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Abstract
The process of neurogenesis continues throughout life, with thousands of new neurons generated
every day in the mammalian brain. Impairment of hippocampal neurogenesis has been suggested
to be involved in neurodegenerative conditions including the cognitive decline associated with
aging, Alzheimer's disease, Parkinson's disease, and ionizing radiation. These neurodegenerative
conditions are all characterized by proinflammatory changes and increased numbers of activated
microglia. Activated microglia produce a variety of pro-inflammatory factors, including IL-6,
TNF-α, reactive oxygen species, and nitric oxide, all of which are antineurogenic. These same
factors have also been shown to suppress mitochondrial function, but the role of mitochondria in
neurogenesis remains barely investigated. This brief review summarizes the findings of several
studies that support a role for mitochondrial impairment as part of the mechanism of the reduction
of neurogenesis associated with inflammation.
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Introduction
Neurogenesis is impaired in several inflammation-associated conditions including cranial
irradiation, Alzheimer's disease (AD) and Parkinson's disease (PD), and several age
associated brain pathologies that include cognitive decline as a component (Imamura et al.
2003; McGeer et al. 1988; Mizumatsu et al. 2003; Monje et al. 2003; Sparkman and Johnson
2008). While the connection between inflammation and reduced neurogenesis has been
indicated in several studies (Ben-Hur et al. 2003; Ekdahl et al. 2003; Liu et al. 2005b; Monje
et al. 2003), the mechanisms of the neurogenesis impairment remain poorly understood.
Mitochondria are one of the primary targets of inflammatory injury (Halliwell 2006; Hunter
et al. 2007; Samavati et al. 2008; Xie et al. 2004). The results of recent studies suggest that
mitochondrial function might play an important role in both developmental and adult
neurogenesis (Baxter et al. 2009; Calingasan et al. 2008; Kirby et al. 2009; Voloboueva et
al.). In this review we highlight the mitochondrial mechanisms involved in inflammation-
induced neurogenesis impairment.

Neurogenesis in Neurological Diseases and Disorders
Although the process of neurogenesis almost completely ceases in mammals after
development, the generation of new neurons occurs throughout life in two brain regions
(Zhao et al. 2008). Thousands of new neurons are born every day in the subgranular zone
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(SGZ) of the dentate gyrus (DG) and in the sub-ventricular zone (SVZ) (Aimone et al. 2010;
Cameron and McKay 2001; Gage 2000). Immature neurons migrate from the SVZ to the
olfactory bulb and give rise to several local interneuron populations. In the DG region of
hippocampus new neurons are generated from local neuronal progenitor cells (NPC) and
eventually develop into excitatory granule cells, the principal projection neurons of DG.
New neurons are functionally integrated into existing neuronal circuitry (van Praag et al.
2002; Zhao et al. 2006). A positive correlation has been observed between hippocampal
neurogenesis and memory formation and mood regulation in experimental animals
(Kempermann et al. 1997; Santarelli et al. 2003; Shors et al. 2001). A recent study suggests
that hippocampal neurogenesis might be important in the consolidation stage of memory
formation (Kitamura et al. 2009). Changes in adult neurogenesis have been described both in
the brains of patients and in animal models of various neurological diseases and disorders
(Baker et al. 2004; Leker et al. 2007; Li et al. 2008; Raber et al. 2004b; Zhao et al. 2008).

