-shaped organelles has been revoked and redefined to
a more dynamic perspective, fusing, dividing, and moving
within cells (50). Mitochondria are able to change from a
network-like appearance, forming long tubules, to a more
individualized state, appearing similar to small round vesi-
cles. The stimuli that alter this equilibrium toward highly
branched or completely fragmented morphology are linked to
the cell compartmentalization, developmental stage, stress
stimulus, and the functional state of the mitochondria, among
others (14). Disturbing either mitochondrial fission or fusion
may affect mitochondrial membrane stability with possible
negative consequences for ETC functionality (38, 116, 40).

Mitochondrial bioenergetic production depends on the
formation of a ‘‘protonmotive force,’’ which is generated

through the extrusion of protons to the intermembrane space
driven by the electron flow throughout ETC, from complexes
with lower to complexes with higher oxidation potentials.
Protons are driven back to the matrix through the ATP syn-
thase during ATP production (52). Although the electron flow
through ETC complexes is a very efficient process, a small
amount of superoxide anions (O2

� - ) is produced, due to
electron leak mostly from complexes I and III (163, 56, 33, 10).
At low/moderate levels, ROS act as second messengers
within cells; however, exacerbated ROS production is dele-
terious for the cell, contributing to a variety of pathological
processes (192, 1). Redox imbalance will be further discussed
in a subsequent section of the article.

Mitochondria are also intracellular buffers of cytoplasmic
Ca2 + , thus playing a key role in normal neurotransmission,
short- and long-term plasticity, excitotoxicity, and regulation
of gene transcription, processes that are highly dependent on
Ca2 + levels (35, 152, 208, 153, 210, 169, 154, 203). Ca2 + is
internalized into mitochondria via the Ca2 + uniporter, a pro-
tein that is still to be fully identified and biochemically char-
acterized. Nevertheless, a candidate protein, which was
named MCU (from ‘‘mitochondrial Ca2 + uniporter’’), proved
to be essential for high-capacity Ca2 + transport into mito-
chondria in a number of in vitro and in vivo experimental
models (13, 48). On the other hand, Ca2 + release is mediated
by Na + /Ca2 + or H + /Ca2 + exchangers (203). It was shown
that mitochondria are involved in cells’ Ca2 + buffering im-
pairment, a situation which occurs in the aging brain and AD
(26, 29). The impairment of Ca2 + homeostasis is intimately
associated with mitochondrial permeability transition (MPT).
MPT is potentiated by oxidative stress, high phosphate con-
centrations, and adenine nucleotide depletion and is charac-
terized by the opening of a high conductance pore known as
mitochondrial permeability transition pore (MPTP) that en-
ables the release of ions and solutes from the matrix to the

FIG. 1. Physiological func-
tions of mitochondria. Mi-
tochondria are centrally
positioned in diverse aspects
of cellular physiology such as
homeostasis of second mes-
sengers [e.g., reactive oxygen
species (ROS), calcium (Ca2 + )],
apoptosis and energy pro-
duction. MPTP, mitochon-
drial permeability transition
pore, mitochondrial perme-
ability transition pore; CI, CII,
CIII, and CIV, complexes I, II,
III, and IV of the respiratory
chain; FoF1, ATP synthase.
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cytosol (209, 44). The MPTP eventually culminates in cell
death due to the release of proapoptotic factors such as cy-
tochrome c and apoptosis-inducing factor (80, 189, 150).

ROS Imbalance in Aging and Alzheimer’s Disease

Endogenous production and scavenging of ROS

The balance between ROS production and scavenging en-
ables cells to achieve a physiological equilibrium where the
levels of free radicals might play a role in cell transduction
(178). ROS interfere with the macromolecules of cells; how-
ever, under physiological conditions, the cells’ quality control
systems are able to overcome this damage, avoiding the de-
velopment of a pathological state (159). During aging, the
quality control systems become defective, resulting in an ac-
cumulation of damaged components, which, accompanied by a
redox disequilibrium, may elicit a pathological condition (156).

