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Abstract
We are interested in investigating whether cancer therapy may alter the mitochondrial redox state
in cancer cells to inhibit their growth and survival. The redox state can be imaged by the redox
scanner that collects the fluorescence signals from both the oxidized-flavoproteins (Fp) and the
reduced form of nicotinamide adenine dinucleotide (NADH) in snap-frozen tissues and has been
previously employed to study tumor aggressiveness and treatment responses. Here, with the redox
scanner we investigated the effects of chemotherapy on mouse xenografts of a human diffuse large
B-cell lymphoma cell line (DLCL2). The mice were treated with CHOP therapy, i.e.,
cyclophosphamide (C) + hydroxydoxorubicin (H) + Oncovin (O) + prednisone (P) with CHO
administration on day 1 and prednisone administration on days 1–5. The Fp content of the treated
group was significantly decreased (p = 0.033) on day 5, and the mitochondrial redox state of the
treated group was slightly more reduced than that of the control group (p = 0.048). The decrease of
the Fp heterogeneity (measured by the mean standard deviation) had a border-line statistical
significance (p = 0.071). The result suggests that the mitochondrial metabolism of lymphoma cells
was slightly suppressed and the lymphomas became less aggressive after the CHOP therapy.
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1. Introduction
Redox scanning is an ex vivo optical imaging method that can be applied to image the 3D
tissue mitochondrial redox state with sub-millimeter high resolution based on the
fluorescence signals of the endogenous NADH and Fp (including flavin adenine
dinucleotide, i.e., FAD).1,2 Mitochondrial NADH is the main source of the reducing
equivalents for the mitochondrial respiratory chain. Mitochondrial metabolism is reflected in
the redox state of the NAD system, which is tightly coupled with the flavin redox state in
flavoproteins. The redox ratios, i.e., Fp/NADH, NADH/Fp, and Fp/(Fp+NADH), have been
shown as sensitive biomarkers for the mitochondrial metabolic state.

Redox scanning has been used in cancer imaging to predict tumor aggressiveness and
monitor treatment response. For example, the redox scanning indices have been shown to
differentiate between an indolent and a metastatic breast cancer in mouse xenografts.3 The
tumor redox ratios correlated significantly with the invasive potentials of five melanoma
lines xenografted in mice.4 The redox scanning showed increased heterogeneity in the
mitochondrial redox state in the pre-malignant mouse pancreases,5 and also used to detect
the metabolic changes in a glioma rat model under photodynamic therapy.6 Additionally, the
redox scanning has been employed to measure the cyclophosphamide-treatment effect on
RIF-1 tumors in mice.7 However, the redox scanning has not been applied to study the
metabolic alterations in lymphomas subjected to CHOP treatment.

As the most common hematological cancer in the USA, lymphoma occurs in two forms,
Hodgkin’s Disease (HD) and Non-Hodgkin’s lymphoma (NHL), the latter being the fifth
most common cancer in the USA and far more common than HD. According to the
American Cancer Society, in 2012, there were estimated ~70,000 new NHL cases and
~19,000 deaths from NHL in the USA.8 The diffuse large B-cell lymphoma is the most
common form of NHL and is characterized by the fast-growing tumors in the lymph nodes,
spleen, liver, bone marrow, or other organs. The first-line standard therapy of NHL consists
of 6–8 cycles of CHOP treatment,9,10 where cyclophosphamide cross-links DNA;
hydroxydoxorubicin (doxorubicin or adriamycin) intercalates between DNA bases and
generates reactive oxygen species (ROS); oncovin (vincristine) binds to tubulin and inhibits
cell duplication; and prednisone is a corticosteroid that suppresses inflammation. The effects
of CHOP therapy on the mitochondrial redox state has not been reported previously.