Brain irradiation, such as that used in the treatment of head and neck tumors, is associated
with cognitive impairment and this might involve effects of irradiation on the precursor cells
of the hippocampal SGZ (Monje and Palmer 2003; Raber et al. 2004b; Rola et al. 2004).
Significant loss of NPC cells occurs within a few hours after relatively low radiation doses
(Mizumatsu et al. 2003). In addition to the acute apoptosis of precursor cells, there are long-
term radiation-associated effects on these cells. The surviving NPC demonstrate reduced
ability to differentiate into mature neurons in a dose-dependent fashion (Mizumatsu et al.
2003; Raber et al. 2004b). The reduction in precursor proliferation is still observed several
months after irradiation and is associated with hippocampal-dependent cognitive
dysfunction (Raber et al. 2004a; Rola et al. 2004). Experimental stroke in animals promotes
increased neurogenesis in both adult neurogenic regions, the SVZ and the SGZ (Arvidsson
et al. 2002; Liu et al. 1998; Parent et al. 2002; Zhang et al. 2001). The injured brain releases
a variety of diffusible mitogens, like glutamate, erythropoietin, epidermal and vascular
endothelial growth factors (EGF and VEGF), that have been implicated in enhancement of
proliferation of progenitor cells (Kernie and Parent 2010; Wiltrout et al. 2007). More
importantly, the neuroblasts from the SVZ migrate towards the injured regions of the
striatum and cortex, and express DARPP-32, a marker of neostriatal spiny neurons upon
differentiation (Arvidsson et al. 2002; Parent et al. 2002). However, despite the increased
proliferation of the progenitor cells, the majority of newly generated neurons fail to survive,
with the number of surviving post-ischemic striatal neurons comprising only ∼0.2% of the
number of striatal neurons lost during injury (Arvidsson et al. 2002). It was proposed that
inflammatory changes accompanying the ischemic damage contribute to high rates of
apoptotic death of stroke-generated neuroblasts observed within the first several weeks after
ischemic injury (Kokaia et al. 2006). Studies suggest that interventions promoting increased
rates of post-stroke neurogenesis can lead to better functional recovery after stroke
(Androutsellis-Theotokis et al. 2006; Leker et al. 2007; Schabitz et al. 2007).

It has been suggested that neurological dysfunction associated with AD could be partly due
to impaired NPC formation in the hippocampal SGZ (Zhao et al. 2008). Animal models of
AD have provided equivocal data, demonstrating both increased and decreased hippocampal
neurogenesis (Biscaro et al. 2009; Gan et al. 2008). The disease severity, use of different
animal models, and lineage-specific markers are apparently important factors in the reported
discrepancy, but a recent study suggested impaired neurogenesis as an early critical event in
the course of Alzheimer's disease (Demars et al. 2010). Deficient maturation of new
hippocampal neurons has been reported in AD patients (Jin et al. 2004; Li et al. 2008). Thus
strategies promoting survival and maturation of hippocampal NPC might be beneficial in the
treatment of AD patients.
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In the case of PD, a reduction of neurogenesis has been shown in animal models, as a
consequence of dopamine depletion from the neighboring substantial nigra (Baker et al.
2004; Hoglinger et al. 2004; O'Keeffe et al. 2009). It has been shown that dopamine induces
proliferation of precursor cells in the subventricular zone through EGF release, and that
dopamine depletion leads to decrease in proliferation concomitant with reduction of EGF
levels (O'Keeffe et al. 2009). The increased survival of progenitor cells might hold
beneficial potential due to the proximity of both principal neurogenic regions to the basal
ganglia, where the majority of the pathology is located.

Aging promotes a progressive and marked decline in the levels of endogenous neurogenesis
(Enwere et al. 2004; Kuhn et al. 1996; Seki and Arai 1995). Impairment of hippocampal
neurogenesis has been suggested to be linked to cognitive decline associated with aging
(Drapeau and Nora Abrous 2008; Galvan and Jin 2007; Zitnik and Martin 2002).
Understanding the age-related changes in neurogenesis could lead to novel treatment
strategies that could modulate disease-related processes and induce repair of aged brain.

Neurogenesis and Inflammation
Inflammation plays an important role in the pathogenesis of a variety of neurological disease
states that demonstrate altered adult neurogenesis. Pro-inflammatory changes and increased
numbers of activated microglia were reported in irradiated animals (Mizumatsu et al. 2003;
Monje et al. 2002; Rola et al. 2004). Moreover, the numbers of activated microglia showed a
direct correlation with the impairment of neurogenesis (Mizumatsu et al. 2003). It was
shown that treatment with the anti-inflammatory agent indomethacin partially reversed
irradiation-associated decreases in neurogenesis (Monje et al. 2003). Cerebral ischemia
induces acute and prolonged inflammatory processes. Brain ischemic injury is characterized
by rapid activation of resident microglia, production of proinflammatory mediators,
followed by infiltration of neutrophils, macrophages, and other inflammatory cells (Davies
et al. 1999; Hallenbeck 2002; Morioka et al. 1993; Wang et al. 2007). Anti-inflammatory
treatment with indomethacin increased the levels of neurogenesis after focal cerebral
ischemia (Hoehn et al. 2005). It has been shown that brain inflammation, activated microglia
and increased levels of pro-inflammatory cytokines are pathological hallmarks of AD, PD
and other neurodegenerative diseases (Imamura et al. 2003; McGeer et al. 1988; McGeer et
al. 1987; Rogers et al. 1988). Aging is also characterized by neuroinflammation and
increased levels of microglial activation (Sparkman and Johnson 2008).

