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Abstract
Advanced omics technologies such as deep sequencing and spectral karyotyping are revealing
more of cancer heterogeneity at the genetic, genomic, gene expression, epigenetic, proteomic, and
metabolomic levels. With this increasing body of emerging data, the task of data analysis becomes
critical for mining and modeling to better understand the relevant underlying biological processes.
However, the multiple levels of heterogeneity evident within and among populations, healthy and
diseased, complicate the mining and interpretation of biological data, especially when dealing with
hundreds to tens of thousands of variables. Heterogeneity occurs in many diseases, such as
cancers, autism, macular degeneration, and others. In cancer, heterogeneity has hampered the
search for validated biomarkers for early detection, and it has complicated the task of finding
clonal (driver) and nonclonal (nonexpanded or passenger) aberrations. We show that subtyping of
cancer (classification of specimens) should be an a priori step to the identification of early events
of cancers. Studying early events in oncogenesis can be done on histologically normal tissues from
diseased individuals (HNTDI), since they most likely have been exposed to the same mutagenic
insults that caused the cancer in their neighboring tissues. Polarity assessment of HNTDI data
variables by using healthy specimens as outgroup(s), followed by the application of parsimony
phylogenetic analysis, produces a hierarchical classification of specimens that reveals the early
events of the disease ontogeny within its subtypes as shared derived changes (abnormal changes)
or synapomorphies in phylogenetic terminology.
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Cancer remains a particularly challenging disease in terms of prevention and treatment, and
our progress in understanding its initiation and progression has been slow and patchy despite
the large worldwide investment. While there are many reasons for the slow progress, one
issue stands out as a major obstacle to advancement, namely, the various forms of
heterogeneity in malignant transformation and progression. Published studies on tumor
heterogeneity date back to the early 1950s and continue to this day; however, clinical and
pharmaceutical research persistently ignore this crucial problem [Heppner and Miller, 1983;
Heng et al., 2009; Michor and Polyak, 2010]. Not surprisingly, many physicians and cancer
biologists are frustrated with the lack of progress on circumventing the problem [Couzin-
Frankel, 2011]. Heterogeneity has been an underestimated phenomenon in biological
systems in general, and an issue that is challenging for scientists who lack training in
population biology and evolutionary theory, and for those who view cancer as a static rather
than a dynamic disease. There are relatively few areas of bioinformatic research suitable for
dealing with heterogeneous data; among the most promising is an analytical paradigm found
in the biological field of phylogenetics [Abu-Asab et al., 2008a, b].

Introduction of omics’ high-throughput technologies, such as microarrays, deep sequencing,
and mass spectrometry of metabolomics and proteomics has brought to the forefront the
challenging problem of analyzing massive heterogeneous data with thousands of variables
(also known to computer scientists as high-dimensional data) and increased the awareness
about the phenomenon of biological heterogeneity [Clarke et al., 2008]. There are at least 3
levels of intratumoral heterogeneity in tumors; the first being where a tumor has more than
one cellular/molecular lineage present despite being of clonal origin. The second level is
between tumors within the same individual, such as a primary and its multiple metastases. A
third level of heterogeneity is present among tumors of the same histological subtype but
from different individuals.

The need for algorithmic solutions to accurately explore heterogeneous data is evident.
Without a bioinformatic solution we cannot determine the molecular boundary of diseases,
identify biomarkers for early detection, subtype a disease, or stratify patients for treatment
options. Heterogeneity is also often the reason for treatment failure, especially when the
tumors develop resistance to chemotherapy [Sumer and Gao, 2008; Heng et al., 2010].
Heterogeneity within patient populations likely also contributes to the interindividual
variability in both responses to treatment and the distribution of adverse effects [Goldstein et
al., 2007].

Early events in cancer initiation remain unknown for many cancers, and there is no concrete
agreement on the precise driving events [Pogribny, 2010]. Much of the debate now centers
on whether early events are either genetic or epigenetic [Koturbash et al., 2011], involve
mitochondrial mutations [Fendt et al., 2011], constitute one ontogenetic pathway or more
(e.g. low-vs. high-grade pathways) [Landen et al., 2008; Abu-Asab et al., 2011], and
whether early events are similar in every cancer type, persist or are superseded by later
events [Ranzani et al., 1995]. Few rigorous approaches or methods have been proposed to
identifying early cancer events from omics datasets.

