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Abstract
Understanding the mechanisms leading from DNA to molecules to neurons to networks to
behavior is a major goal for neuroscience, but largely out of reach for many fundamental and
interesting behaviors. The neural control of breathing may be a rare exception, presenting a unique
opportunity to understand how the nervous system functions normally, how it balances inherent
robustness with a highly regulated lability, how it adapts to rapidly and slowly changing
conditions, and how particular dysfunctions result in disease. Why can we assert this? First and
foremost, the functions of breathing are clearly definable, starting with its regulatory job of
maintaining blood (and brain) O2, CO2 and pH; failure is not an option. Breathing is also an
essential component of many vocal and emotive behaviors including, e.g., crying, laughing,
singing, and sniffing, and must be coordinated with such vital behaviors as suckling and
swallowing, even at birth. Second, the regulated variables, O2, CO2 and pH (and temperature in
non-primate mammals), are continuous and are readily and precisely quantifiable, as is ventilation
itself along with the underlying rhythmic motor activity, i.e., respiratory muscle EMGs. Third, we
breathe all the time, except for short breaks as during breath-holding (which can be especially long
in diving or hibernating mammals) or sleep apnea. Mammals (including humans) breathe in all
behavioral states, e.g., sleep-wake, rest, exercise, panic, or fear, during anesthesia and even
following decerebration. Moreover, essential aspects of the neural mechanisms driving breathing,
including rhythmicity, are present at levels of reduction down to a medullary slice. Fourth, the
relevant circuits exhibit a remarkable combination of extraordinary reliability, starting ex utero
with the first air breath – intermittent breathing movements actually start in utero during the third
trimester – and continuing for as many as ~109 breaths, as well as considerable lability,
responding rapidly (in less than one second) and with considerable precision, over an order of
magnitude in metabolic demand for O2 (~0.25 to ~5 liters of O2/min). Breathing does indeed
persist! Finally, breathing is genetically determined to work at birth, with a well-defined
developmental program underlying a neuroanatomical organization with apparent segregation of
function, i.e., rhythmogenesis is separate from motor pattern (burst shape and coordination)
generation. Importantly, single human gene mutations can affect breathing, and several
neurodegenerative disorders compromise breathing by direct effects on brainstem respiratory
circuits (See below).

Figure 1 presents a broad overview of the central pattern generator for breathing. For
breathing, we distinguish rhythmogenesis from the more complex process of pattern
generation, which is the production of precisely coordinated and timed motor nerve burst
patterns across a broad array of muscles pumping the lung or controlling airflow resistance.
A substantial portion of the nervous system that controls breathing movements is not
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involved in rhythmogenesis, but instead transforms rhythmic signals into the appropriate
pattern of muscle contraction. These critical but non-rhythmogenic structures certainly
include motor and premotor neurons. In addition, there are sensory neurons, including
mechanoreceptors and chemoreceptors. Here we focus on recent advancements related to
two essential sites for rhythmogenesis (Figs 1, 4): i) the preBötzinger Complex (preBötC) in
generation of inspiratory rhythm, and; ii) the retrotrapezoid nucleus/parafacial respiratory
group (RTN/pFRG) in generation of active expiration. We first discuss their function,
anatomy and physiology, providing a foundation for us to then discuss their developmental
genetics.

Caveat lector
For an outsider, and even many insiders, making sense of the literature on respiratory
rhythmogenesis is challenging. The ultimate goal is to understand normal and pathological
breathing in humans. However, very little experimentation relevant to rhythmogenesis can
be done in humans, where the location and relatively small size of the relevant neural
structures in the brainstem and prevalence of heart beat- and breathing-induced movements
prevent invasive techniques and render noninvasive techniques, such as fMRI or PET,
difficult (Pattinson et al 2009). ii) While all non-human in vivo experimental models are
studied while breathing or in vitro or in situ while generating breathing-related neural
activity, breathing rhythm and pattern are highly dependent on the details of the
experimental preparation. In more or less intact mammals, breathing is markedly affected by
species (even strain), body temperature, blood gas levels, anesthetic (with different
anesthetics having different actions on breathing), paralysis, decerebration, integrity of
peripheral nerves such as the carotid sinus and vagus nerves (which can be intact or cut), and
sleep-wake state. In in situ preparations, the blood brain barrier is compromised. In rhythmic
slice preparations, slight variations in the rostral or caudal borders can markedly affect the
behavior, as does the composition of the bathing fluid, which can vary considerably in K+

(3–9 mM) and Ca2+ (1.0–2.5 mM) between different laboratories (Del Negro et al 2009,
Ruangkittisakul et al 2011, Ruangkittisakul et al 2008, Ruangkittisakul et al 2007, Smith et
al 1991). Unfortunately, we tend to pick and choose amongst results that align with our
biases, often ignoring confounds that temper or invalidate the comparisons, and dismiss
those that do not agree.

The terminology for breathing patterns, once well-defined and essential for straightforward
comparison of experimental results (Feldman 1986), has devolved. During eupnea,
commonly understood to mean quiet breathing or resting respiration in fully intact
mammals, neural output to respiratory muscles is regular, with rhythmic bursts of motor
activity to the diaphragm and external intercostal muscles driving inspiratory airflow, and
with expiratory airflow the result of passive recoil of the lung and ribcage. The term eupnea
has now been stretched to include the respiratory motor nerve patterns in hypothermic,
aortic perfused, vagotomized, blood-brain barrier compromised rodent preparations that
breath quite differently from intact rodents at rest (Paton 1996). Further confusing the issue
is the addition of the term “fictive”, such as “fictive eupnea”, to describe the pattern of XII
nerve activity in rhythmically active slice preparations (Garcia et al 2011, Lieske et al 2000).
Gasping, too, is a term that in its longstanding definition described the very stereotyped last
breaths in anoxic mammals just before they would otherwise asphyxiate, but now refers to
various respiratory motor nerve patterns in highly reduced preparations (Garcia et al 2011,
Lieske et al 2000, Paton et al 2006, St-John 2008, Viemari et al 2011), often to dismiss such
activity as irrelevant to understanding mechanisms underlying “eupnea”, however defined.
We disagree. Experimental limitations and discontinuity of definitions and terminology
notwithstanding, advances in the past six years provide considerable new insights into the
sites and mechanisms underlying breathing.
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preBötzinger Complex and inspiration
There is a broad consensus (with plenty of quibbling over details) for the answer to the age-
old question “Where does breathing originate?” The paradigms underlying investigation of
the neural control of breathing underwent a shift with the establishment of in vitro
experimental models relevant to breathing (Smith et al 1991, Suzue 1984) that led to
identification of the preBötC and the hypothesis that it was the kernel for respiratory
rhythmogenesis (Feldman et al 1990, Smith et al 1991). In previous reviews (Feldman &
Del Negro 2006, Feldman et al 2003, Rekling & Feldman 1998), we discussed key
experiments that tested this hypothesis in vivo. To better understand recent work, we note
three findings. i) The preBötC is both necessary and sufficient for the generation of
inspiratory motor, i.e., hypoglossal nerve (XIIn) output in in vitro rodent slice preparations
(Feldman et al 1990, Smith et al 1991). ii) Juvenile rats in vivo with brainstem transection
just rostral to the preBötC continue to generate rhythmic inspiratory-dominated breathing
patterns (Janczewski & Feldman 2006), as do in situ heart-brainstem preparations (Smith et
al 2007). iii) Neurotoxic lesioning of a peptide receptor-defined subset of preBötC neurons
results in ataxic breathing in otherwise intact rats. There are ~300 glutamatergic preBötC
neurons per side that express the neurokinin-1 receptor (NK1R) for which Substance P (SP)
is the ligand. A toxin, saporin, conjugated to SP (SP-SAP), selectively kills, over a period of
days, neurons that express NK1R. Injection of SP-SAP into the preBötC in intact adult rats
induces, after several days, a disturbed breathing pattern during sleep; with more complete
lesions, ataxic breathing occurs during wakefulness (Gray et al 2001) with apneas (complete
cessation of breathing) during sleep (McKay et al 2005).