Microglial inhibition of neurogenesis is mediated by activated, but not resting, microglia
(Monje et al. 2003). The first two studies to identify activated microglia as the cell type
responsible for suppression of hippocampal neurogenesis were published by Ekdahl and
colleagues and Monje and colleagues in 2003 (Ekdahl et al. 2003; Monje et al. 2003).
Activated microglia produce a large number of pro-inflammatory factors (Gebicke-Haerter
2001; Hanisch 2002; Pocock and Liddle 2001), and also reactive oxygen species (ROS) and
nitric oxide (Rock et al. 2004). Several proinflammatory cytokines produced by reactive
microglia, including IL-1β, IL-6, TNF-α, and interferon-γ, are antineurogenic (Ben-Hur et
al. 2003; Ekdahl et al. 2003; Liu et al. 2005b; Monje et al. 2003). Increased levels of nitric
oxide have been shown to suppress neurogenesis under normal and injury conditions
(Moreno-Lopez et al. 2004; Torroglosa et al. 2007). Treatment with the antioxidant α-lipoic
acid partially reversed the radiation-induced reduction of doublecortin (Dcx)-positive cells
in hippocampus in vivo (Fike et al. 2007).

Inflammation and Mitochondria
Due to the clear importance of gaining a detailed understanding of the mechanisms involved
in the inflammation-associated modulation of neurogenesis, it is currently the subject of
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intense investigation. Several recent studies indicate involvement of mitochondrial function
in the processes of NPC survival and differentiation (Baxter et al. 2009; Calingasan et al.
2008; Kirby et al. 2009; Papa et al. 2004). Cellular mitochondria are a major target of
inflammation-associated injury. Several interrelated factors can contribute to the impairment
of mitochondria associated with inflammation. Tumor necrosis factor-α (TNF-α), a
pleiotropic pro-inflammatory cytokine, has been shown to induce mitochondrial damage
through suppression of mitochondrial complexes I and IV and pyruvate dehydrogenase
activities (Samavati et al. 2008; Stadler et al. 1992; Zell et al. 1997). Exposure to increased
ROS levels leads to impairment of mitochondrial oxidative phosphorylation through
oxidation of mitochondrial lipids, sulfhydryl groups and iron sulfur complexes of
mitochondrial respiratory enzymes (Halliwell 2006; Wagner et al. 1990).

IL-6, a pro-inflammatory cytokine that is extensively produced by activated glia, was
recently shown to stimulate increased ROS production in brain (Behrens et al. 2008), thus
contributing to other ROS-inducing mechanisms activated during inflammation. Nitric oxide
levels are markedly increased in brain during inflammation (Brown 2007). Nitric oxide is a
potent inhibitor or mitochondrial cytochrome c oxidase (complex IV) (Brown 1995; Giuffre
et al. 1996). It has been shown both in vitro and in vivo that LPS-induced inflammation
promotes strong microglial activation and induces mitochondrial dysfunction both in vitro
and in vivo (Hunter et al. 2007; Xie et al. 2004) . Brain inflammation also promotes
activation of astrocytes, a major glial cell type involved in response to stress and injury as
well as normal physiology (Whitney et al. 2009). Reactive astrocytes forming a glial scar
can impede neuronal migration and axonal regrowth following brain injury (Anderson et al.
2003). Reactive astrocytes also decrease rates of neurogenesis and increase glial
differentiation of neural progenitor cells (Go et al. 2009). Brain injury promotes
mitochondrial dysfunction and mitochondrial ROS production in astrocytes (Bambrick et al.
2004; Schipper et al. 2009; Voloboueva et al. 2007). Attenuation of mitochondrial ROS has
been shown to decrease the degree of astrocyte activation in vitro (Gonzalez et al. 2007).
This suggests that downregulation of mitochondrial ROS production can attenuate astrocyte
activation, thus reducing the negative effect of astrocytic activation on neurogenesis
following brain injury.