In cells, there are multiple sources of ROS, including mi-
tochondria, nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase (NOX), xanthine oxidase, and nitric oxide
synthase (NOS) (147). Mitochondria are recognized as the hub
of ROS production during normal aerobic activity. The elec-
trons leak from the ETC directly to molecular oxygen, pro-
ducing short-lived free radicals such as O2

� - (133, 191). While
complex I releases O2

� - only to the matrix, complex III re-
leases O2

� - to both the matrix and intermembrane space (23).
O2
� - can be converted into nonradical derivates such as hy-

drogen peroxide (H2O2) either by a spontaneous dismutation
reaction or catalyzed by the manganese superoxide dismutase
that resides in the mitochondrial matrix (73). H2O2 can be
converted into hydroxyl radicals (�OH) through the Fenton
reaction. In the Fenton reaction, a molecule of H2O2 reacts
with ferrous iron (Fe2 + ) to generate ferric iron (Fe3 + ), hy-
droxide anion (OH - ), and �OH. Fe3 + can be reduced by O2

� - ,
generating a redox cycle in which the O2

� - facilitates the
Fenton reaction by making Fe2 + available (92). Similar to iron,
copper also participates in the Fenton reaction, which exac-
erbates ROS production (60, 85, 157). �OH can also be pro-
duced by a direct reaction of O2

� - with H2O2, a reaction
known as the Haber–Weiss reaction (92). Mitochondria con-
substantiate a microenvironment that is highly enriched in
iron, as many mitochondrial enzymes possess heme groups
and iron-sulfur clusters in their active centers, making them
favorable locations of �OH production (128). Hence, mito-
chondria are prone to oxidative damage and particularly
susceptible to �OH-mediated oxidation, which plays a major
role in DNA oxidation. Apart from the ETC, several other sites
in the mitochondria have also been reported to generate O2

� - ,
including pyruvate dehydrogenase, a-ketoglutarate dehy-
drogenase (171), glycerol-3-phosphate dehydrogenase, and
fatty acid b-oxidation (23). Recently, important advances to-
ward understanding mitochondrial ROS generation have
been made. Transient quantal O2

� - flashes were observed in
excitable cells such as neurons, which are associated with and
required for the opening of MPTP, which represents a new
facet of mitochondrial ROS (57, 198). To counteract an exag-
gerated production of ROS, mitochondria possess a very ef-
ficient antioxidant system, including glutathione peroxidase,
catalase, and peroxiredoxin III, which are responsible for
converting H2O2 to water (71).

As mentioned earlier, another source of cellular ROS is the
NOX family proteins that are enzymatic complexes which

catalyze the electron transfer from NADPH to molecular ox-
ygen and generate O2

� - and its downstream reactive species
(16, 65). NADPH oxidase is composed of cytochrome b558 (an
heterodimer comprising a 22-KDa alpha-subunit-p22phox-
and a glycosylated approximately 91-KDa beta-subunit-
gp91phox), several cytosolic proteins (p47phox, p67phox, and
p40phox), and the Rac G-protein. According to the new ter-
minology, the NOX family refers to the catalytic subunit of
NADPH oxidase, and these include NOX2 and its six homo-
logs (NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2)(65).
It is known that NOX1, NOX2, and NOX4 are expressed in
neurons, astrocytes, and microglia. Under normal circum-
stances, NOX is latent. However, on stimulation, NOX is
translocated to the membrane and forms an heterodimeric
enzymatic complex with cytochrome b558 that catalyzes the
reduction of molecular oxygen to O2

� - (16).
In this way, compromised mitochondrial functioning, NOX

overactivation, or the failure of free radical-scavenging sys-
tems could constitute critical events underlying oxidative
damage in brain aging and AD.

Oxidative stress in the aging brain

Aging is an inevitable biological process that is character-
ized by a progressive decline in physiological function, in-
cluding cognition, and by the increased susceptibility to
disease, representing a major risk factor for the development
of AD (36, 76). Oxidative stress and mitochondrial malfunc-
tion are two interdependent mechanisms that play a central
role in brain aging (36). The brain is particularly vulnerable to
oxidative damage as a consequence of its high levels of
polyunsaturated fatty acids, high oxygen consumption, high
content in transition metals, and poor antioxidant defenses
(139). Compelling evidence reports that the aging brain is
associated with the accumulation of markers of proteins, lip-
ids, and DNA oxidative damage (37, 61, 66, 78, 166, 28). It was
previously shown that the aged brain is characterized by in-
creased levels of protein carbonyls, 3-nitrotyrosine, thio-
barbituric acid reactive substances (TBARS), and diminished
content of cardiolipin and protein thiols (41, 67, 160).