We propose that early events in cancer initiation should be identified in nondiseased rather
than neoplastic specimens, specifically in histologically normal tissues from diseased
individuals (HNTDI). Such specimens, when taken from tissue that is in proximity to tumor
within an organ, often harbor premalignant molecular alterations [Tripathi et al., 2008; Chen
et al., 2010; Graham et al., 2010] that differ from healthy controls in gene expression.
Ganeshan et al. [2011] suggested that texture analysis of the tissue surrounding a focal
breast lesion could be used to identify subgroups of patients with ductal carcinoma in situ
who have a lower risk for positive resection. ‘Normal’ tissues proximal/adjacent to the
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tumor are among the most appropriate for studying early events because they have likely
been exposed to the same mutagenic insult(s) that caused the neighboring cancer. We
propose that HNTDI data should first be compared with controls via the outgroup
comparison in a polarity assessment. Subsequently, data can be processed in a parsimonious
phylogenetic analysis. Early events should then be revealed as shared derived changes
(abnormal changes) or synapomorphies. Thus, we should be able to classify subtype-related
specimens into natural lineages, or clades in phylogenetic terminology, as we describe
below.

The Dynamic Nature of Cancer and the Identification of Early Events
Cancer differs from many other diseases in its long time course and the dynamic nature of
progression and development: cancer cells continue to change by adapting to selective
pressures that often cause dedifferentiation to a more ‘primitive’ neoplastic state. The
primitive state here is defined as the lack of differentiation, which makes it difficult to
assign some cancer cells to any tissue of origin, a particular problem when the primary
tumor’s origin is unknown [Daley, 2008]. Since many cancer therapies are based on
knowing the site of origin, this problem has immediate clinical relevance. Often, cancer is
described as a multiphasic disease, but it is probably more accurate to describe it as a
continuum of change accumulation until the cancerous cells reach their new homeostatic
state, often seen in metastatic tumors. Since cancer progression usually drives towards a less
differentiated phenotype, cancer could be characterized as a downhill race to
dedifferentiation. Superimposed on this continuum are multiple developmental pathways or
scenarios that can lead to the same result – a cancer phenotype. Therefore, from its initiation
onwards, most tumors will contain evolving lineages (or clones) of cells.

The stochastic nature of events throughout its development is a major source of cancer
heterogeneity at many levels [Loeb et al., 2008]. However, not all events in a cancer are
driver events; some events are nonexpanded (passenger) and do not occur in all tumors of a
cancer type. This mixture of driver and passenger events poses significant biological and
bioinformatic challenges, and separating out the driver from passenger events is the key to
understanding cancer progression [Bozic et al., 2010]. Despite the many mutations that arise
in a tumor, cells survive and produce progenies that are better fit for survival. Thus, from
within the mutational chaos there appears to be a selection-for-fitness process that produces
successful phenotypes. Early and driver events of cancer initiation and progression could,
therefore, be precise and definable because otherwise tumors will collapse by the sheer
weight of their mutational load, which rarely takes place.

Precisely defining early events may not easily be ascertained because it is difficult to
determine the exact timing of the early event. Since molecular boundaries are ill-defined for
most diseases, by attempting to characterize early events as we have described here, data
accumulation will eventually help to define disease boundaries and its early events by
modeling the disease as a spectrum. The number and sequence of early events may vary
across the subtypes of the disease, as we show below. Hence, early events are better viewed
as a profile of several variables rather than as single biomarkers.

A bioinformatic paradigm that can accurately decipher or model heterogeneity using
multiple high-throughput datasets of each cancer type is clearly needed. Such bioinformatic
tools should also include identifying early events of disease initiation and the continuous
change that creates multiple ontogenetic pathways and levels of heterogeneity [Abu-Asab et
al., 2011]. Datasets from different sources, coupled with objective modeling of various types
of cancer by phylogenetics, can produce a ‘Tree of Cancer’. We envision such a cancer tree
to be a cladogram that enables us to locate the common changes among all or several types
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of cancer, which includes shared early events that transcend several cancer types. Here we
present the results of analysis of 2 sets of gene-expression breast cancer data to illustrate the
possibility of data pooling followed by the mapping of early events as the first steps in
building a ‘Tree of Cancer’.