Here, we present our initial redox scanning results on CHOP-treated DLCL2 xenografts in
mice (models of the diffusive large B-cell lymphoma)10 and demonstrate that the redox
scanning has the potential to detect therapeutic effects on cellular metabolism in NHL. Some
preliminary data have been reported in a conference proceeding.30

2. Materials and Methods
2.1. Tumor xenografts and treatment

WSU-DLCL2 cells were subcutaneously inoculated in the flanks of 5- to 7-week-old female
nude mice to induce tumor xenografts.11 Tumor-bearing mice were randomly chosen and
divided into the treatment group and the control group. CHOP treatment is as follows:
cyclophosphamide, 40 mg/kg i.v., day 1; hydroxydoxorubicin, 3.3 mg/kg i.v., day 1;
oncovin, 0.5 mg/kg i.v., day 1; prednisone, 0.2 mg/ kg p.o., days 1–5. Sham treatment was
performed on the control group using saline. All animal studies were performed in
accordance with the guidelines of the University of Pennsylvania Institutional Animal Care
and Use Committee (IACUC).
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2.2. Redox scanning
To harvest the lymphoma xenografts while maintaining their in vivo metabolic state, the
anesthetized tumor-bearing mice were snap-frozen in liquid N2 one day after the last
treatment. The frozen tumors were quickly resected with a handsaw and then embedded in
home-made mounting media followed by redox scanning as previously described.3,12

Briefly, an excised frozen tumor was placed in the icy mounting media, then two frozen
reference standards of FAD and NADH with known concentrations were carefully placed
adjacent to the tumor. More icy mounting media slush was used to secure the tissue and the
reference standards. Such embedded samples were milled to expose the tissue and the
standards right before the redox scanning. The Fp channel excitation and emission filters
were 430 ± 25 nm and 525 ± 32 nm, respectively; and those of the NADH channels were
360 ± 13 nm and 430 ± 25 nm, respectively. Each xenograft was scanned with three to five
sections spacing 800–1000 μm per tumor, with the first section approximately starting at
about 1000–1500 μm beneath the skin. Three tumors were scanned in each group.

2.3. Data and statistical analysis
The PC-collected scanning data were analyzed with a customized Matlab® program that
uses the fluorescence intensity of the adjacently embedded reference standards to convert
the intensity-based tissue images into the concentration-based images as detailed
previously.3,12 Briefly, the mean value of the fluorescence intensity of a specific reference
standard was calculated and the background signal of the blank was subtracted, where the
NADH standard served as the blank for the FAD standard and vice versa. The nominal
NADH and Fp concentrations (in μM) in the tissue were calculated by comparing the tissue
signal with that of the reference standards. The redox ratio Fp/(NADH + Fp) and NADH/Fp
were generated on the basis of the nominal concentrations of Fp and NADH. A threshold of
signal-to-noise ratio of 3 was used to exclude pixels with low signal intensity in either
NADH or Fp channel. The values of these redox indices were first averaged for each tissue
section to obtain the section mean values and standard deviations that will be used in the
statistical analyses.

Since intratumor heterogeneity was easily seen from the redox images in both groups, the
tissue spatial variations of the redox indices along the tissue depth (i.e., the distance from the
immediate section beneath the skin to a specific section) should be taken into account for the
statistical analysis. The Univariate analysis was conducted on these redox indices using IBM
SPSS Statistics (version 20), where each of the redox indices was the dependent variable and
treatment was the fixed factor (independent variable) with tissue depth as a covariate. The
values of these indices were finally reported as mean ± SD along with the p-value showing
the statistical significance.

3. Results
We measured the tumor volumes on day 1 and day 5. Table 1 shows the tumor volume ratios
of day 5 to day 1. One cycle of CHOP administration reduced the volume of one tumor in
the treated group, and the averaged tumor volume ratio of the treated group (1.20) was
slightly less than those of the control group (1.34). However, we did not find significant
changes in tumor volume between the two groups on either day 1 (Treated: 1001 ± 50 mm3

vs Control: 1204 ± 728 mm3+ or day 5 (Treated: 1188 ± 504 mm3 vs Control: 1671 ± 1025
mm3); nor is the volume ratio of day 5 to day 1 significantly different between the two
groups (p > 0.05).