Further (smoking gun) evidence for the preBötC as the kernel for inspiration
Slow neurodegeneration with saporin makes it difficult to separate the specific and
immediate effects of the loss of preBötC NK1R+ neurons from secondary effects, including
plasticity and bystander death (Loov et al 2012). Severe hypoxia and hypercapnea caused by
increasingly long and frequent apneas (Gray et al 2001) can itself cause neuronal death.
Moreover, neurotoxin-lesioned rats survive albeit with a markedly pathologic ataxic
breathing pattern (McKay et al 2005) for up to 12 days, leaving the unlikely possibility that
another site drives breathing under normal conditions. In order to eliminate these
confounding effects of slow degeneration, a largely overlapping subpopulation of
glutamatergic preBötC neurons that express the neuropeptide somatostatin (Sst; ~300/side)
(Llona et al 2004, Stornetta et al 2003) can be transiently suppressed by transfection with the
Drosophila allatostatin receptor (AlstR) and subsequent exposure to the ligand allatostatin
(AL). AL does not appear to activate any mammalian receptors. Rat neurons made to
express AlstRs hyperpolarize when exposed to AL. When AL is introduced into the
brainstem of control adult rats, there is no effect on breathing. However, in anesthetized or
awake adult rats whose preBötC Sst neurons express AlstR, AL rapidly induces a
remarkably persistent and profound apnea that requires mechanical ventilation to prevent
asphyxiation (Fig. 2) (Tan et al 2008). Implicit in this observation is the fact that these rats
generate no breathing movements at all; there are no volitional or emotive movements, nor
sighs or gasps. These are compelling data substantiating the essential role for preBötC
neurons in normal breathing, i.e., eupnea.

Respiratory rhythm generation in the preBötC
If understanding the neural control of breathing can be broken down into solving a series of
problems, foremost is that of delineating the mechanism for rhythmogenesis. More
generally, rhythms, oscillations and periodic bursting of various sorts are central to almost
all aspects of brain function, ranging from rhythmically patterned movements (Grillner &
Jessell 2009), to cortical and cerebellar rhythms associated with signal processing and state
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(Buzsáki 2006), to slower processes with daily or seasonal rhythms (Foster & Kreitzman
2004). Breathing presents a unique window into neural rhythmogenesis because of a
convergence of its essential properties: robustness, lability, a localized and identified rhythm
generator (preBötC) (a key piece of the puzzle lacking for locomotion or chewing (Gossard
et al 2011)), and various levels of reduction in vitro that provide exceptional access to
neurons and networks for imaging and electrophysiology while maintaining spontaneous
breathing-related motor output.

We postulate that rhythm is generated at the core of the respiratory central pattern generator
and that this core is not primarily concerned with details of the output pattern. Our view is
that timing signals normally originate in the preBötC and are broadcast to the rest of the
network, perhaps by a subset of glutamatergic neurons with widespread projections (Tan et
al 2010), which transforms the timing signals into appropriate patterns of muscle contraction
(Fig. 1, red). Adopting this point of view allows one to focus on the oscillation per se and its
neural origins. As mentioned above, the highly reduced slice preparation is experimentally
optimal to get at such mechanisms. Our explicit assumption is that mechanisms gleaned in
slices represent the foundation for rhythmogenic mechanisms in vivo. This point of view is
opposite to assertions that rhythm generated in the slice is irrelevant to eupneic breathing in
intact mammals (see below, Paton et al 2006, Smith et al 2007). In spite of all of the inherent
experimental advantages and the deceptive simplicity, understanding rhythmogenesis in the
preBötC in vitro is a tough problem.

Proposals for rhythmogenesis before the preBötC hypothesis focused on building “ball and
stick” models consisting of populations of respiratory-modulated spherical neurons, i.e.,
without dendrites, classified according to firing pattern with simple cellular properties, e.g.,
no voltage-dependency, no ion selectivity, no metabotropic actions, and straightforward
excitatory or inhibitory connections (Bianchi et al 1995, Feldman 1986, Merrill 1974,
Richter 1982, von Euler 1986). Once the intrinsic membrane properties of preBötC neurons
were measured in vitro, these schematic models were elaborated. Currently, there are two
major viewpoints for the mechanism of preBötC rhythm generation based on the widely
accepted finding that the preBötC rhythm is generated by glutamatergic interneurons (Funk
et al 1993, Wallen-Mackenzie et al 2006). Their distinction lies in whether the inspiratory
burst initiates due to a small population of specialized pacemaker neurons (defined below)
or results from excitatory interactions among preBötC neurons that express synaptically
triggered burst-generating conductances.

Role of glutamatergic pacemaker neurons in respiratory rhythm generation
The reader may note that this section is quite long given that we conclude it is unlikely that
pacemaker neurons play an essential role in rhythmogenesis. We evaluated the evidence for
and against possible roles of pacemaker neurons over a decade ago in a previous Annual
Review (Rekling & Feldman 1998). These critiques, however, remain relevant to more
recent work that pertains to the preBötC, as well as pacemaker-driven models of locomotor
and oral-motor rhythm generation (Brocard et al 2006, Gossard et al 2010, Gossard et al
2011, Tazerart et al 2008). The heuristic power of the relatively straightforward “pacemaker
hypothesis” may, in part, explain its persistence in the face of significant conflicting data.
Over the past decade, some investigators have moderated their view, interpreting newer data
as demonstrating that pacemakers and their underlying intrinsic conductances can contribute
to rhythmogenesis but conceding that they are not essential (Best et al 2005, Koizumi &
Smith 2008, Purvis et al 2007, Smith et al 2007). Yet, many authors continue to uncritically
assert that preBötC rhythm is pacemaker driven, and interpret their data or build their
models in that framework (Ben-Mabrouk & Tryba 2010, Pena et al 2004, Pena & Ramirez
2004, Ramirez et al 2011, Tryba et al 2008, Viemari et al 2011, Wittmeier et al 2008,
Zavala-Tecuapetla et al 2008).
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PreBötC rhythms in vitro continue without significant changes in frequency after blockade
of chloride-mediated inhibition (Brockhaus & Ballanyi 1998, Feldman & Smith 1989, Ren
& Greer 2006), which rules out mechanisms predicated on phase transitions that require
conventional postsynaptic inhibition. The original observation catalyzed a search for and
subsequent identification of preBötC neurons with bursting pacemaker properties that may
best be defined by the ability to generate: i) rhythmic membrane polarization absent
rhythmic input, and/or ii) “ectopic” bursts of rhythmic activity when depolarized (Del Negro
et al 2002a, Del Negro et al 2005, Smith et al 1991, Thoby-Brisson & Ramirez 2001).
Bursting in preBötC neurons has two underlying ionic mechanisms. The first is voltage-
sensitive and depends on subthreshold activation of persistent Na+ current (INaP) in neurons
with sufficiently low leakage-like K+ current (IK-Leak) (Butera et al 1999, Del Negro et al
2010, Del Negro et al 2002a, Koizumi & Smith 2008); INaP-dependent bursting is present in
a subset of preBötC neurons at least from birth as well as throughout the medulla
postnatally; it is not a specialized property of preBötC neurons (Del Negro et al 2010,
Johnson et al 1994, q.v. Koizumi et al 2008). The second mechanism depends on a Ca2+-
activated nonspecific cationic current (ICAN) (Thoby-Brisson & Ramirez 2001), whose
activation mechanism in the absence of synaptic input depends on voltage-gated Ca2+

channels. Bursting of this type is less voltage-sensitive (Del Negro et al 2005, Ramirez et al
2011 [their Fig. 4c]) and emerges in a subset of preBötC neurons after P4 (Del Negro et al
2005, Pena et al 2004) with its relative prevalence influenced by neuromodulation (Ramirez
et al 2011, Ramirez et al 2004, Tryba et al 2008, Viemari et al 2011, Viemari & Ramirez
2006). Under most experimental conditions in slices from neonatal rodents, ~5–25% of all
preBötC inspiratory neurons exhibit bursting pacemaker properties, regardless of transmitter
phenotype, i.e., glutamatergic or glycinergic (Del Negro et al 2005, Koizumi & Smith 2008,
Morgado-Valle et al 2010, Pagliardini et al 2005, Pena et al 2004). However, the logic in the
literature gets murky as one proceeds from the observation that pacemakers are present to
conclusions that these pacemaker neurons generate the rhythm.