Effect of Mitochondrial Impairment on Neuronal Progenitor Cell
Differentiation and Viability

Differentiation of progenitor cells into neurons requires energy in the form of ATP produced
by mitochondria for growth of neuronal processes, cytoskeletal remodeling, and organelle
transport (Bernstein and Bamburg 2003). Early studies have shown that developing neurons
exhibit a marked increase in mitochondrial proteins during early neuronal differentiation
(Cordeau-Lossouarn et al. 1991; Vayssiere et al. 1992). It has been recently demonstrated
that the transcription factor NeuroD6, which is important for initiation and execution of
neuronal differentiation, also induces an increase in total mitochondrial mass (Baxter et al.
2009). Despite these findings few studies have investigated the importance of mitochondrial
function in neuronal differentiation and survival under normal and pathological conditions.
Studies of mitochondrial biogenesis at the early stages of neurogenesis have suffered from
the lack of a good cellular paradigm or accessible animal model. Knockout of transcriptional
enzymes important in mitochondrial biogenesis, such as mitochondrial-associated
polymerases γPolgG and Tfam, causes early embryonic lethality, at E8.5 (Hance et al.
2005) and E10.5 (Larsson et al. 1998), respectively.

These problems led to development of transmitochondrial technology, in which enucleated
somatic cells that harbor pathological mtDNA mutations are fused with a cell line with
chemically ablated endogenous mtDNA (King and Attardi 1989; Trounce and Wallace
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1996). In an early transmitochondrial cybrid model of mtDNA disease affecting complex I,
decreased production of both differentiated neurons and glial cells was observed (Wong et
al. 2002). A recent in vitro study that also employed a transmitochondrial cybrid model
demonstrated that embryonic stem cells containing pathogenic mitochondrial DNA
mutations, particularly mutations leading to impaired complex I activity, are compromised
in neuronal differentiation (Kirby et al. 2009). Dependence of neuronal differentiation on
complex I function was already suggested in an earlier study (Papa et al. 2004). A recent in
vivo study has shown that the impairment of mitochondrial α-ketoglutarate-dehydrogenase
complex (KGDHC) activity results in decreased neurogenesis in the SGZ of hippocampus
(Calingasan et al. 2008). This observation is consistent with another study that demonstrated
that thiamine deficiency induces cognitive dysfunction in mice and impairs hippocampal
neurogenesis (Zhao et al. 2008). KGDHC is a thiamine phosphate-dependent enzyme, and it
is well established that thiamine deficiency leads to impaired KGDHC activity in the brain
(Gibson et al. 1984). Overexpression of the mitochondrial protective and anti-apoptotic
protein Bcl-xl has been shown to promote neuronal differentiation in vitro (Chang et al.
2007) and improve survival of neuronal precursor cells in the lesioned striatum after focal
cerebral ischemia in animals (Doeppner et al. 2009). Mitochondria play a critical role in
regulating cellular ROS levels in various neurodegenerative diseases (Keating 2008). Mild
alterations in redox state leading to oxidation of the redox sensitive histone deacetylase Sirt1
have been shown to suppress proliferation of neural progenitor cells and direct their
differentiation towards the astroglial lineage (Prozorovski et al. 2008).

Different cell types have different sensitivities to interventions causing mitochondrial
dysfunction. Inhibition of mitochondrial function promotes rapid loss of mitochondrial
potential and cell death in neurons (Bolanos and Almeida 2006). On the other hand,
mitochondrial inhibition in astrocytes induces strong upregulation of glycolysis without
promoting significant changes in cell viability (Almeida et al. 2001). It has also been shown
that changes in energetic demands can affect the cell's ability to maintain mitochondrial
potential in the face of mitochondrial impairment (Voloboueva et al. 2007). A recent study
demonstrated that while various cell lines, like HeLa, XP30RO and GM10115, can tolerate
mitochondrial DNA (mtDNA) depletion for extended time periods, neural precursor cells
die within a short time after mtDNA depletion (Fike et al. 2009). A summary of a putative
mechanism of inflammation-induced neurogenesis impairment is presented in Fig. 4.