Figures 1 (Treated) and 2 (Control) are the typical redox images. The quantitative results
and the statistical analysis are summarized in Table 2. We see that the treatment has
significantly decreased the Fp content from 565 ± 227 μM to 345 ± 162 μM (p = 0.033) and
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the Fp redox ratio from 0.53 ± 0.09 to 0.45 ± 0.07 (p = 0.048) as well as increased NADH/
Fp from 1.01 ± 0.30 to 1.41 ± 0.39 (p = 0.034). No significant change was found in NADH.
These results were further confirmed by the multivariate model (GLM, SPSS20), where the
four redox indices were the dependent variables, the treatment was the independent variable,
and tissue depth was a covariate.

We also examined if the treatment had caused a significant change in the heterogeneity of
the redox state. We used the mean standard deviation as a measure of tissue heterogeneity
and a larger standard deviation indicates higher degree of tissue heterogeneity. As shown in
Table 3, one-cycle of the treatment has caused tumors to become more homogeneous in Fp
distribution with a borderline significance (p = 0.071). No significant change was found in
the standard deviations of the other redox indices between the two groups (p ≥ 0.1).

4. Discussions
Mitochondria may provide early biomarkers for cancer therapeutic response because of their
central roles in cellular energy metabolism and apoptotic signaling pathways that have been
targeted by many cancer drugs.13,14 A large body of studies have been performed in vitro on
isolated mitochondria or cell culture to study the therapeutic effects of drugs on
mitochondria. For instance, doxorubicin was shown to act on DNA independent of
microtubules and did not induce the release of cytochrome c even at very high dosage using
the isolated mitochondria from human cancer cells.15 In cell cultures of some human cancer
lines, the short-term (< 30 min) treatment with doxorubicin rendered the mitochondrial
redox state of cancer cells more oxidized (more Fp and less NADH) with a large ROS
production; whereas the long-term (48 h) treatment induced cell cycle arrest and cell
death.16 Vincristine is a cell-cycle–specific antitubulin agent that inhibits cell growth
exclusively during metaphase by inhibiting microtubule dynamics and assembly leading to
cell cycle arrest.17–19 Investigations also showed that a substantial amount of tubulin
inherently existed in the mitochondria and played a role in apoptosis through interaction
with the permeability transition pore, whereas anti-tubulin agents could induce the release of
cytochrome c from isolated mitochondria.20 It was shown that the apoptotic cells have
significantly higher Fp redox ratios.21

There are limited data showing how the tissue mitochondrial redox state is modified by
therapy under in vivo condition. Redox scanning is the major method currently available to
image tissue mitochondrial redox state ex vivo with a wide field of view (cm) and a
submillimeter (50 μm) resolution.22 A previous study6 using redox scanning on a 9L glioma
rat model showed that mitochondrial Fp redox state became more oxidized after photo-
dynamic therapy. The observed higher Fp, lower NADH, and thus higher Fp redox ratio or
more oxidized redox state were consistent with the oxidizing effects of the singlet oxygen
generated in tissue by the photodynamic therapy. Redox scanning also indicated that
cyclophosphamide treatment increased the NADH content along with decreased glycolytic
rates and pO2 in RIF-1 tumors in mice.7

In this study, we examined the therapeutic effect of CHOP on DLCL2 xenografts by ex vivo
imaging the mitochondrial NADH and Fp fluorescent signals, and thus the mitochondrial
redox state of the tumors across multiple tissue sections. Our results show that one 5-day
cycle of CHOP treatment caused the decrease of Fp and shifted the lymphomas to a slightly
more reduced mitochondrial redox state. As a calibration procedure is not available at the
tissue level to determine the exact mitochondrial redox state as had been done in vitro,23,24

we can only speculate that these lymphomas are likely to be mainly in either State 3 (active
proliferation) or State 4 (at rest). State 2 (starvation) is unlikely due to relatively strong
NADH signals, indicating the presence of sufficient reducing equivalents available for the

