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Abstract

The joint venture of many members is common both in animal world and human society. In these public enterprizes, highly
cooperative groups are more likely to while low cooperative groups are still possible but not probable to succeed. Existent
literature mostly focuses on the traditional public goods game, in which cooperators create public wealth unconditionally
and benefit all group members unbiasedly. We here institute a model addressing this public goods dilemma with
incorporating the public resource foraging failure risk. Risk-averse individuals tend to lead a autarkic life, while risk-
preferential ones tend to participate in the risky public goods game. For participants, group’s success relies on its
cooperativeness, with increasing contribution leading to increasing success likelihood. We introduce a function with one
tunable parameter to describe the risk removal pattern and study in detail three representative classes. Analytical results
show that the widely replicated population dynamics of cyclical dominance of loner, cooperator and defector disappear,
while most of the time loners act as savors while eventually they also disappear. Depending on the way that group’s success
relies on its cooperativeness, either cooperators pervade the entire population or they coexist with defectors. Even in the
later case, cooperators still hold salient superiority in number as some defectors also survive by parasitizing. The harder the
joint venture succeeds, the higher level of cooperation once cooperators can win the evolutionary race. Our work may
enrich the literature concerning the risky public goods games.
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Introduction

Grouping of individuals, no matter what mechanism leads to

such groupings, plays a decisive role in the survival of group

members, notably under austere conditions. Collective action of

individuals incurs a cost to themselves and provides a common

benefit to community members, even to those who have not

contributed. Such cooperative behaviors are widespread in the real

world [1–4,6,12,23,24,26,27,32,33,36,37,40,46,51]. Prominent

examples include the food-sharing system in some African tribes,

alarm calls in meerkats, and stalk-shaped forming in amoeba, just

to name a few [5,7,9,10,22]. A social dilemma arises when

someone in the group withholds its contribution and instead free

rides on others’ efforts. In this case, the best choice for a group and

that for an individual are at odds. The temptation of free-riding

thus threatens and further breaks down social cooperation.

However, cooperation is almost always viable and robust in the

natural world. To under the conundrum of cooperation, a number

of mechanisms have been proposed over the last decades. For an

excellent review, please see Ref. [29].

Risk is ubiquitously involved in many collective actions [14–16].

In these situations, members can benefit from the public pool

resource only if the risk of failure is smoothly avoided. The

avoidance of the risk hinges significantly on the cooperativeness of

the group [8,21,25,28,31]. The risk perception of people might

have been quite important for primeval humans living in small

communities and mainly feeding on joint hunting. In this scenario,

large preys such as wild boar can easily run away if hunters mostly

engage in the rounding up halfheartedly, and other few hunters’

effort flows away in vain. In contrast, if most participating hunters

contribute to the hunting labor, there is a large chance of reaching

the collective goal of capturing the predator, and thus all members

enjoy the fruit of the collective effort [39,41]. In recent years, there

has been increasing recognition of the need to address issues

surrounding risk prevention in view of frequent outbreaks of global

financial crisis. Risk comes up with investing in stock market and

banking ecosystems [11]. To produce the economic benefit in

these systems, they must be collectively high cooperative. Small

dysfunction may lead to unwanted breakdown in a cascading way.

More recently, Ref [28] has pointed out that the global climate

change constitutes a typical example of the tragedy of the

commons, where the occurrence of the risk plays a key part in

guiding individual’s decision making in donating. The experimen-

tal findings show that high risk rate indeed induces higher

donation of individuals into the climate account to avoid the loss of

their private savings. Inspired by this experiment design, Wang et

al. [21] have theoretically investigated how altruistic donators fare

in the threshold public goods game, where individuals donate so as

to achieve the collective target to prevent their remaining money

from being lost rather than to obtain enhanced benefit of their

investments.
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Here, we model the joint venture with the risk public goods

game [13,30,35,39,41,47,48]. In the joint enterprises involving

risk, the production and subsequently the allocation of the public

wealth depends not only on the presence of each cooperator but

also crucially on how cooperative the group is. Or rather, in order

to succeeding in receiving the public goods, all group members

must surmount failure risk firstly. The more number of players

willing to cooperate, the larger likelihood they succeed. Our model

suggest that aggregate investment of cooperators has two bearings.

Firstly, it is used to resist failure. Once succeeding, it serves as the

base of enhanced benefit on the other hand. Obviously the former

is the prerequisite for the later. This stands in stark contrast with

the traditional settings where cooperators each, if present in the

group, would bring equal benefit unconditionally to all interactive

members [17–19,34,38,42,45]. Furthermore, although the joint

venture, if successful, can be beneficial to the group, the fear of

failure may coerce some individuals turning to voluntary

participation [43,44,49,50], since both animals and humankind

possess the instinct of circumventing risk. That is to say, risk-averse

individuals tend to abstain away from the risky public goods game

and rely on some autarkic way of life, whereas the risk-preferential

ones tend to engage in the risky public goods game in hoping of

acquiring high return. Thus a natural third strategy, say loner

[18,19], emerges along with cooperation and defection. Joint

hunting can be costly and risky but can benefit the community,

whereas the growing mushrooms (i.e., loner) is risk averse. We

focus on under what risk pattern cooperation can get established,

and under what other conditions loner can evolve to prevail.