Arguments for the pacemaker hypothesis generally hinge on two observations. First,
pacemaker neurons oscillate with a period and burst duration that matches the duty cycle of
the respiratory rhythm in vitro. Second, conditions that regulate the period or burst duration
of synaptically isolated pacemaker neurons, e.g., high K+, neuromodulators, or ion channel
agonists/antagonists, have similar effects on respiratory rhythm in vitro. Both of these
arguments assume pacemaker neurons are glutamatergic/excitatory, which, alas, is not the
case. In transgenic mice that express enhanced green fluorescent protein (EGFP) in
glycinergic neurons, where ~50% of preBötC neurons fluoresce (Winter et al 2009), ~23%
of inspiratory glycinergic preBötC neurons have voltage-dependent pacemaker properties
(Morgado-Valle et al 2010).

Tests of the pacemaker hypothesis are straightforward neither in execution nor in
interpretation. Antagonists of INaP or ICAN such as riluzole or flufenamic acid invariably
preclude intrinsic bursting in isolated pacemaker neurons, but only in some cases perturb or
stop the rhythm when bath-applied or locally infused into the preBötC of slices, en bloc
preparations, or in situ (Del Negro et al 2002b, Del Negro et al 2005, Fong et al 2009,
Koizumi & Smith 2008, Pace et al 2007b, Pena et al 2004, St-John 2008, St-John et al
2007). Nevertheless, under the best of circumstances (which is likely never the case),
rhythm cessation after drug exposure is a necessary but not sufficient condition if
pacemakers are essential for rhythmogenesis. That is because INaP and ICAN antagonists
markedly affect other membrane properties and depress excitatory transmission in all
neurons. Their net effect is a widespread decrease in neuronal excitability, not limited to
particular respiratory or even non-respiratory nuclei (Del Negro et al 2002b, Doble 1996,
Ptak et al 2005). Additionally, local infusion of an INaP antagonist into the midline nucleus
raphe obscurus also stops the rhythm (Pace et al 2007b, Ptak et al 2009). Therefore, rhythm
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cessation by drug application cannot be attributed to effects solely on preBötC neurons, and
thus the results of pharmacological tests are at best equivocal in support of the pacemaker
hypothesis. The conclusions that INaP pacemaker neurons drive gasping-like behavior in
reduced in vitro and in situ preparations (Paton et al 2006, Pena et al 2004), and that INaP-
dependent pacemaker activity drives spinal locomotor patterns (Brocard et al 2010, Tazerart
et al 2008), are similarly unconvincing.

Can respiratory rhythm be generated without pacemaker neurons and without synaptic
inhibition?

Previously (Feldman & Del Negro 2006, Rekling & Feldman 1998) we described a
schematic “group-pacemaker” mechanism (Rekling et al 1996a, Rekling et al 1996b) that
subsequently gave rise to explicit models for respiratory rhythm generation (Mironov 2008,
Rubin et al 2009a). Before explaining how a group pacemaker works, we should note that
there are few definitive data in support of the group-pacemaker model. It is at present a
working hypothesis and framework for further testing. In the model, a fraction of
glutamatergic preBötC neurons fire tonically at a low rate (<1 Hz) between breaths.
Percolating activity in this interconnected subset of respiratory neurons (Rekling et al 2000)
increases via positive feedback. The part of the cycle in which positive feedback dominates
other network constituents is properly considered the preinspiratory phase because it
precedes the inspiratory burst by 300–400 ms. According to the group pacemaker, recurrent
excitation builds up during the preinspiratory phase and leads to a network-wide
synchronous inspiratory burst phase. Consistent with this model, a ramp-like increase in the
baseline membrane potential accompanied by low-rate spontaneous spiking during the
preinspiratory phase is observed in so-called “Type 1” neurons, which are thought to be
rhythmogenic based on expression of NK1 receptors (see above) and physiologically
verified excitatory synaptic interconnections in the preBötC (Rekling et al 2000).

The termination of the inspiratory burst is still unresolved. Synaptic depression is a possible
mechanism that would halt recurrent excitation (Rubin et al 2009a). Burst termination may
also involve “activity-dependent” outward currents evoked by intense spiking, including:
Na+/K+ ATPase electrogenic pump current, Na+-dependent K+ current, and ATP-dependent
K+ channels (Del Negro et al 2009, Haller et al 2001, Krey et al 2010, Mironov et al 1998,
Mironov & Skorova 2011).

ICAN, burst generation, and dendritic excitability
Active dendritic membrane properties, in concert with intracellular signaling, can couple
synaptic input to burst generation. Because inspiratory bursts are much larger in magnitude
(and intraburst spiking is more intense) compared to preinspiratory activity, the onset of the
inspiratory burst reflects the recruitment of postsynaptic conductances that amplify synaptic
drive, but are unrelated to INaP (Pace et al 2007b). Morphology may play a role in synaptic
amplification. Rall’s analyses of dendritic properties, e.g., (Rall et al 1967), the advent of
dendritic patch-clamp recordings, and new laser-imaging technologies demonstrate a wide
array of excitable properties in dendrites that significantly influence synaptic integration,
specifically the spatiotemporal summation of EPSPs (Branco & Hausser 2010, Branco &
Hausser 2011). In preBötC neurons, activation of AMPA receptors as well as group I
metabotropic glutamate receptors (mGluRs) evoke postsynaptic Ca2+ transients that evoke
ICAN, either locally at the dendritic input site (Pace & Del Negro 2008, Pace et al 2007a) or
via propagating Ca2+ waves (Mironov 2009, Mironov 2008). The net result is that excitatory
synaptic inputs evoke inward currents during the inspiratory burst phase that promote robust
inspiratory burst generation (Fig. 3A,B). Somatic Ca2+ transients, on the other hand, do not
appear to play a critical role (Morgado-Valle et al 2008). The underlying ion channels
appear to be members of the transient receptor potential (trp) family, most likely TRPM4 or
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TRPM5 (Crowder et al 2007, Mironov 2008, Mironov & Skorova 2011), or possibly TRPC3
or TRPC7 (Ben-Mabrouk & Tryba 2010). Dendritic excitability is critically important in
understanding neuron computation in general (London & Hausser 2005, Stuart et al 2007).
In a rhythmic central pattern generator, the ability to summate and synchronize excitatory
inputs in support of periodic burst generation may be a function particularly well suited for
dendrites, which we have just begun to exploit in order to elucidate key aspects of
respiratory rhythmogenesis (Del Negro et al 2011, Mironov 2009).

Role of inhibition in rhythmogenesis and pattern formation
Inhibition is an essential element that underlies rhythmic movements in invertebrates, where
most central pattern generator neurons are inhibitory (Orlovsky et al 1999). For locomotion
in mammals, reciprocal inhibition was first proposed as the mechanism for the alternating
rhythm around each joint (Brown 1911, Brown 1914, Sherrington 1906). While this remains
hypothetical, inhibition clearly underlies left-right limb alternations (Goulding 2009, Kiehn
2006). For breathing, postsynaptic inhibition is postulated, sometimes stipulated, as an
essential element for rhythmogenesis (Büsselberg et al 2001, Büsselberg et al 2003, Richter
& Spyer 2001). Inhibitory currents and potentials are readily observed in brainstem
respiratory-modulated neurons in intact mammals (Richter 1982), and are quite prominent
when recorded under barbiturate anesthesia (ibid). The core mechanism for rhythm
generation in one currently widely disseminated model is an “inhibitory ring” of three
distinct neuronal populations of preBötC and BötC neurons that sequentially inhibit each
other and transform a presumptive tonically active subpopulation of excitatory preBötC
neurons into an inspiratory-modulated one (Molkov et al 2010, Rubin et al 2009b, Smith et
al 2007). Block of synaptic inhibition throughout the entire neuraxis of a reduced in situ
perfused rat preparation produces apnea with tonic firing of preBötC and BötC neurons
(Smith et al 2007). Under certain pathological conditions, such as when the hindbrain is
transected just rostral to preBötC in this in situ preparation, the inhibitory ring is presumably
broken and according to this model preBötC pacemaker neurons are released from tonic
excitation and endogenously burst, driving a respiratory rhythm by a completely different
mechanism. This presumptively pacemaker-driven rhythm is strikingly different from that
presumably produced by the inhibitory ring: i) inspiratory and expiratory outputs discharge
synchronously; ii) inspiratory bursts change shape from incrementing to decrementing; and
iii) respiratory frequency drops. According to the model removing the inhibitory ring should
produce apnea (Molkov et al 2010, Paton et al 2006, Rubin et al 2009b, Smith et al 2007).
This does not appear to be the case. In anesthetized adult spontaneously breathing vagus-
intact rats, effectively complete antagonism of GABAA and glycine receptors in the preBötC
and BötC slows down the rhythm to that equivalent to a vagotomized rat, i.e., no apnea is
induced (Janczewski et al. in preparation) but does abolish a key and powerful pulmonary
reflex, the Breuer-Hering inspiratory-inhibitory inflation reflex. This result suggests that
postsynaptic inhibition within the preBötC (and BötC) is not essential for generation of
respiratory rhythm, which is consistent with the group-pacemaker model. The primary role
of inhibition appears to be in shaping the pattern of respiratory motor output and assuring its
stability, but not in the generation of rhythm per se.