By analyzing these data, we unveil 3 major issues related to cancer gene expression as they
occur in microarray data. The first issue is the heterogeneity of gene-expression data. We
highlight this characteristic in 2 datasets of breast tissue. The second is the identification of
early events in cancer initiation that can be approached by using cancer-adjacent specimens
and that appear to be histologically normal but harbor gene-expression abnormality, as
revealed by a phylogenetic analysis approach. The third issue, which is related to the first
two, deals with the question of whether early events can be biomarkers of early
transformation from normal cells into cancer.

Materials and Methods
The data used are from 2 microarray publicly available datasets of breast tissues, GDS3139
[Tripathi et al., 2008] and GDS3716 [Graham et al., 2010], which were downloaded from
NCBI’s Gene Expression Omnibus (GEO) DataSets (http://www.ncbi.nlm.nih.gov/gds).
GDS3139 is comprised of 29 specimens representing 14 ‘normal’ samples from epithelium
adjacent to a breast tumor and 15 samples from patients who underwent a reduction
mammoplasty (RM) and so are assumed to be disease free. GDS3716 consists of gene-
expression data from 4 sets of histologically normal epithelia breast specimens from 18 RM,
6 prophylactic mastectomy surgeries, 9 biopsies from estrogen receptor-alpha positive breast
tumors, and 9 biopsies from estrogen receptor-alpha negative breast tumors. Both datasets
were analyzed on GPL96 [HG-U133A] Affymetrix Human Genome U133A Array, which
allowed us to combine the 2 datasets after the process of polarity assessment, thus producing
a total of 71 specimens.

Data were analyzed by the method described in Abu-Asab et al. [2006]. Briefly, the
expression values of each specimen were sorted into either derived (abnormal) or ancestral
(normal) groups by comparing the values of the HNTDI specimens against the range of the
RM specimens for every gene in the dataset. This process transformed the original data
matrix into a qualitative matrix of 0s (ancestral/normal) and 1s (derived/abnormal). This
matrix was processed with MIX (the parsimony program in the PHYLIP package), using the
Wagner parsimony method as described by Felsenstein [1989].

Shared derived gene expressions (termed synapomorphy[ies] in phylogenetic terminology)
for each group of specimens that formed a clade (a branch on the cladogram above a node),
and those specific for each specimen, were extracted from the program’s ‘outfile’. The MIX
algorithm assigned a number to every cladogram node and listed the synapomorphies of
each node. Thus, we could match the lists of synapomorphies with gene identifiers from the
microarray experiment.

Results
Phylogenetic Analysis

MIX produced 2 similar most parsimonious cladograms with a minor difference in the
placement of 2 specimens of the 71 analyzed. Since this difference did not affect either the
general topology of the cladograms or the interpretations, we include the first cladogram of
the 2 to illustrate our findings (fig. 1).
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The cladogram classified the 71 specimens into 11 clades (fig. 1), each defined by a number
of synapomorphies. Table 1 shows some of the significant clades, their members and their
synapomorphies. The base of the cladogram is occupied by 8 clades that belong to the RM
group, while the upper 3 clades comprised the HNTDI specimens (clades 1, 2 and 3). The 3
HNTDI clades were arranged in tandem and did not share any synapomorphy (no
synapomorphy defined them as a group). Clades 1, 2 and 4 were subdivided into smaller
subclades, with each subclade defined by a set of synapomorphies (table 1). Some of these
subclades were further subdivided with an increasing number of synapomorphies: clades 1
and 2 were each subdivided into 5 subclades (a–e), where 1a has 43 synapomorphies, and
the other 4 subclades (1b–e) share 49 synapomorphies. The more subdivision within the
clade the more synapomorphies there are that define these subdivisions. For example,
subclade 1e, which occupies a terminal position in its clade, is defined by 554
synapomorphies. Synapomorphies that circumscribe clades and subclades are of greatest
interest because they depict the earliest events.