Along with oxidative stress, mitochondrial dysfunction
also contributes to the aging brain. The most important
functional deficits documented in aged brain are the loss of
the mitochondrial membrane potential and OXPHOS capac-
ity, decreased respiration and ATP synthesis, and increased
susceptibility to MPTP opening (9, 22, 41, 58, 144).

Oxidative stress in Alzheimer’s disease

AD is the most prevalent age-related neurodegenerative
disorder that affects approximately 35 million people world-
wide (149). Clinically, AD is characterized by the progressive
loss of cognitive function and behavioral disturbances (149).
These traits are accompanied by two distinctive pathological
features, the massive deposition of aggregated amyloid-b
(Ab) peptide in the extracellular space as senile plaques, and
the presence of intracellular neurofibrillary tangles, mainly
composed of hyperphosphorylated tau protein (34, 131).

The pathogenic road map leading to AD pathology is still
not entirely understood; however, multiple pieces of evidence
support the key involvement of oxidative stress and mito-
chondrial malfunction in the onset and progression of the
disease (129, 155, 180, 181). Oxidative stress is manifested by
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the occurrence of elevated levels of oxidatively modified lip-
ids, proteins, and nucleic acids in vulnerable brain regions
of AD subjects when compared with age-matched controls
(18, 107, 120, 122, 141). Indeed, increased levels of lipid
peroxidation products, such as TBARS, malondialdehyde, 4-
hydroxy-2-nonenal (HNE), and F2-isoprostanes, were docu-
mented in the AD brain, particularly in regions where senile
plaques and neurofibrillary tangles typically accumulate (106,
118, 119, 148, 158, 206). With regard to protein oxidation, AD
is characterized by increased levels of protein carbonyls and
widespread nitration of tyrosine residues in brain cortex and
hippocampus (81, 112, 167). An increase in 8-hydroxyguanine
(8OHG) and 8-hydroxy-2-deoxyguanosine (8OHdG), mark-
ers of RNA and DNA oxidation, respectively, and protein
adducts were observed in brain regions that were most af-
fected by AD pathology (108, 140, 142, 156). The role of oxi-
dative stress in AD is further reinforced by the existence of a
defective antioxidant defense system (5, 11). A decrease was
documented in the activities of the antioxidant enzymes
copper/zinc superoxide dismutase (Cu/ZnSOD) and catalase
in the frontal and temporal cortex of AD subjects (118). AD
subjects also exhibit reduced total antioxidant capacity (176),
and a negative correlation was observed between the total
antioxidant capacity and the duration of the disease (72).

During the course of AD, oxidative damage is also coupled
to a progressive decline of the mitochondrial function (127).
This notion is supported by an extensive literature which re-
ports that AD is characterized by reduced cerebral energy
metabolism (8), impaired activities of the tricarboxylic acid
cycle enzymes (25, 121, 162), and defects in the mitochondrial
ETC (21, 32, 45, 146, 96, 193). The most consistent defect at
ETC level is the decline in cytochrome c oxidase (COX) ac-
tivity, an effect that is positively correlated with Ab concen-
tration, as determined by in vitro studies (30). During AD
progression, Ab is translocated toward mitochondria (88,
186), enabling its interaction with critical redox centers of the
subunit I of COX (6, 7) and Ab-binding alcohol dehydroge-
nase (ABAD) (111, 187). The interaction of Ab with the sub-
unit I of COX and ABAD potentiates mitochondrial
dysfunction and further increases ROS production in a vicious
cycle. There is also evidence which supports a role for mtDNA
mutations in the development and progression of AD (83).

Another important aspect is the role of redox-active metals
in AD-related oxidative damage. Indeed, disruption of iron
homeostasis has been suggested to be a trigger of oxidative
stress and an early neuropathological event in AD (64). It was
demonstrated that iron-mediated enhancement of oxidative
stress occurs in preclinical AD (168), and increased redox-
active iron is found in the cerebrospinal fluid from AD sub-
jects (103). Besides its effects on oxidative status, redox-active
metals also potentiate Ab aggregation, aggravating AD
pathology (27). Indeed, iron, zinc, and copper participate
in the initiation of Ab-mediated seeding process and Ab
oligomerization (86).