Opiates and the preBötC
Opiates are a class of compounds that can depress breathing, and at too high a concentration,
can do so sufficiently to cause asphyxiation, as can happen when administered as an
analgesic or taken recreationally. μ-opioid receptors are present on preBötC neurons and
when activated reduce their excitability (Gray et al 1999). These preBötC μ-opioid receptors
appear responsible for respiratory depressive effects of opiates (Montandon et al 2011). A
functional antagonist of the μ-opioid receptor-signaling pathway in preBötC neurons is the
5HT4 receptor, which does not appear to be present in pain pathways (Manzke et al 2003).
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In adult rat: i) systemic administration of a 5HT4 agonist reverses the respiratory depressive
effects of systemic administration fentanyl (a potent μ-opioid agonist) without a significant
reduction in analgesia. ii) More to the point, when breathing is depressed by systemic
administration of fentanyl, this is fully reversed by focal injection into the preBötC of
naloxone, a μ-opioid antagonist (Montandon et al 2011). These observations provide further
proof of the importance of the preBötC in assuring that we breathe, and give promise of
protocols to reduce the dangers of opiate analgesics.

Rediscovery of expiration
Until recently, the paradigm for rhythmogenesis was that regardless of the underlying
mechanism, all phases of respiratory motor outflow originate from the same source(s). Thus,
the preBötC was envisioned to sequentially parcel out signals to produce the alternating
rhythm of inspiratory and expiratory movements. This does not appear to be the case. The
diaphragm, an extraordinarily powerful muscle for inspiratory movements, is a defining
characteristic of mammals. Breathing is the only mammalian behavior requiring continuous
movement of skeletal muscles 24/7/365; it consumes ~7% of metabolic output at rest, and
much more in pulmonary disease (Bell et al 1996, Peters 1969). In mammals, the apparently
most efficient pattern for rhythmic breathing at rest is active inspiration, generated by forces
resulting from diaphragmatic and external intercostal muscle contraction acting to expand
the lung, alternating with passive expiration due to the forces generated by the elastic recoil
of the inspiratory muscles, lung and ribcage. Modest increases in ventilation near resting
values, such as during slow walking in humans, are typically accomplished by increasing
inspiratory (tidal) volume, combined with decreasing expiratory duration, with expiration
remaining (predominately) passive (Gardner 1980). During exercise, e.g., when chasing prey
or fleeing predators, there is a transition from passive to active expiration (Aliverti et al
1997) due to the onset of contraction of abdominal and internal intercostal muscles. In the
past decade there has been a significant paradigm shift, with the current view that the
rhythm originates from two distinct but coupled oscillatory populations with segregated
function, i.e., one for inspiration and one for expiration (Fig. 1).

The above paradigm shift began with the observation that both in vitro and in vivo, low dose
opioids could produce an occasional dropout of the inspiratory phase, i.e., quantal slowing
(Mellen et al 2003), which requires structures rostral to the preBötC (Janczewski and
Feldman, 2006). This led to a hypothesis of an opiate-insensitive second oscillator that
drives active expiration (Janczewski & Feldman 2006, Mellen et al 2003). The location of
this second oscillator was suggested by observations in in vitro en bloc preparations, where a
population of neurons rostral to the preBötC and mostly ventral to the facial nucleus (VIIn),
dubbed the parafacial respiratory group (pFRG), was active prior to the onset of inspiratory
activity (Onimaru & Homma 2003). The pFRG overlaps (and could even be identical) with
the retrotrapezoid nucleus (RTN, see below), postulated to be a site for central
chemoreception for CO2 (Guyenet et al 2009, Smith et al 1989, Stornetta et al 2006).
Pending resolution as to their unique identity, we refer to this region as RTN/pFRG
(Feldman et al 2003, Onimaru et al 2006). The non-chemosensitive function of the RTN/
pFRG was initially hypothesized to be the primary source of inspiratory rhythm (Onimaru &
Homma 2003). However, in juvenile rats generating active expiration, transection of the
brainstem just caudal to the RTN/pFRG abolishes active expiration without much effect on
inspiratory motor activity (Janczewski & Feldman 2006). The RTN/pFRG is postulated as a
conditional oscillator for active expiration that is quiescent under certain conditions
(Janczewski & Feldman 2006). Reduced preparations containing the RTN/pFRG, but
lacking the preBötC generate rhythmic output from VII motor roots under opioid inhibition
(Onimaru & Homma 2008), consistent with the RTN/pFRG as an independent oscillator.
The absence of significant expiratory neuronal activity in the RTN/pFRG of normocapnic,
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normoxic adult anesthetized mechanically ventilated rats (Fortuna et al 2008, Mulkey et al
2007) reflects the absence of active expiration (Feldman & Del Negro 2006). Thus,
stimulating the lateral RTN/pFRG via local disinhibition or photoactivation with
channelrhodopsin transforms a “resting” breathing pattern with no active expiration into one
with active expiration associated with activation of late expiratory RTN/pFRG neurons (Fig.
4)(Pagliardini, 2010). These results are consistent with the presence of an expiratory
oscillator in the RTN/pFRG that when turned on promotes active expiration. While elevated
CO2 stimulates active expiration, this is not a prevalent stimulus in the normal life of most
mammals. Rather, we suggest descending signals related to exercise (Eldridge et al 1985) or
to a powerful emotional response, e.g., fear, are likely to more commonly turn on the RTN/
pFRG oscillator to produce active expiration. Moreover, active expiration can sometimes be
seen in anesthetized mammals (De Almedia 2010 a,b, Iizuka 2010) or in highly reduced
preparations (Abdala 2009, Iizuka 2004, Iizuka 2011, Taccola 2007) suggesting multiple
mechanisms may gate its activity.

Expiration, like Gaul, is divided into 3 parts
Regardless of its origin, expiration has subphases, and in particular the transitions at the
beginning and end of the expiratory phase are referred to as the postinspiratory (early
expiratory) and preinspiratory (late expiratory) periods. In the postinspiratory period
following a sharp decline in phrenic nerve activity, inspiratory airflow stops and expiratory
airflow begins. Often just after this point, there is a small, postinspiratory burst of phrenic
nerve activity, which causes a lengthening contraction of the diaphragm that brakes
expiratory airflow. During the preinspiratory phase (defined above): i) Type 1, putatively
rhythmogenic, preBötC neurons exhibit a ramp-like slow depolarization in vitro (Rekling et
al 1996a) and ii) in vivo when stimuli that when delivered earlier in expiration affect
expiratory duration (TE), are now ineffective, e.g., Figs. 8 & 10 in (Cohen & Feldman 1978,
Feldman & Gautier 1976). Whether postinspiratory output constitutes a distinct phase of
breathing rhythmogenesis (3-phase model) (Molkov et al 2010, Smith et al 2007) or a motor
subcomponent of the expiratory phase (2-phase model) (Janczewski & Feldman 2006) is
controversial. The timing of abdominal activity is, in part, dependent upon the experimental
condition with purely preinspiratory (de Almeida et al 2010, Iizuka 2009), or a mixture of
pre- and postinspiratory (Abdala et al 2009, Janczewski & Feldman 2006) activity reported
in some experiments. Similar flexibility in motor patterns is present in reduced neonatal
preparations (Ruangkittisakul et al 2007, Taccola et al 2007).