In addition to the clades’ synapomorphies, each specimen has its own apomorphies (unique
gene-expression aberrations). For example, specimen GSM512567 within subclade 1c has
1,737 apomorphies. These apomorphies are the nonclonal aberrations (passenger) that are
specific for this specimen.

The topology of the cladogram has significant biological meaning because it defines the
relationships among clades. The arrangement of the HNTDI clades is interpreted as the 3
clades representing 3 independent developmental phenotypes. Thus, the synapomorphies of
each HNTDI clade are the early events of a neoplastic phenotype. Also of interest is clade 4,
the sister clade of the HNTDI clades. Clade 4 forms a transitional zone from normal RM to
cancer-susceptible HNTDI specimens/clades; in this case, clade 4 and its subclades are
defined by very small numbers of synapomorphies signifying only slight transformation.

Gene-Expression Heterogeneity
By examining the lists of differentially expressed genes listed by Tripathi et al. [2008] and
Graham et al. [2010], no gene from their gene lists had an expression level that was
consistently abnormal (derived) across all of the HNTDI specimens when compared with the
normal expression range of the RM specimens (fig. 2A). We selected a few genes to
illustrate this point. Specimens in figure 2 were arranged according to the HNTDI 3 clades
membership to further show the distribution of gene-expression aberration within these
clades; it also showed that phylogenetic subtyping of clades identified synapomorphies that
have a more consistent expression pattern within each clade than is produced by considering
the fold change (fig. 2).

The patchy (or mosaic) pattern of gene-expression heterogeneity exhibits expression modes
within a group of specimens that can be termed the asynchronous and the dichotomously
asynchronous [Lyons-Weiler et al., 2004; Abu-Asab et al., 2008b]. The asynchronous mode
refers to normal and abnormal gene expressions among the HNTDI specimens of a given
gene. The dichotomously asynchronous mode refers to the presence of over- and
underexpression of a gene within the HNTDI specimens in relation to the normal range of
the RM specimens. Examples of these 2 expression modes can be seen in genes JUN and
TIMP1 in figure 2B.

Discussion
Datasets of gene-expression microarrays in our analysis revealed the extent of existing
heterogeneity within the HNTDI breast specimens. This heterogeneity manifests as
asynchronous and dichotomously asynchronous gene-expression patterns. However,
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maximum parsimony remains a most reliable method for analyzing heterogeneous data
[Abu-Asab et al., 2008a, b]; the data are modeled onto a cladogram by finding the most
parsimonious explanation for data distribution among specimens. Thereafter, the cladogram
serves as a multidimensional map that shows the pattern of diversity within the breast cancer
by: (i) classifying specimens into groups that share the same gene-expression aberrations,
(ii) listing those shared aberrations, and (iii) indicating the direction of change for the entire
set of specimens. The cladogram is a hierarchical classification with several levels of
branching where each branch is circumscribed by a number of synapomorphies, which are
equivalent to clonal changes that may be the driver of the pathological process (fig. 3).

While microarray data are only one element of a set of events that include epigenetic
modifications and genome reorganization, we selected these data because of their
widespread usage and public availability. A fold-change analysis of these HNTDI breast
specimens has shown that they exhibit signs of early expression transformation of breast
cancer [Graham et al., 2010] as well as perturbation of cancer-related pathways that are
markers of disease risk, occult disease or the neighboring tissue’s response to an existing
tumor [Tripathi et al., 2008].

Due to its dynamic nature, early changes in gene expression in cancer may not be preserved
or their signals can be diluted in later stages of cancer progression. Therefore, only tissues
showing early signs of transformation are suitable for identifying early events. Using mature
cancer specimens – a common practice in cancer research – may not identify biomarkers of
early detection. Additionally, the results of our analysis of HNTDI specimens support our
earlier conclusion that disease modeling by subtyping (class discovery/classification) should
precede exploration of its clonal aberrations or the identification of early events [Abu-Asab
et al., 2011]. Both sets of events are different for each subtype of the disease, as we have
demonstrated here. The large clades of HNTDI specimens (clades 1, 2, and 3 in fig. 1) are
the subtypes that exist in this study collection; their synapomorphies are the early events in
breast cancer development (fig. 2).