NOX overactivation is another pathogenic step underlying
exacerbated oxidative damage in AD pathology (65).
Mounting evidence suggests that the NOX system may be
altered in AD, as indicated by the increased levels of p47phox
and p67phox in the membrane fraction of AD brains, which
foster the idea that NOX is overactivated in AD (55). Micro-
glial expression of NOX subunit p22phox is also enhanced in
the AD brain (3). A deficiency of NOX2 in transgenic AD mice

reduces oxidative stress and improves cerebrovascular func-
tion and memory deficits without affecting Ab levels or
senile plaques (145), which reinforces the role of NOX in AD-
associated oxidative damage. Importantly, aggregated Ab
stimulates O2

� - and H2O2 production in microglial cells and
induces the translocation of Rac from the cytosol to the
membrane, supporting the idea that Ab can affect NOX2-
mediated pathways (126, 200).

Overall, these findings indicate that mitochondria, NOX,
and oxidative stress are important contributors in AD-related
neurodegeneration.

mtDNA Oxidation and Repair Deficiency

mtDNA oxidation and repair mechanisms

Mitochondrial dysfunction and apoptosis can also be trig-
gered by point mutations, nucleic acid modifications, and
large-scale deletions in mtDNA (104, 100). It has been re-
ported that mtDNA damage is 10- to 20-fold higher, more
extensive and persists longer when compared with nDNA
(175, 204). mtDNA is particularly susceptible to oxidative
damage, because it is not compacted around histones and is
localized near the ETC, which is a major source of ROS. In
addition, mtDNA has none or few noncoding regions, in-
creasing the chances of mutagenicity in coding regions (4,
156). Mitochondria are highly enriched in iron microenvi-
ronments, thus favoring the formation of �OH that, due to its
short half-life, preferentially reacts with mitochondrial com-
ponents, including mtDNA (192, 130). In addition, the oxi-
dation of HNE can originate epoxide forms that interact with
DNA bases (110, 91). During aging and in neurodegenerative
disorders, nitric oxide (NO) interacts with O2

� - , resulting in
the formation of peroxynitrite (ONOO - ), which contributes
to mtDNA damage, including single-strand breaks (182, 194,
190).

All four bases (purines- adenine, guanine; pyrimidines-
cytosine, thymine) and the respective deoxynucleosides are
highly susceptible to oxidative damage. The main products of
DNA oxidation include 8-hydroxyadenine (8OHA), 8-hy-
droxyguanine (8OHG, and its deoxynucleoside equivalent,
8OHdG), 5,6-dihydroxy-5,6-dihydrothymine, and ring-
opened lesions (4,6-diamino-5-formamidopyrimidine, Fa-
pyA, and 2,6-diamino-4-hydroxy-5-formamidopyrimidine,
FapyG) (Fig. 2) (117). Overall, more than 20 oxidized base
adducts can be formed from ROS attack on the DNA (42, 172).
Nevertheless, guanine has the lowest oxidation potential,
being the most readily oxidized base (130). 8OHG and
8OHdG, along with FapyG, are the most studied and com-
mon forms of oxidized DNA bases (53, 95). While mutagen-
esis is stimulated by the accumulation of 8OHdG by pairing
with adenine as well as cytosine (113), the FapyG lesions in-
hibit DNA synthesis (143, 114).

Base excision repair (BER) is the primary nuclear and mi-
tochondrial repair pathway for oxidative DNA damage. BER
is evolutionarily conserved and is responsible for recognizing,
excising, and replacing a wide number of DNA modifications
that are characterized by small base modifications (99, 82).
Generally, the BER machinery consists of several proteins that
act in an ordered multistep cascade:(i) the recognition and
excision of the damaged base;(ii) the incision of the DNA
backbone in the abasic (AP) site; (iii) the generation of a 3¢-OH
and a 5¢-P moieties in the DNA termini; (iv) the synthesis of
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the missing nucleotide; and (v) the sealing of the remaining
DNA nick (Fig. 3) (205). This mechanism is essentially the
same for nDNA and mtDNA repair; however, the isoforms of
some enzymes involved in the process may differ from the
nucleus to the mitochondria, even though all of them are

nuclear encoded (199). The initial removal of the damaged
base is accomplished by substrate-specific DNA glycosylases
that hydrolyze the N-glycosidic bond between the modified
base and the DNA backbone (54, 87). DNA glycosylases can
be divided into two distinct functional groups: (i) a

FIG. 2. Molecular structures of some oxidation products of DNA. The products of DNA oxidation result from the attack of
reactive oxygen species, mainly �OH, to DNA bases.