Respiratory connectome
preBötC intrinsic connections

Regardless of the critical cellular properties, the connectivity amongst preBötC neurons
must play an essential role in the stability and lability of the rhythm, and perhaps in
rhythmogenesis itself. This information has been challenging to obtain. Type 1 inspiratory
preBötC neurons, based on a small sample in rhythmically active mouse slices, synaptically
project to one out of six neurons that also express Type 1-like properties and also form
electrical synapses with one out of six like neurons, but not the same ones (Hayes & Del
Negro 2007, Rekling et al 2000). Putative rhythm-generating neurons in organotypic
cultures of the preBötC form clusters of ~7 neurons, each projecting to four neighbors.
Therefore connectivity estimates range from a low of 15% to as high as 67%. The
topological pattern of connectivity in neural networks (like all networks) influences whether
and how its elements can synchronize their activity (Bogaard et al 2009), and therefore, will
prove to be at least as important as a simple tally or an estimate of connection probability
when it comes to understanding the relationship between connectivity and important metrics
of network function. For example, the robustness of network function under “attack”, i.e.,
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destruction of its constituent nodes, depends on topology (Barabási 2003). Cumulative
single-neuron laser ablation of ~18% of inspiratory preBötC neurons causes irreversible
cessation of rhythm in slices (Hayes et al 2012), but it remains unknown to what extent the
underlying details of the wiring diagram determine the robustness (fragility) of the
rhythmogenic network. Robustness is an important characteristic essential both for
understanding the neural basis for periodic behaviors like breathing as well for interpreting
and treating neurodegenerative disorders (Alheid et al 2004).

preBötC and the RTN/pFRG interconnect
Glutamatergic Sst inspiratory-modulated preBötC neurons project to the RTN/pFRG (Tan et
al 2010). Glutamatergic, galanin-positive RTN/pFRG neurons project to the preBötC
(Bochorishvili et al 2012); whether these neurons are involved in the rhythmogenic aspects
of RTN/pFRG remain to be established. What is curious is the lack of identification of
inhibitory connections between these two structures, since preBötC and the RTN/pFRG
oscillate in anti-phase postnatally. A polysynaptic inhibitory pathway is possible, perhaps
involving a relay in the BötC. Significant resources are being devoted to determining the
connectome for cortical columns, where the challenges are heightened by the paucity of
information concerning the sophisticated signal processing that is occurring. We suggest that
the preBötC presents a much more straightforward challenge of considerably less
complexity, as the signal processing and output is well understood, and may be useful as an
intermediate step in the development of brain connectomics.

Genetics of the respiratory network
The understanding of the developmental genetics of brainstem circuits underlying the neural
control of breathing is rapidly advancing, with considerable potential to inform our
understanding for the preBötC and RTN/pFRG. The organization of the brainstem is
remarkably consistent amongst vertebrates (Ma et al 2010, Straka et al 2006), a consequence
of conserved developmental programs that control stereotyped patterns of gene expression,
including, critically, transcription factors (TFs) (Gray 2008, Gray et al 2004). At first
approximation, every brainstem neuron results from a specific sequence and combination of
TF expression based on its physical location during neurogenesis (Briscoe et al 2000).
Rostrocaudally, the brainstem is organized into 7–8 domains (rhombomeres) associated with
conserved and discrete patterns of TF expression (Lumsden 1990). Medullary and caudal
pontine respiratory populations are distributed, more or less, across rhombomeres 5–7.
Dorsoventrally, the brainstem neural tube can be divided into at least 13 distinct
dorsoventral domains based on the expression of TFs (Fig. 5a) (Sieber et al 2007). Each of
these domains produces distinct classes of neurons with their own neurotransmitter identity
(Fig. 5a), morphology and migratory pattern (Fig. 5b). Neurons of ventral respiratory
column (Alheid et al 2004) and adjacent RTN/pFRG are predominantly derived from four
distinct progenitor domains (Fig. 5b,c).

Genetics of the preBötC
We made the case that the preBötC is the rhythmogenic source of inspiratory drive. Yet it is
a small portion of the rostral ventral respiratory column (Alheid et al 2004), which mostly
contains bulbospinal premotoneurons receiving inspiratory drive from the preBötC. What is
the developmental mechanism underlying this ventral respiratory column organization, and,
in particular, what makes the preBötC special? Are its constituent neurons genetically
distinct from adjacent respiratory premotoneurons? The expression in preBötC neurons of
the receptor NK1R (Gray et al 1999, Guyenet et al 2002, Guyenet & Wang 2001, Wang et al
2001), the peptide Sst (Stornetta et al 2003, Tan et al 2008), and the glycoprotein reelin (Tan
et al 2011) distinguishes this structure from surrounding regions (Fig. 5d) ; yet, none of
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these markers appear to endow the preBötC with rhythmogenic properties, per se. In mice,
these genes are expressed on only a partially overlapping minority of preBötC excitatory
neurons (~1000 per side) (Gray et al 2010). The role that different genetically defined
subclasses of preBötC neurons play in rhythmogenesis is unknown. Genetic ablation of Sst
or NK1R genes, but not the neurons that would otherwise express these genes, does not
appear to affect the formation of the preBötC and produces only mild respiratory phenotypes
(Berner et al 2007, Doi & Ramirez 2008, Shvarev et al 2010, Telgkamp et al 2002). No
intrinsic membrane properties, e.g., INaP or ICAN, appear uniquely expressed in subsets of
preBötC neurons.

The ventrolateral medulla (VLM) contains both excitatory (glutamatergic) and inhibitory,
mostly glycinergic, respiratory neurons (Morgado-Valle et al 2010, Schreihofer et al 1999,
Tanaka et al 2003, Winter et al 2009, Winter et al 2010). Glutamate is the essential
excitatory neurotransmitter for preBötC rhythmogenesis (Funk et al 1993, Greer et al 1991).
Genetic ablation of the vesicular glutamate transporter 2 (VGlut2, Slc17a6) completely
eliminates respiratory-related motor activity both in vitro and in vivo (Wallen-Mackenzie et
al 2006). Respiratory dysfunction leading to death at or near birth is a consequence of the
genetic ablation of a number of transcription factors (Blanchi & Sieweke 2005, Gray 2008).
In some cases (see below) these TFs play a role in the specification of neurons that modulate
preBötC function, but not preBötC neurons per se. These include TFs important for the
specification of ventral medullary and pontine glycinergic (Lbx1, Ptf1a) or glutamatergic
(Atoh1, Krox20/Egr2, Lbx1, Lmx1b, MafB/Kreisler, Phox2b, Tlx3, Tshz3) neurons
(Blanchi et al 2003, Blanchi & Sieweke 2005, Borday et al 2005, Caubit et al 2010,
Dubreuil et al 2009, Glasgow et al 2005, Goridis et al 2010, Guyenet et al 2009, Hirsch et al
1998, Hoshino et al 2005, Nsegbe et al 2004, Pagliardini et al 2008, Pattyn et al 2000a, Qian
et al 2001, Rose et al 2009b, Sieber et al 2007, Thoby-Brisson et al 2009, Yamada et al
2007). None of these mutations, however, affect the specification of preBötC NK1R/Sst
neurons. For example, Lmx1b and Tlx3 are expressed in and essential for the formation of
ventral medullary catecholaminergic neurons that partially intermingle with preBötC
neurons (Cheng et al 2004, Qian et al 2001). Tlx3 mutation leads to respiratory instability in
vitro that is alleviated by disinhibition. Similarly, subsets of Atoh1-derived neurons are
present near the ventral medullary surface (Rose et al 2009a). Atoh1 mutant mice do not
breathe in vivo at birth; yet, a functional preBötC and rhythmic activity persists in vitro
(Rose et al 2009b).

The transcription factor Dbx1 is essential for preBötC development and respiratory function.
Dbx1 is expressed throughout the brainstem and spinal cord in V0 neural progenitor cells
(Fig. 5a). The V0 domain consists of at least two subdivisions, dorsal and ventral (V0d and
V0v) (Lanuza et al 2004, Pierani et al 2001). V0d neurons are predominantly GABAergic,
located near the dorsal midline. V0v postmitotic neurons express the TFs Evx1 and Evx2,
and a subset also expresses VGlut2. In spinal cord, V0v neurons are a small population that
migrates towards the ventral midline. Within the medulla, however, the V0v glutamatergic
subpopulation greatly expands and migrates laterally to the ventral medullary surface
producing a column extending the full length of the ventral respiratory column including the
RTN/pFRG, BötC, preBötC, and rVRG (Figs. 5b–e).