Our approach and results also call into question the practice of generating differentially
expressed genes for a whole set of specimens without a biologically meaningful and
discriminatory process. Such lists can be misleading and generate the false impression that
they could easily and successfully be used in early detection tests or personalized treatment;
this practice has been proven to be unsuccessful [Diamandis, 2010; Buchen, 2011]. The
work we describe here offers an alternative approach. The 2 gene lists based on fold-change
of differentially expressed genes generated by the 2 previously published studies do not
acknowledge the asynchronous nature of the HNTDI gene expression. Other than showing
heat maps and qRT-PCR, these lists and descriptions do not mention the asynchronous
expressions of differentially expressed genes. Failure to adequately account for
heterogeneity is common among microarray studies and has often produced disappointing
results. Only by examining the raw data of the 2 studies does the extent of expression
heterogeneity of gene expression in the HNTDI specimens become evident.

Do Early Cancer Initiating Events Include Genomic Contributions?
We view cancer initiation and progression as a dynamic continuum of events. Nonetheless,
an evident phenotypical distinction can be applied by pathologists to categorize this
continuum into 3 phases: histologically normal with minimum change (HNWMC),
precancerous and cancerous. The genome theory of cancer evolution asserts a genomic
component to cancer initiation in addition to genetic and epigenetic events [Heng et al.,
2011a, b]. Genomic instability and its related events are well documented in mature cancers
and preneoplastic lesions, but have not yet been shown in HNWMC such as the HNTDI.
While precancerous cells are dysplastic with nuclear atypia that cannot always be
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distinguished from those seen in neoplastic cells [Berman, 2010], HNWMC are not
dysplastic and their nuclei cannot be distinguished from normal cells. The implications of
declaring early events as only genetic and/or epigenetic affect the conceptual view of cancer
and the global search for early detection biomarkers or profiles. However, in the absence of
genomic data on HNWMC, it is premature to conclude that early events do not include
genomic modifications.

Biomarkers versus Profiles in Early Detection
The general failure of the search for validated early detection biomarkers has exposed the
weaknesses of the disease concept within the current biomedical paradigm. The failure may
stem partly from the lack of understanding of 2 fundamental characteristics of the disease
process. The first is the dynamic nature of disease. Whether one thinks of disease as being
either a categorical or a continuous with several phases of events, different events occur at
each phase or along the spectrum of the disease (fig. 3). Therefore, markers of early events
are most likely different from later events. This necessitates the modeling of each disease by
examining as many specimens as possible to establish its spectrum of events from initiation
onward. The second fundamental characteristic of the disease process is the heterogeneity
that manifests in multiple initiating pathways, each with its own mix of clonal and
nonexpanded events.

The dynamic nature of the disease process coupled with heterogeneity of early events (as
shown in fig. 2) highlight the inherent weakness of the univariate biomarker concept. Early
detection biomarkers remain a hypothesis that needs to be tested [Buchen, 2011]. It seems
reasonable to consider that there may not be a reliable single biomarker for early detection.
Rather than look for a single or multiple genes, we may be better served looking for a
dynamic profile(s) that is capable of classifying each specimen by its closest relationship to
known characteristics. The phylogenetic classification of disease specimens could
accomplish this goal by modeling disease datasets into a cladogram that can be used as a
map of the disease spectrum and for determining the health status of a new specimen by
knowing its location on the cladogram.

Conclusions
Heterogeneity in biological data, especially in diseases, may not be easily addressed by
reducing high dimensional data to a much smaller number of variables. Heterogeneity is
indicative of the many selective processes at work that produce multiple ontogenetic
pathways and clonal lineages, and this is likely responsible for variable responses to drugs as
well as drug resistance and adverse effects. The linkages among many cellular processes
imply that simply selecting differentially expressed genes on an arbitrary basis like fold-
change may be suboptimal or produce misleading outcomes.