FIG. 3. Base excision repair
(BER) machinery. An oxida-
tive lesion (herein represented
by the lightning symbol) is
removed by DNA glycosy-
lases, which excise the oxi-
dized base from the DNA
backbone, leaving an abasic
site (AP). Afterward, the DNA
backbone is incised in order to
create a single-nucleotide gap
that is ready for subsequent
filling by DNA polymerases.
In this step, de novo synthesis
can follow one of two sub-
pathways; in short-patch BER
(SP-BER), 1 nucleotide is in-
serted and in long-patch BER
(LP-BER), 2–7 nucleotides are
inserted. The last step involves
the ligation of the nick by
DNA ligases. APE1, AP en-
donuclease. See text for fur-
ther details.
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monofunctional group of enzymes with glycosylase activity
only, which includes hydroxymethyl-uracyl DNA glycosy-
lase (UDG) whose mitochondrial isoform UDG1 is generated
by alternative splicing (31, 136); (ii) a byfunctional group of
enzymes with intrinsic 3¢AP lyase activity, in addition to
glycosylase activity, which include 8OHG DNA glycosylase
(OGG1), the human endonuclease III homolog (NTH1), and
Nei-like homologs (NEILs)(68). Oxidized bases are generally
removed by bifunctional DNA glycosylases. OGG1 has two
isoforms, a-OGG1 that localizes to both the nucleus and mi-
tochondria and b-OGG1that localizes in mitochondria (137).
NTH1 has a putative mitochondrial targeting sequence,
which allows its localization to mitochondria (185, 173, 94).
NEILs are localized in the nucleus and mitochondria (77, 84,
132). In human cells, oxidative pyrimidine lesions are gener-
ally excised by NTH1 or NEILs; whereas oxidative purine
lesions are excised by OGG1 (132, 77, 89). 8OHG lesions are
primarily repaired by OGG1 (97, 47). The step after the re-
moval of the damaged base by glycosylases is the incision of
the DNA backbone in an adjacent site to the AP site. This stage
is characterized by different types of lyase activity, either
occurring immediately 5¢ to the AP site or 3¢ to the AP site
depending on whether the excision step was accomplished by
monofunctional or byfunctional glycosylases, respectively
(49, 201). Indeed, AP endonuclease (APE1) is responsible for
the incision of the DNA backbone after UDG1 removal of the
modified base (49, 201). APE1 localizes to both the nucleus
and mitochondria (62, 151, 202). Moreover, the byfunctional
glycosylases are capable of incising the DNA backbone,
leaving a DNA single-strand break. The final steps of the re-
pairing process may undergo two distinct subpathways, the
short- or long-patch BER (SP-BER or LP-BER, respectively).
The SP-BER involves the incorporation of a single nucleotide
into the gap by DNA polymerase. The LP-BER involves the
incorporation of several nucleotides, typically 2 to 7, followed
by the cleavage of the resulting 5¢(91). Finally, the nick left
behind by DNA polymerases needs to be sealed, a process
performed by ligases, ligase I (nucleus) in the case of LP-BER,
and ligase III (nucleus and mitochondria) in the case of SP-
BER (70). The polymerase responsible for the mtDNA repair
synthesis is polymerase c (74, 93).

Despite the current knowledge on the mechanisms that
maintain the genomic integrity, particularly mitochondrial

genome, it is of great interest to gain more insight into the real
importance of each enzyme and each subpathway involved in
the repair process. Indeed, the repair of mtDNA oxidative
damage was thought to be mediated solely by SP-BER (17,
174); however, in recent years, LP-BER was also demonstrated
to counteract the accumulation of oxidative damage to
mtDNA (Fig. 3)(2, 105, 184, 207).