In our studies we observed that mitochondrial inhibition promotes rapid loss of
mitochondrial membrane potential in immature Dcx -positive neurons (Fig. 1) associated
with induction of apoptotic markers in Dcx+ cells (Fig. 2). We demonstrated that 14-16 h of
mitochondrial inhibition with antimycin A promoted a significant drop in the viability of
Dcx+ cells, in striking contrast to co-cultured astrocytes and oligodendrocytes, that showed
no change in viability. Dcx+ cells that co-expressed MAP2, a marker of more mature
neurons, also demonstrated reduced vulnerability to mitochondrial inhibition, compared to
less mature neurons expressing only Dcx but not MAP2 (Voloboueva et al. 2010).
Moreover, differentiation of NPC cells under conditions of mitochondrial inhibition for 4
days resulted in complete absence of Dcx+ cells, while control cultures demonstrated a
significant fraction of differentiated Dcx+ cells (Fig. 3). These findings indicate that
immature doublecortin (Dcx)-positive neurons are uniquely sensitive, compared to matured
neurons and glia, to conditions impairing mitochondrial metabolism. As discussed above,
inflammation promotes release of a variety of pro-inflammatory factors that inhibit
mitochondrial function. In line with that, protection of mitochondrial function with a variety
of mitochondrial protective compounds has been shown to be protective against
inflammation-associated loss of Dcx+ cells in vitro. Also, overexpression of mitochondrial
Hsp70 (mtHsp70), a mitochondrial chaperone that has been shown to protect mitochondrial
function in several previous studies (Liu et al. 2005a; Voloboueva et al. 2008; Williamson et
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al. 2008; Xu et al. 2009), led to protection of mtHsp70-overexpressing Dcx+ cells against an
in vitro inflammatory injury (Voloboueva et al. 2010).

Summary
Clarifying the mechanisms underlying the inflammation-associated impairment of
neurogenesis may help identify novel therapeutic targets for treatment of a variety of
neurodegenerative disorders. The results of several recent studies, both in vitro and in vivo,
indicate the involvement of mitochondrial mechanisms in the modulation of neurogenesis,
and support the concept that mitochondrial protection could enhance rates of neurogenesis
under conditions of inflammation.
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Fig. 1.
Treatment with the mitochondrial complex III inhibitor antimycin A (2 μM, 4 h) promotes
loss of mitochondrial membrane potential in Dcx+ cells (arrows, green staining), while
nearby cells retain mitochondrial potential, as evidenced by red staining with the
mitochondrial membrane potential sensitive dye tetramethylrhodamine ethyl ester (TMRE)
arrowheads. Cell nuclei are counterstained with DAPI (blue).
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Fig. 2.
Dcx+ cells (green) demonstrate signs of apoptotic cell death (red staining with Magic Red
Live caspase 3&7 reagent), arrows, after 12 h of treatment with the mitochondrial inhibitor
antimycin A (2 μM) (A). Note rapid disappearance of green Dcx staining in apoptotic cells.
The bottom panel shows Dcx and nuclear DAPI staining of the same area
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Fig. 3.
Control cultures of NPC isolated from newborn mouse brains demonstrate about 25% Dcx+

cells (green) after 4 days of differentiation (A). NPC cultures differentiated under the same
conditions, but co-treated with mitochondrial inhibitor antimycin A (2 MM) lack cells with
Dcx+ staining (B).
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Fig. 4.
Putative mechanisms of inflammation-induced impairment of neurogenesis. During
inflammation activated microglia produce pro-inflammatory cytokines, ROS and nitric
oxide (NO), all of which inhibit mitochondrial function in neuronal progenitor cells (NPC).
Mitochondrial damage leads to increased levels of mitochondrial ROS production and may
suppress neurogenesis through mechanisms including Sirt1 oxidation. Severe impairment of
mitochondrial function leads to cell death by necrosis or by activation of apoptotic signaling
and activation of caspases. Other mechanisms connecting NPC mitochondrial function and
neurogenesis require further investigation.
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