Separating clonal (driver) from nonexpanded (passenger) aberrations and identifying early
events cannot be done without a priori modeling of the data to identify subtypes that reflect
the natural classes of a disease. Early events, if they exist as universal clonal aberrations,
could be potential biomarkers for early detection. However, as we have shown here, their
universality seems unlikely. Early events may be lost in mature cancer specimens and,
therefore, the search for early events may be most productive in HNTDI specimens. As
shown in our analysis, HNTDI harbors many gene transformations. By comparing HNTDI
with normal specimens in a phylogenetic paradigm, it may be possible to identify early
events as they relate to the subtypes of the disease.
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Fig. 1.
Cladogram showing the classification of all the specimens into clades based on maximum
parsimony using MIX of the PHYLIP package. The HNTDI specimens fell into 3 upper
clades (1, 2, and 3) each defined by a set of unique synapomorphies (cross bars with
numbers), and they do not share any synapomorphies together. The RM specimens fell into
8 clades (4–11) and clade 4 showed 3 subclades. Falling in the closest proximity of the
HNTDI specimens, clade 4 may represent a transitional state from healthy towards diseased.
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Fig. 2.
Gene-expression heterogeneity in HNTDI. Selected genes from differentially-expressed
gene list of Tripathi et al. [2008] and Graham et al. [2010] were not uniformly expressed in
all of the HNTDI specimens, while the parsimoniously identified synapomorphies for the 3
clades of HNTDI were more specific to each clade with lesser exceptions than in gene lists
of Tripathi et al. [2008] and Graham et al. [2010]. =: No change; −: underexpressed; +:
overexpressed.
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Fig. 3.
Diagram summarizing the application of phylogenetics to omics data (we named it
Phylomics) as used in this study. Although Phylomics can be applied to any condition that
deviates from its normal/ancestral profile (i.e. mutations, disease onset, response to
environmental factors, classification of patients into responders and nonresponders to
treatment, etc.), we opted for the example of breast cancer as a disease condition to illustrate
its use. In brief, omics data are polarized into ancestral and derived states based on the
normal range of each character (i.e. gene, protein or metabolite) using the Universal Parsing
Algorithm (UNIPAL) developed by the authors (M.S.A. H.A.). The polarized matrix is then
processed using parsimony, a phylogenetic algorithm; the result is a phylogenetic tree, or
cladogram, that groups specimens into clades according to their shared derived character
states (synapomorphies). This dynamic classification models the disease range on the
cladogram from its early stages to its extreme severity. Thus, it plots the specimens with
early transformations to the lower end of the disease range on the cladogram, closer to the
healthy clade. Red and blue arrows indicate the nodes that delimit the clades for each group
sharing common characters; each line within the clade presents a specimen that may have
additional characters that are unique to this patient/specimen. For example, Anna shares all
the characters that are common among all cancer patients but has additional molecular traits
that are unique to her health status.
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Table 1

Composition of the clades of interest from the cladogram of figure 1 and their synapomorphies

Clade 1

19 Specimens: all from HNTDI

GSM512558, GSM512561, GSM512562, GSM512564, GSM512565, GSM512566, GSM512567, GSM512568, GSM512569, GSM512570,
GSM512571, GSM512572, GSM512574, GSM512575, GSM512576, GSM512577, GSM512578, GSM512579, GSM512580

45 Synapomorphies

ATP5E, ATP5SL, BLCAP, C19orf10, CALD1, CAPN7, FAM65A, FLOT1, FNDC3B, GANAB, H2AFX, HNRNPA1, HSPD1, IFI35, JUN,
KIAA1033, LARP4B, LONP2, LPAL2, MKNK1, MSH6, MYCBP2, NGLY1, ORC2L, PLSCR3, PPCDC, PRDX2, PSMB2, R02172, RAB7A,
RARS, RBM16, RBX1, RPIA, SLC25A14, SLC35D2, SNRPB, SWAP70, TARDBP, TEAD4, TIMP1, TRADD, TUBA1C, UBXN7, UQCRC2

  Subclade 1a, 43 synapomorphies

  AKR1C3, ANXA4, ARPC3, BBS9, BLZF1, C3, CTSB, DDR2, EIF3G, ESPL1, FRMD1, GM2A, GPX1, GPX7, HLA-DQA1, IER3, IGF1,
LARS2, LGALS3BP, LPAR1, LPCAT1, MED28, MIR936, MSLN, MXRA8, NF1, NLRP1, NPM3, NR4A2, NUDT1, PLTP, PSKH1, QPRT,
RPL10P10, RPL28, RPRM, SERTAD2, SRSF1, SSR4, TFAP2A, YTHDF1, ZFP64, ZNF451