XU et al. Page 4

J Innov Opt Health Sci. Author manuscript; available in PMC 2013 June 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



mitochondrial electron transport chain. For States 3 and 4, higher Fp redox ratio correlates
with higher mitochondrial metabolism. Thus, the decrease of Fp redox ratio after treatment
indicates suppressed mitochondrial metabolism. This is further supported by increased
phosphomonoesters/βNTP ratio in our previous study11 and decreased βNTP (nucleotide
triphosphates) concentration (CHOP 2.0 ± 0.1 vs Sham 3.4 ± 0.1 μmole/gram wet weight,
unpublished data by SC Lee) after 3 cycles of CHOP treatment on DLCL2 xenografts as
measured by 31P-MRS on tissue extracts. That study also demonstrated a significant
decrease in tumor lactate and proliferation rate, as measured by Ki67 staining after one cycle
of CHOP therapy.11 It appears that CHOP treatment may decrease both glycolysis and
mitochondrial metabolism in DLCL2 xenografts. Although we are not certain about the
exact mechanism, this result is consistent with a significant decrease of cell proliferation
index Ki67 staining that was observable after 1 cycle of CHOP treatment.11 As it was shown
that cell density changes between the CHOP-treated and the control groups were
insignificant,11 the observed decreased Fp content and Fp redox ratio in CHOP-treated
tumors in the present study should not be due to cell density differences. Our previous
studies on melanoma and breast cancer mouse models indicated that the more metastatic
tumors had more oxidized regions with higher Fp redox ratios, whereas the indolent tumors
were relatively uniform and less oxidized.3,4,22 Thus, the CHOP treatment appeared to
induce a cellular metabolic change in the DLCL2 lymphomas toward less aggressiveness.

Since tissue heterogeneity has been regarded as one of the important characteristics of tumor
malignancy,25–29 we also investigated whether the CHOP treatment changed the
heterogeneity of the redox state in tissue. The decrease of the Fp heterogeneity, although
with a border-line significance (p = 0.071), appears to be consistent with the slight decrease
of tumor aggressiveness.

It is well known that individuals often respond differently to the same cancer treatment. In
the current study, one treated tumor had a large volume reduction and a higher Fp redox
ratio compared to the other tumors. It is possible that one cycle of CHOP treatment had
induced some apoptosis in this tumor. Co-registered histological investigations can be done
in future studies to examine the correlation between the redox ratios and apoptosis in
tumors.

5. Conclusions
To the best of our knowledge, this is the first study to explore the therapeutic effect of
CHOP on the mitochondrial redox state of lymphomas. We presented the initial redox
scanning data on the effects of CHOP treatment on DLCL2 xenografts and the
corresponding statistical analyses. One-cycle of treatment caused the tumors to become
slightly more reduced in their mitochondrial redox state, suggesting that the reduction in
tumor metabolism and aggressiveness was induced by the treatment. We may conduct more
in-depth studies with a larger sample size and more cycles of treatment in future.
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Fig. 1.
Typical pseudo-color images of the redox indices (top row) and their corresponding
histograms (bottom row) of a tumor in CHOP-treated group (1500 μm under the skin). From
left to right: Fp nominal concentration (μM), NADH nominal concentration (μM), Fp redox
ratio (0–1), and NADH/Fp. The mean value and SD are shown below the x-axes on each
histogram. Image resolution: 200 μm.
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Fig. 2.
Typical pseudo-color redox images (top row) and their corresponding histograms of a tumor
in the control group (3500 μm under the skin). Image resolution: 200 μm.
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Table 1

Tumor volume change.

Mouse # V ratio (day5/day1) Mouse # V ratio (day5/day1)

Treated — Control —

444 1.32 422 1.19

446 1.9 449 2.08

448 0.37 450 0.77
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Table 2

Mean values of the redox indices ± SD.

Fp (μM) NADH (μM) Fp redox ratio NADH/Fp

Ctrl (9 sections) 565 ± 227 450 ± 80 0.53 ± 0.09 1.01 ± 0.30

CHOP-Treated (11 sections) 345 ± 162 400 ± 172 0.45 ± 0.07 1.41 ± 0.39

P 0.033 0.54 0.048 0.034
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Table 3

Mean values of the standard deviations of the redox indices ± SD.

SD Fp(μM) SD NADH(μM) SD Fp redox ratio SD NADH/Fp

Ctrl (9 sections) 256 ± 121 131 ± 25 0.11 ± 0.03 0.37 ± 0.12

CHOP-Treated (11 sections) 161 ± 99 117 ± 41 0.11 ± 0.03 0.52 ± 0.18

p 0.071 0.41 0.69 0.10
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