Neurons with high levels of Sst in the neonatal mouse ventral medulla are limited to the
(approximate boundaries of the) preBötC, and are derived from Dbx1-expressing
progenitors (Fig. 5d) (Bouvier et al 2010, Gray et al 2010). These cells are ~20% of preBötC
Dbx1-derived neurons. The function and developmental relationship between preBötC Sst
and other neurons within and adjacent to the preBötC are unknown. NK1Rs and Sst2aRs are
co-expressed on the majority of preBötC Sst neurons, but are more broadly expressed within
and adjacent to the preBötC (Fig 5d). In addition, Dbx1 defines not only preBötC NK1R/Sst
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expressing neurons, but essentially all glutamatergic neurons of the ventral respiratory
column (Fig. 5e). This suggests that, for breathing, rhythm generating and (a significant
proportion of the) downstream premotor neurons are derived from a single developmental
progenitor domain. This organization is in contrast to that proposed for models of
locomotion in which rhythms are generated by the interactions of multiple developmental
populations (Gosgnach 2011, Goulding 2009). The genetic mechanisms specifying preBötC
neurons from the larger Dbx1-derived population are unknown, but they may induce
signaling cascades similar to those responsible for segmental patterning of homeobox genes
in brainstem and spinal cord (Champagnat et al 2009).

The elimination of the commissural projections from only Dbx1-derived neurons by deletion
of the axon guidance receptor Robo desynchronizes respiratory outflow between left and
right sides (Bouvier 2010). Genetic deletion of Dbx1 eliminates all preBötC glutamatergic
respiratory neurons, including those expressing NK1R and Sst, with consequent complete
elimination of inspiratory activity, both in vitro and in vivo (Bouvier et al 2010, Gray et al
2010). Additionally, preBötC Dbx1-derived neurons are predominately inspiratory-
modulated, at least in vitro (Bouvier et al 2010, Gray et al 2010) (Fig. 3D). Together, these
data indicate that both the generation and coordination of inspiratory output depends on
Dbx1-derived neurons, presumably within the preBötC, which are commissural (Fig. 3E).

The mouse in the room
In vivo experiments targeting respiratory neurons in goats suggest that under certain
conditions, breathing does not require preBötC neurons (Krause et al 2009, Neumueller et al
2011, Wenninger et al 2004a, Wenninger et al 2004b). Here, a non-specific excitotoxin
(ibotenic acid (IA)) is injected in slowly increasing quantities over 5 weeks (to avoid
bilateral application of high dosages that can cause acute cardiac and respiratory failure). In
all cases, IA affects breathing during injection, but breathing returns to normal by the next
day. This results in a substantial, if not complete, loss of neurons within the presumptive
preBötC, at least to the degree that markers and neuroanatomy in goats are homologous to
rodents. In contrast, goats injected with SP-Saporin into the same region followed 10–14
days later with a single large dose of IA cease breathing for at least 6 hours without recovery
either leading to death or necessitating euthanasia. One interpretation is that normal
breathing can be generated in the absence of preBötC neurons given modest damage per
event and sufficient time for respiratory network reorganization between events, possibly
including neurogenesis. Alternatively: i) with sufficient time, regions outside of the preBötC
with a different developmental and genetic background can generate normal respiratory
output. One possible source would be neurons in the RTN/pFRG (see below). ii) The post-
lesion rhythm may be generated by neurons that are genetically related to preBötC neurons,
but which do not normally generate inspiratory rhythm, at least in rats (Tan et al 2008), i.e.,
some subset of the Dbx1-derived glutamatergic neurons that extend the entire length of the
ventral respiratory column (Fig. 5b). This explanation is consistent with the observation that
saporin ablations that include but extend beyond the preBötC lead more rapidly to death
than smaller ablations (Gray et al 2001, Wang et al 2003). iii), In goats, the boundaries of
the preBötC, which have only been well-characterized in rat and mouse, extend beyond the
IA lesion and that a prolonged recovery is required for the unlesioned remaining neurons to
coordinate their activity for effective breathing movements. NK1R expression is not limited
to the preBötC in mice and in goats the expression pattern appears to be a more ubiquitous,
so the use of NK1R expression to identify preBötC anatomical boundaries is questionable
(Wenninger et al 2004a). iv) The rhythm is generated by a population at some distance from
the preBötC, perhaps in the rostral pons, although there are currently no data to support this.

Feldman et al. Page 12

Annu Rev Physiol. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Genetics of RTN/pFRG: active expiration, central chemoreception, and
CCHS

There are two critical functions associated with the RTN/pFRG: generation of active
expiration and central chemoreception. The lateral RTN/pFRG is the most sensitive site for
induction of active expiration without a concomitant increase in inspiration (Pagliardini et al
2011); this region contains Phox2b-, Atoh1- and Dbx1-derived neurons (Fig. 5a,c). One of
the most essential functions of breathing in mammals is maintenance of the partial pressure
of blood/tissue CO2 (~40 mm Hg in arterial blood in humans). Several brainstem
populations of neurons, in particular the medial RTN/pFRG and the raphe, are likely to play
a role in this “central” chemosensitivity (Feldman et al 2003). Blunted CO2
chemosensitivity in humans is a defining characteristic of Congenital Central
Hypoventilation Syndrome (CCHS) (Berry-Kravis et al 2006, Weese-Mayer et al 2010).
CCHS is a rare disorder caused by an expansion in the gene encoding Phox2b, a highly
conserved and essential TF involved in the specification of brainstem visceral sensory and
motoneurons (Pattyn et al 2000a, Pattyn et al 2000b). The size of the Phox2b expansion
directly correlates with the severity of CCHS. In rodents, a small population of ~2100 RTN/
pFRG glutamatergic neurons are responsive to small changes in pH and express Phox2b
(Guyenet et al 2009, Stornetta et al 2006). This identification of a specific population of
neurons as putative CO2 sensors is a landmark finding of the first developmental marker for
neurons important for breathing whose dysfunction leads to a survivable breathing
phenotype (Dubreuil et al 2008).

The case that RTN/pFRG neurons play a role in mediating chemosensitivity is compelling.
Briefly, the elimination of ~70% of RTN/pFRG Phox2b neurons, by the use of the
aforementioned saporin lesion technique, leads to a ~50% attenuation of the ventilatory
response to increases in blood pH (Takakura et al 2008). Activation of medial RTN/pFRG
Phox2b neurons directly increases inspiratory output (Abbott et al 2009) and can produce
active expiration (Abbott et al 2011). In contrast, stimulation of all neurons in the non-
Phox2b expressing lateral RTN/pFRG reliably evokes active expiration but has little effect
on inspiratory activity (Pagliardini et al 2011). In the adult rat, medial RTN/pFRG Phox2b
neurons are not rhythmically active, even under conditions of strong chemosensitive drive.
This is consistent with a role of the medial RTN/pFRG in chemosensitivity but not in
rhythmogenesis or production of active expiration (Guyenet et al 2005, Mulkey et al 2004).

Like nearly all TFs, Phox2b is expressed in distinct subpopulations, only some of which
maintain postnatal expression (Kang et al 2007, Pattyn et al 1997). RTN/pFRG neurons are
generated from a caudal pontine progenitor population that coexpresses the TF Lbx1 as well
as Phox2b (Pagliardini et al 2008, Sieber et al 2007). These neurons migrate to their final
location in the ventrolateral medulla (dB2, Fig. 5b,f). The RTN/pFRG is absent in Lbx1
mutant mice as well as in Krox20 null mice that lack rhombomeres 3 and 5 (Jacquin et al
1996, Pagliardini et al 2008, Sieber et al 2007). Phox2b gene function itself is necessary for
RTN/pFRG formation as its conditional elimination using either Lbx1 (limited to the dB2
domain, Fig. 5a) or Krox20 (limited to rhomobmeres 2 and 5) cre recombinase mice
prevents RTN formation, and produces neonatal lethality and blunted chemosensitivity
(Dubreuil et al 2008, Ramanantsoa et al 2011).

Mouse mutants that recapitulate the most common CCHS mutation (Berry-Kravis et al
2006), an alanine expansion (Phox2b27Ala/+) in the germline, have a blunted inspiratory
response to elevated CO2 in in vitro embryonic preparations and, although they are capable
of at least some inspiratory activity, most, but not all, die at or shortly after birth (Dubreuil
et al 2008, Ramanantsoa et al 2011). In this mutation, RTN/pFRG Phox2B neurons form
dorsally but do not migrate to the ventral surface. This migration normally coincides with
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the expression of the TF Atoh1 within putative RTN/pFRG neurons, but Atoh1 expression is
lost in these mice (Ramanantsoa et al 2011, Rose et al 2009a, Rose et al 2009b). Loss of
Atoh1 also prevents RTN/pFRG migration (Ramanantsoa et al 2011, Rose et al 2009a, Rose
et al 2009b). Surprisingly, the conditional expression of the Phox2b27Ala mutation within
rhombomeres 3 and 5 is not neonatal lethal, but results in the loss of Atoh1 expression and
of RTN/pFRG neuron migration, as well as blunted chemosensitivity in neonates. By 4
months of age, however, mice recover 60% of their CO2 sensitivity (compared to wild type
controls) and have normal blood CO2 levels at rest (Ramanantsoa et al 2011).