  Subclades 1b–e, 49 synapom orphies

  ADAM8, AP2A2, ATP5C1, ATP5C1, AU146983, BAZ1B, BCL7B, CAPZB, CBX6, COMMD4, CSNK1D, CSTB, DDX3X, DNMT1,
DUSP8, EDNRB, EPHB4, FRAT2, FYCO1, KLF11, KPNB1, LPPR2, LSM6, MAGEF1, MED27, MRPS31, MTIF2, NAA35, NAP1L1,
P4HB, PBXIP1, PDLIM4, PLA2G4B, RAB3GAP1, RARA, RCN3, RNF13, SERINC3, SNRK, SNRNP200, SON, SPTLC2, TMCO6,
TMEM159, TMEM2, TMSL3, TNS4, UBR5, ZMYM4

  Subclades 1c–e, 110 synapomorphies

  SEPTIN5, AA719797, ACTB, ADD1, AL109716, ALG6, AMACR, ARFGEF1, ARHGAP11A, ARHGEF7, ARL4A, ARL6IP5, ARNT,
ASH1L, ATP6V1B2, BAALC, BAT2, BBS9, BST2, C11orf21, C1orf144, CACNA1A, CBWD7, CD84, CDV3, COL16A1, COMMD3,
CSNK1G2, CXCL9, DAZAP1, DECR1, DFNB31, EFNA2, EIF3G, ERP44, F12, FAM125B, FLJ11292, FSHB, FTL, GMEB2, GNAI2,
GOLGA1, H49077, HAO1, HIRA, HNRNPL, HNRNPM, ILF3, ITFG1, JMJD6, KCNMB4, KDM5B, KIAA1009, KLHL2, KLRG1,
LOC100132247, LOC441899, MACROD1, MAT2A, MON1B, MRAS, MRPL39, MYST2, NDUFS4, NGRN, NLRP1, NSA2, NXT1, PIGC,
PPP2R3A, PPP4C, PRDM2, PRUNE, PSMF1, RAD1, RAD23A, RGS5, RHOD, RIOK3, RNF25, RPL28, RPL3, RPLP0, RPLP1, RPP30,
RPS16, RPS2, RPS21, RPS3A, RUSC1, SFI1, SFT2D2, SIGLEC6, SIPA1L1, SLC11A2, SNURF, SPTBN1, SRI, STX6, TAF1, THBS1,
TRIM32, TRPC1, UBE2Q1, UNC50, WDR1, WDR55, ZNF287, ZNF350

Clade 2

14 Specimens: all from HNTDI

GSM242014, GSM242015, GSM242017, GSM242018, GSM242022, GSM242023, GSM242024, GSM242025, GSM242026, GSM242027,
GSM512557, GSM512559, GSM512563, GSM512573

5 Synapomorphies:

CYR61, DUSP1↓, EIF1↓, FOSB, TACSTD2

  Subclade 2a, 54 synapomorphies

  AHNAK, AK000834, AK025360, AKAP13, AL109696, ANKFY1, AP1M2, ARID3B, C1orf116, CCDC88C, CHRNA1, CLCN6, COL4A3,
CROCC, DUSP12, DZIP3, EPS8L1, ERLIN2, ERO1LB, FER, FOXO4, GATC, GUSBP3, HOXA5, LHB, MAGEA3, MCOLN1, MXD4,
MZF1, PAIP2B, PLGLB1, PRPF39, PRSS22, RB1CC1, RERGL, ROR2, SKAP2, SLC33A1, SLC35A3, SLC6A13, SPATA6, SPRED2,
SPTLC1, STK17B, SULF1, TMEM90B, TRMT11, ULK2, WNT2B, ZAK, ZBTB17, ZNF224, ZNF350, ZNF665