Aging

Aging has been established as being the main risk factor for
the development of late-onset neurodegenerative disorders
such as AD. The accumulation of oxidative damage plays a
key role in the aging process, as postulated by the free radical
theory of aging (75). Age-associated oxidation of mtDNA re-
sults from an increased oxidative attack to the nucleic acids
and a reduced efficacy in mtDNA repair machinery, namely
BER (Fig. 4). Indeed, the aging brain is characterized by an
increased oxidative damage to mtDNA noticed by the for-
mation of 8OHdG, which is the most common marker of
oxidative DNA damage (123). Notably, in human subjects
(42–97 years), a progressive augment in 8OHdG was reported
in both nDNA and mtDNA with aging; however, the extent of
increase of 8OHdG is ten-fold more in mtDNA compared
with nDNA (123). The increased susceptibility of mtDNA,
compared with nDNA, was also observed in aged brains of
other mammalian species (12). An age-associated impairment
of mitochondrial BER machinery, particularly OGG1, UDG,
APE1, and polymerase c, has been reported (90, 39). More-
over, five specific brain areas were shown to have deficits in
mitochondrial BER, namely caudate nucleus, frontal cortex,
hippocampus, cerebellum, and brain stem (90). A recent study
demonstrated that brain cortical and hippocampal mtDNA
glycosylases behave differently in cortical and hippocampal
mitochondria of rodents (68). Hippocampal mtDNA glyco-
sylases present lower activity when compared with cortical
glycosylases. Importantly, brain cortical mtDNA glycosylases
show an age-dependent decrease in their activity; while hip-
pocampal glycosylases present only minor alterations (68).
These findings highlight how mitochondrial heterogeneity
influences the susceptibility of these organelles to damage. In
fact, it was also shown that synaptic mitochondria are more
susceptible to Ca2 + overload and the induction of MPTP than

FIG. 4. Redox imbalance,
DNA repair, and oxidation.
Increased DNA oxidation in
aging and AD results from an
imbalance between ROS pro-
duction and ROS scavenging
as well as from the failure of
DNA repair mechanisms.
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nonsynaptic mitochondria (24, 134), which reinforces the idea
that synaptic mitochondria, including their DNA, are more
vulnerable to injury.

BER enzymes are negatively modulated by covalent mod-
ifications in an age-dependent manner putatively due to de-
creased acetylation (183) or iron/copper dyshomeostasis (79).
Notably, a general trend toward increasing heteroplasmy
with the aging process has been observed, due to a gradual
accumulation of alterations in mtDNA throughout life (170).
These results are in accordance with previous observations of
increased mtDNA deletions (15, 98) and somatic mutations
(164) with age in the substantia nigra. A causal relation be-
tween the malfunction of BER machinery and neurodegen-

eration has been established, which is further associated with
behavioral alterations (102).

Alzheimer’s disease

Mitochondrial dysfunction and exacerbated generation of
ROS are well known features of AD. Moreira (130) and de la
Monte (46) reported that AD brains present increased frag-
mentation of mtDNA, reduced mtDNA content and mass,
reduced level of COX, and evidence of apoptotic cell loss.
Despite no causative mtDNA mutations being linked to AD,
some polymorphic variations can occur, having implications
in enzymatic activities, such as COX (109). Some mtDNA
mutations have been associated with increased incidence of
AD (195, 43). Likewise, a reduction in the level of ND6 com-
plex I transcript in AD has been reported (43). AD brains
present increased mtDNA mutations that are enhanced in an
age-dependent manner, when compared with control cases
(43). Nevertheless, and despite no causative mutations in
mtDNA being currently known, mitochondrial dysfunction
has been proposed to precipitate Ab deposition, neurofibril-
lary tangle formation, and, ultimately, neurodegeneration
(Fig. 5) (179, 180).

Although several studies demonstrate that oxidation of
both nDNA and mtDNA is increased in AD brains (63, 124,
197), mtDNA oxidation has been found to be 10-fold higher
than nDNA in frontal, parietal, and temporal lobes of AD
patients (197). The simultaneous increased oxidation of
mtDNA and deficiency of DNA repair could enhance the le-
sion to mitochondrial genome, potentially leading to neuronal
loss. Indeed, Shao et al. (161) demonstrated that mitochondrial
OGG1 activity is decreased in the frontal and temporal lobe of
late-stage AD, and in the temporal lobe of MCI patients,
compromising the removal of oxidatively damaged bases
from mtDNA. Opposing results were recently reported in the
brains of the triple transgenic model of AD (3 · Tg-AD), in

FIG. 5. Mitochondrial cascade hypothesis for AD. The
accumulation of damage and consequent decline of mito-
chondrial function with aging are hypothesized to be the
triggers of sporadic (late onset) AD. This hypothesis postu-
lates that amyloidosis, tangle formation, synapse, and neu-
ronal loss are consequences of mitochondrial defects
(Swerdlow and Khan 2009).