Fetal development of the RTN/pFRG
In utero, rhythmic respiratory motor output in mice begins around embryonic day 15.5
(E15.5) coincident with the onset of respiratory activity in the embryonic preBötC (Thoby-
Brisson et al 2005). However rhythmic brainstem activity is present by E14.5, i.e., ~1 day
prior to the onset of preBötC activity, within the Phox2b-expressing region near the facial
nucleus, called the embryonic parafacial oscillator (ePF), presumably the embryonic
equivalent to the RTN/pFRG. In the later fetal period, the initially slow preBötC rhythm is
coupled to a faster ePF rhythm (Thoby-Brisson et al 2009). Unlike the preBötC, ePF
rhythms do not require glutamatergic neurotransmission as they persist following
pharmacological blockade of glutamate receptors or genetic ablation of the glutamate
transporter VGlut2 (Thoby-Brisson et al 2009, Wallen-Mackenzie et al 2006). Rhythmically
active ePF neurons express Phox2b and NK1R, but not Sst2a or μ-opioid receptors (Gray et
al 2010). In neonatal en bloc preparations, the majority of pFRG pre-I and “respiratory-
modulated tonic” neurons express Phox2b (Onimaru et al 2008, Onimaru et al 2012).
Mutations that eliminate RTN/pFRG Phox2b neurons, such as in Krox20 mutants, eliminate
ePF activity and what remains is a slowed fetal preBötC rhythm (Thoby-Brisson et al 2009).
Together these data suggest, that ePF and RTN/pFRG contain the same population of
Phox2b-expressing neurons that have a vital perinatal role. As the ePF is an intrinsically
rhythmic population coupled to breathing movements, these neurons represent excellent
candidates for an evolutionarily conserved, independent expiratory oscillator. Significantly,
however, fetal RTN/pFRG rhythms persist in Dbx1 mutant mice. These mice do not
generate any rhythm activity from VII or other respiratory motoneurons, suggesting RTN/
pFRG neurons alone are insufficient to assure generation of active expiratory (or
inspiratory) movements (Bouvier et al 2010).

Serotonin, central chemoreception and SIDS
Raphe serotonergic neurons are also proposed to play a role in mediating CO2
chemosensitivity (Hodges & Richerson 2010). Raphe neurons have a discrete pattern of TF
expression including the combinatorial expression of the TFs Pet1 and Lmx1b (v3l, Fig. 5a).
Pet1 is expressed only in serotonin neurons and its genetic ablation decreases their number
by 70% (Hendricks et al 1999, Hendricks et al 2003). Lmx1b is expressed in several
brainstem populations, but its conditional elimination from Pet1-expressing neurons
completely eliminates all brainstem serotonergic neurons. In adult mice, this produces ~50%
reduction in the ventilatory response to high levels of CO2, but no effect on baseline
respiration (Hodges 2008). This is the same pattern of chemosensitivity seen in adult mice
with Phox2b27Ala/+ RTN/pFRG mutations. Partial serotonin neuron loss produces a similar
but smaller effect (Hodges et al 2011). In neonates, the complete loss of serotonin increases
and prolongs neonatal apnea and reduces ventilation at rest; ventilation nevertheless
recovers to wild type levels by adulthood (Hodges et al 2009). Selective silencing of raphe
neurons in adults depresses breathing and blunts chemosensitivity, indicating a continuing
role for these neurons in respiratory modulation (Ray et al 2011). In aggregate, these data
strongly suggest that both RTN/pFRG and raphe neurons contribute to normal
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chemosensitivity and that the explicit role of either one may be dependent upon the age and
state, e.g., sleep/wake, rest/exercise, of the animal (Huckstepp & Dale 2011). Medullary
serotonergic neurons are present in vitro, where they can affect rhythmogenesis and motor
output (Ballanyi 2004, Bianchi et al 1995, Doi & Ramirez 2010, Richter et al 2003),
representing mechanisms by which serotonin can acts to regulate CO2.

SIDS may be attributable to serotonin dysfunction in many cases (Paterson et al 2006). In
vitro, serotonin induces a depolarizing nonselective cation current in preBötC neurons that
enhances burst generation (Ptak et al 2009). The same or a very similar nonselective cation
current is also a target of Substance P, likely co-released (under unknown conditions) by
raphe neurons (Ben-Mabrouk & Tryba 2010, Hayes & Del Negro 2007, Pena & Ramirez
2004). These serotonergic inputs also enhance bursting pacemaker neurons by amplifying
INaP and closing leakage K+ currents (Pena & Ramirez 2002, Ptak et al 2009). Although the
molecular identity of the nonselective cation current(s) described in these various studies is
unknown, it could be related to the Na+ leakage current (Lu et al 2007) or a canonical
transient receptor potential, i.e., TRPC, channel, TRPC3 or TRPC7 (Ben-Mabrouk & Tryba
2010).

Astrocytes and chemosensation
The mechanism(s) underlying central chemosensitivity in vivo is incompletely understood.
In highly reduced preparations, both raphe and RTN/pFRG neurons are chemosensitive but
no protein or pathway within either of these populations has been unequivocally identified
as the transducer of pH/CO2 sensitivity. Hence whether these neurons are intrinsic
chemosensors or part of a relay pathway is unclear, although the two possibilities are not
mutually exclusive and appear to act in concert through multiple transduction mechanisms
(Huckstepp & Dale 2011). An alternate hypothesis is that pH/CO2 is intrinsically sensed by
a distinct population of astrocytes, which by releasing ATP near the ventral surface,
modulate activity of nearby chemosensitive neurons and thus provide a CO2-related
stimulus that modulates breathing (Gourine et al 2010). The ventral medullary surface has
several sites where local acidification increases ventilation (Nattie & Li 1996, Schlafke et al
1975). At some of these sites, including adjacent to the RTN/pFRG, astrocytes respond to
modest acidification (~0.2 pH units) by releasing ATP. Also, there is an increase in ATP
release as blood CO2 increases in vivo and local application of ATP receptor agonists
increase ventilation (Gourine et al 2005). Optogenetic stimulation of astrocytes in the region
of the RTN/pFRG increases ventilation as well (Gourine et al 2010). A subset of brainstem
astrocytes, including those adjacent to the RTN/pFRG, express connexin 26 (Cx26). Cx26
hemichannels are directly CO2 sensitive and open to release ATP upon acidification
(Huckstepp et al 2010a, Huckstepp et al 2010b) and blocking gap junctions reduces CO2
sensitivity akin to purinergic receptor antagonists (Wenker et al 2012). Astrocytic
gliotransmission thus provides a hypothetical mechanism linking CO2 levels to changes in
breathing.

Respiratory networks and human disease
Increasingly, researchers working on the neural control of breathing are trying to understand
the causes of, and find rational therapies for, diseases that affect breathing. Central
respiratory dysfunction is symptomatic of many diseases that can occur at almost any time
during life, and unfortunately, we poorly understand the underlying causes (Axelrod et al
2006, Weese-Mayer et al 2008a, Weese-Mayer et al 2006). This is true even for diseases
where causative single gene mutations are known and relevant transgenic mice are available
such as CCHS (see above), Rett or Joubert Syndromes (Ben-Shachar et al 2009, Parisi et al
2006, Valente et al 2006a, Valente et al 2006b, Wan et al 1999). In Rett Syndrome, due to a
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mutation in the MeCP2 gene, girls, and much more rarely, boys, show prolonged periods of
respiratory dysfunction during wakefulness and milder effects during sleep (Dunn &
MacLeod 2001, Weese-Mayer et al 2008b). MeCP2 mutant mice show similar respiratory
deficits and dysfunction in several different populations of glutamatergic and noradrenergic
neurons are suggested as causative, although the respiratory phenotype may not manifest by
effects in the brainstem or glia (Lioy et al 2011, Robinson et al 2012, Viemari et al 2005,
Voituron et al 2010, Weese-Mayer et al 2008b). Similarly, breathing pathologies, especially
prolonged and frequent apneas during sleep, are present in a number of neurodegenerative
diseases such as Parkinson’s, amyotrophic lateral sclerosis, and multiple systems atrophy,
where there are losses of preBötC NK1R or Sst neurons (Alheid et al 2004, Benarroch 2003,
Benarroch 2007, Benarroch et al 2003, Schwarzacher et al 2010).