  Subclade 2b, 124 synapomorphies

  ADAMTS7, ADRA1B, AGAP2, AK022254, AK024568, AMACR, AP2S1, ARHGDIG, ARHGEF16, ARSJ, ASAH1, ATF4, ATP5H,
ATP5L, ATXN7L1, ATXN8OS, AV720803, BAT2, BAX, BGN, BID, BRD2, C7orf28B, CABIN1, CAPZB, CASS4, CCDC88C, CCK, CD58,
CDCA4, CDKN2A, CHIT1, CKAP4, COG8, CRCP, CRELD2, CTNNBL1, CYP27B1, CYP2R1, D25272, DGCR8, DRD1, DYSF, EDN2,
EHMT2, FGD1, FRS2, FSHB, GALK1, GALNT2, GGCX, GIPR, GLRX3, GNAS, GOLGA2, GPR135, GRHPR, HDLBP, HLA-DOB,
HSDL2, HSP90B1, IDH2, IL17B, IL1A, IRAK1, KCNG2, KIAA0319, KIAA1045, KIF1C, KLC1, KLHL20, LANCL2, LMNA, LOC440792,
LRCH4, LYZL6, MAP4, MARCO, MDK, MECR, MFNG, NCOR2, NCRNA00260, NFU1, NPHS1, NRIP2, NUP50, OVOL1, P2RY2,
PDCD5, PECR, PFDN2, PFN1, PLAUR, PLK3, POLD1, POLR1E, POM121C, PTGIR, PTPLAD1, PUM1, RARG, RFC2, RNF126,
RPL22P22, RRP7B, SH3BP2, SLC7A5, SNRPB2, SPIN2A, TGM5, TM9SF1, TMEM132A, TMEM134, TPM4, TSSC1, TUBG1, TXN,
UBE2V1P2, UBR4, VEGFA, VENTX, WDR18, Z21967

  Subclade 2c–e, 48 synapomorphies

  AA427737, ADORA1, AF257099, AL137403, BCLAF1, CA3, CCL2, CFLAR, CXCL2, CXCR4, CYLD, DKFZp686O1327, EIF4A1,
FKBP8, FRMD1, FUT6, GPR183, GTF2F1, HEY2, IFNGR1, IGHV4-31, KIAA0020, MCL1, MLF1, MYH14, NCLN, NDRG2, NUP88,
PDE4B, PNLIPRP2, PPP1R15A, PRNP, PTMA, PTMAP7, PTPN21, RGS1, RNF114, SEC24A, SFRP1, SRF, SRGN, TNFAIP2, TRIM2,
UPF3A, WASF3, WSB1, YWHAH, ZFP36
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Clade 3

5 Specimens: all from HNTDI

GSM242016, GSM242019, GSM242020, GSM242021, GSM512560

44 Synapomorphies:

ACTR10, ALDH1A3, C14orf147, CAPZA1, CD59, CHMP1B, COPS8, CPD, CSDE1, DCUN1D4, GALNT1, GCOM1, GMFB, HSPH1,
KRT10, LEPROTL1, LOC440366, LYST, MCL1, NCRNA00081, NCRNA00120, NUDT4P1, NUPL1, PDS5A, PTP4A1, RAP1A, RBBP7,
RBM16, RRAS2, RRP15, SCARB2, SCML1, SET, SLC25A14, SMEK2, SNRNP27, SNRPE, SNX27, SOCS5, YRDC, YWHAZ, ZFP36L1,
ZMPSTE24, ZSCAN18

Clade 4

11 Specimens: all from RM

GSM242009, GSM242013, GSM512540, GSM512543, GSM512547, GSM512549, GSM512550, GSM512551, GSM512552, GSM512554,
GSM512556

6 Synapomorphies:

DSCAM, DUSP1↑, EIF1↑, HIST1H2BC, JUN, SIK1

  Subclades 4a, b, 17 synapomorphies

  ACAT2, ACBD3, ADAR, ARL4C, BRD7, CAPZB, KATNA1, MRPL39, NEDD8, NSMCE4A, PBX1, PEX19, PTP4A2, SF3A3, SSBP1,
TDRD7, WBP4

  Subclades 4c, 17 synapomorphies

  AF198444, AK021633, CITED2, DCUN1D4, DUSP7, FILIP1L, GATM, HIST2H2AA4, HIST2H2AA4, HSPC157, KLF6, NEAT1, PNRC1,
REG1A, RHOB, SLC38A2, TOP3A
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