FIG. 6. Putative vicious cy-
cle of mitochondrial ROS
production in aging and AD.
Since 13 subunits of the elec-
tron transport chain (ETC)
are encoded by mtDNA, it is
likely that mtDNA oxidation
resulting from the increased
ROS production leads to ETC
dysfunction, which exacer-
bates ROS production. This
vicious cycle is potentiated by
the decline in BER efficiency
that occurs in the aged and
AD brains.
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which no changes between the synaptosomal BER activities of
presymptomatic and symptomatic AD mice were found (69).
The contradictory observations reported in human and mice
AD brains can be easily explained by the fact that the disease
process in 3 · Tg-AD mice is the result of a genetic manipu-
lation, as those animals harbor the human amyloid precursor
Swedish mutation, presenilin-1 M146V (PS1(M146V)) knock-
in mutation, and tau (P301L) mutation; whereas in sporadic
AD patients, mitochondria malfunctioning and oxidative
stress are considered causative agents (155). Notably, rodents
that were engineered to express an inducible mutant form of
UDG1 show a decline in cognitive performance, as evaluated
by the Morris water maze test (102). Furthermore, and simi-
larly to that described in AD (198), rodents expressing mutant
UDG1 also display abnormal mitochondrial dynamics (101),
which supports the idea that impaired BER machinery may
also play a role in AD.

More studies are needed to clarify the involvement of de-
fects in mtDNA and its repair mechanisms in AD develop-
ment. Furthermore, caution should be taken in the analysis
and interpretation of results obtained with AD transgenic
mice, as these animals mimic the familial cases of the disease,
which represent less than 5% of all AD cases. In this line, it
would be interesting to perform studies in rodents subjected
to the intracerebroventricular administration of streptozoto-
cin (icvSTZ), which are considered animal models of sporadic
AD.

Conclusion

Mitochondria are major producers of ROS that under low/
moderate levels act as second messengers. However, during
aging and age-related diseases, an increased production of
mitochondrial ROS associated with a defective scavenging
system culminate in a redox imbalance and high levels of
oxidatively damaged biomolecules. Mitochondrial dysfunc-
tion is currently accepted as a pathological hallmark of AD,
which is considered an early event in disease pathogenesis.
The accumulation of oxidative lesions to mtDNA occurs
during aging and is also a prominent feature in AD, along
with the failure in BER machinery. The observation that
mtDNA oxidation occurs during aging and in the prodromal
stage of AD strongly supports the idea that mitochondrial
abnormalities are causative agents in AD. Whether mtDNA
oxidation is a determinant for the onset of disease is yet to be
clarified, namely if there is any threshold that triggers the
disease process. Nonetheless, it is tempting to propose that
the impairment in OXPHOS results in an exacerbation of ROS
generation that increases the probability of mtDNA mutations
in a positive feedback loop, a situation which is potentiated by
a defective BER machinery (Fig. 6). The clarification of BER in
AD also opens new windows for therapeutic intervention that
are aimed at effectively repairing damaged mtDNA.
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Abbreviations Used

8OHA¼ 8-hydroxyadenine
8OHdG¼ 8-hydroxydeoxyguanosine

8OHG¼ 8-hydroxyguanine
Ab¼ amyloid beta

ABAD¼Ab-binding alcohol dehydrogenase
AD¼Alzheimer’s disease

APE1¼AP endonuclease
BER¼ base excision repair

COX¼ cytochrome c oxidase
ETC¼ electron transport chain

HNE¼ 4-hydroxy-2-nonenal
H2O2¼hydrogen peroxide

LP-BER¼ long-patch BER
MCU¼mitochondrial Ca2 + uniporter
MPT¼mitochondrial permeability transition

MPTP¼mitochondrial permeability transition pore
mtDNA¼mitochondrial DNA
NADPH¼nicotinamide adenine dinucleotide phosphate

nDNA¼nuclear DNA
NEILS¼Nei-like homologs

NOS¼nitric oxide synthase
NOX¼nicotinamide adenine dinucleotide phosphate

oxidase
NTH1¼human endonuclease III homologue
OGG1¼ 80HG DNA glycosylase

OXPHOS¼ oxidative phosphorylation
ROS¼ reactive oxygen species

SP-BER¼ short-patch BER
TBARS¼ thiobarbituric acid reactive substances

UDG¼hyderoxymethyl-uracyl DNA glycosylase
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