More problematic are diseases that likely have a strong, but currently unknown, genetic
component(s) such as Rapid Onset Obesity, Hypoventilation, and Hypothalamic
Dysfunction (ROHHAD) or diseases where the role of genetics is unknown, such as apnea
of prematurity, sudden infant death syndrome (SIDS), Perry syndrome, and sleep apnea
(Axelrod et al 2006, Carroll et al 2010, Ize-Ludlow et al 2007, Paterson et al 2009, Rand et
al 2011, Tsuboi et al 2008, Weese-Mayer 2008, Weese-Mayer et al 2008a). These last two
are the most prevalent diseases with a breathing phenotype (for live births, SIDS which kills
~6 in 1000 infants <1 year of age (http://www.sidscenter.org/Statistics/table1.html), and
sleep apnea affects 4–6% of the adult male population at all ages and an equivalent
percentage of females postmenopause (http://www.rightdiagnosis.com/s/sleep_disorders/
prevalence-types.htm), with significant increases in morbidity and mortality). As mentioned
above, a leading hypothesis posits that SIDS is a dysfunction of serotonin in infant
brainstem (Paterson et al 2009). The relatively early stage of our knowledge of the
respiratory neural control system as it relates to human disease has lead to confusion about
the underlying causes, which consequently may overemphasize possible future treatments to
the detriment of both scientific progress and patient hopes.

Challenges remaining
While great progress has been made since the discovery of the preBötC, especially as related
to key and specific brainstem sites generating and modulating respiratory rhythm and
pattern, our understanding of the underlying mechanisms is still at an early stage. Key high
priority problems include identifying and understanding neurons important for the
generation of expiratory activity, and understanding the mechanisms of rhythm generation
within the preBötC. While the problem is still unsolved, of all behaviors of interest,
understanding the neural control of breathing may be first to cross the finish line.
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Figure 1. Overview of the central pattern generator for breathing
Core rhythm generating circuits appear to have two distinct brainstem oscillators, the
endogenously active preBötC (red box) driving inspiratory activity by projections to various
premotor populations that in turn project to inspiratory muscles that pump air, e.g.,
diaphragm and external intercostals, and those that modulate airflow resistance, e.g.,
laryngeal and tongue muscles, and the conditionally active RTN/pFRG (blue box) that have
a similar functional path to expiratory muscles. There are numerous influences: i)
Neuromodulatory (left). Respiratory pattern is highly labile. When you go from quiet sitting
to slow walking, your O2 consumption increases ~3-fold, and if your ventilation does not
increase rapidly you probably will pass out within 100 meters. There is widespread
agreement that peptides, serotonin, norepinephrine and other endogenous neuromodulators
can affect rhythmogenesis (Garcia et al 2011). These actions are essential for normal
regulation and may go awry in diseases affecting breathing. ii) Suprapontine inputs (top)
related to volition and emotion. iii) Sensory inputs (right) essential for proper regulation of
blood gases and for mechanical adjustments related to posture, body mechanics and likely
metabolic efficiency. This review focuses on the core oscillators.
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Figure 2. preBötC is essential for breathing in adult rats
Rapid silencing of AlstR-expressing preBötC SST neurons induces persistent (>45 min
when mechanically ventilated) apnea in anesthetized or awake adult rats. Traces are
plethysmographic recordings. AL administered intracerebrocisternally induces a gradual
decline of frequency and tidal volume until apnea develops after several minutes. After ~60
min mechanical ventilation, rats resume spontaneous breathing. From (Tan et al 2008).
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Figure 3. Inspiratory burst generation: role of dendrites and properties of Dbx1+ preBötC
neurons
A and B, dendritic two-photon Ca2+ imaging and somatic patch clamp. A, preBötC neuron
filled with fluorescent dye from somatic whole-cell recording. Regions of interest (ROIs)
shown, which correspond to B. B, dendritic Ca2+ transients (arrowheads) precede somatic
bursts and XII motor output. Asterisks indicate somatic spike-driven Ca2+ transients (Del
Negro et al 2011). C and D, morphology (C) and physiology (D) of a Dbx1+ preBötC
neuron. Drive potentials of ~25 mV amplitude and depolarization block of spiking indicative
of ICAN activation during the inspiratory burst. E, transverse view of a mouse slice (ventral)
showing two Dbx1+ neurons (right) and a Dbx1− neuron (left) recorded and biocytin
reconstructed. All three were inspiratory neurons. Dbx1+ neurons are commissural (axons in
red). IO is inferior olive.
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Figure 4. Passive expiration transformed into active expiration
Anesthetized adult rat has active inspiration, reflected in diaphragm EMG (DIA), but
passive expiration, reflected in tonic abdominal EMG. Photoactivation of lateral RTN/pFRG
neurons transfected with ChR2 (gray) induces active expiration. Redrawn from (Pagliardini
et al, 2010).
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Figure 5. Genetic organization of brainstem respiratory regions
A. Schematized description of brainstem progenitor domains for 8 dorsal (dA1–dB4) and 5
ventral progenitor populations (left) based on their relative location within brainstem
progenitor region. Partial list of transcription factors expressed at some point within
progenitors (italics) or post-mitotic neurons within each domain (middle).
Neurotransmitter(s) identity of neurons derived from each domain. Adapted from (Gray
2008) B. Cartoon showing partial migratory path of ventral medulla (left) and caudal pons
(right) neurons in embryonic mouse brainstem. Colors correspond to domains in (A). Thick
arrows correspond to populations important for breathing. Note dB2 population (light green)
is present only in caudal pons. C. Cartoon of developmental origin and approximate
anatomical locations of respiratory-related populations in sagittal plane within ventral
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medulla and caudal pons. Colors correspond to developmental progenitor domain from A.
Legend describes transmitter released by these neurons. Within the ventral respiratory
column, nearly all respiratory-related glutamatergic neurons are Dbx1-derived. Magenta box
outlines the location of preBötC SST-expressing neurons. RTN/pFRG, in contrast, contains
Dbx1, Atoh1, and Phox2b glutamatergic populations. Ventral medulla also contains a large
number of dB1 derived glycinergic neurons. B. PreBötC neurons are derived from Dbx1-
expressing progenitors. Four color confocal image showing coexpression of NK1R
(magenta), SST2aR (green), SST (cyan), and β-gal (yellow) in P0 Dbx1 β-gal mouse
(adapted from (Gray et al 2010). Arrows indicate coexpression of all 4 genes. Images to
right show single channel expression. Red arrowhead indicates Dbx1-derived NK1R/
SST2aR-expressing neuron that lacks SST. Yellow arrowheads indicate Dbx1 derived
neurons lacking coexpression. Magenta arrowhead indicates NK1R expressing nucleus
ambiguus neuron. E. preBötC Dbx1 neurons are glutamatergic. Image showing β-gal
(magenta) expression within the majority of VGlut2 (green) expressing preBötC neurons
(adapted from (Gray et al 2010)). Inset is enlarged from central square. F. preBötC contains
glycinergic neurons. Three color confocal image showing Pax2 (red) and Sst (blue)
immunoreactivity with intrinsic GFP from a P0 GlyT2-GFP transgenic mouse (Morgado-
Valle et al 2010). Arrows show Pax2 co-localization with Sst or GFP but no GFP expression
in SST neurons. Inset is enlarged from central square. Scale bars = 200 μm. D – dorsal, L –
lateral. G. RTN/pFRG Phox2b neurons express Phox2b and Atoh1. (A) Magnification of
ventral respiratory column from E16.5 Math1M1GFP/M1GFP hindbrain, as indicated by the
black rectangle on inset model hindbrain (black ventral region is pFRG/RTN while yellow
circle indicates preBötC), showing NK1R (red), Phox2b (blue), and Math1-EGFP (green)
expression. NK1R labeled both the pFRG/RTN and 17 preBötC neurons. Magnified pFRG/
RTN neurons from the caudal pole of VII (solid white rectangle in A) showing co-
localization of Math1EGFP with Phox2b and NK1R. (B) shows the three markers merged.
Further magnification from white boxes in B is shown to right of each panel in (B′). Image
from (Rose et al 2009b).
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