At the center of this problem is how likely risk occurs given the

cooperativity of the focal group (which we can call risk function).

Instead of using the step function, here we consider three

representative types of risk function. Most interesting is the

sigmoid function, which embodies the philosophy that less than

required amount of cooperation is hardly better than none

[28,31], yet still ensures the success of the joint venture with a

small likelihood. Once the amount arrives at some critical point,

the probability that the group produces the public goods is quite

optimistic, and additional increment in contribution values less

and less [5,20,28,31]. Collectively hunting large scale prey in the

African wilderness may be an intimately related analog. Contrast-

ing with the traditional public goods game [18,19,45], risk is a

double-edged sword in such case. On the one hand, groups of low

cooperativity can hardly accumulate the effort required to avoid

failure. Members evolutionarily pursue noncooperative option.

Risk in this situation leads to rapid group-breakup. On the other

hand, a successful group is necessarily of high cooperation.

Cooperators average higher return, raising the likelihood of, if not

winning, at least coexisting with defectors. Furthermore, our

findings suggest that the option to abstain from the risk public

goods game avoids the impasse in states of all defection. To this

evolutionarily stable equilibrium, loners undertake the role of

alleviating the risk, since the abundance directly determines the

composition of the actual interacting group size. Ironically,

although the loner strategy extricates the system from navigating

towards the pure state of all defectors, they are eventually engulfed

by the risk-loving participants. Compared with public goods game

free of risk, the stabilized cooperation sees great improvement,

which in turn helps the free riders so much for them also able to

outperform the loners.

A minimal model
Consider a well-mixed population of infinite size. Each

individual adopts one of the three strategies, Cooperation (C),

Defection (D) and Loner (L). Denote by x, y and z the fraction of

Cs, Ds and Ls, respectively. The normalization condition ensures

xzyzz~1. The population is subject to natural selection.

Individuals accumulate payoffs by either participating in the risk

public goods games, or feeding on some autarkic way of life [18].

For a group composed of N individuals randomly sampled from

the population, those individuals (C+D) except L play the risk

public goods game: cooperators contribute some fixed amount c,

whereas defectors nothing. The success of the group crucially

depends on its cooperativeness. The dependent relationship is

characterized by a risk function g(k) with k as the number of

cooperators. Only successful group can distribute the return of the

public good. At this time, the net payoff for cooperators and

defectors is given by
rck

N
{c and

rck

N
separately, where r is the

enhancement factor. Therefore, the payoff for cooperators and

defectors is expected to be
rck

N
:g(k){c and

rck

N
:g(k). Once the

group fails to avert the risk, the contribution of cooperators

produces nothing, and defectors get no benefit and incur no loss.

The risk-averse individuals (Loners) obtain a constant income cd.

For simplicity we set c~1 throughout.

We here describe the population dynamics by the replicator

equations, where a strategy’s payoff determines the growth rate of

its abundance within the population:

Figure 1. Population dynamics whenever only cooperators and defectors compete to survive. The intersection of Q(x) with horizontal
line r~r0 (dashed line) represents the values of fraction of cooperators x�~fxL,xRg (if xR exists) at which payoff of cooperators is equivalent to that
of defectors, i.e., fC(x�)~fD(x�). (A) Group’s success is inverse-sigmoidally dependent on the cooperativeness of the group. (B) Group’s success is
linearly dependent on the cooperativeness of the group. In these two cases, scenarios with none, a unique interior fixed point are possible as r0

changes. (C) Group’s success is sigmoidally dependent on the cooperativeness of the group. Intriguingly, for this pattern, the population dynamics
exhibit very rich dynamics: scenarios with none, one and two interior fixed point are possible as r0 changes. Parameters N~10 and (A) m~{0:4, (B)
m~0, and (C) m~10.
doi:10.1371/journal.pone.0063801.g001
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_xx~x(Px{�PP)

_yy~y(Py{�PP)

_zz~z(Pz{�PP)

where Px, Py and Pz are the net payoffs for strategy C, D and L,

and �PP~xPxzyPyzzPz is the average payoff in the population.

In infinite population, this approach depicts deterministic selection

since the abundance of a strategy increases at a rate given by the

difference between the payoff of this strategy and the average

payoff of the population.

The calculation of the average payoff to each strategy can be

accomplished by implementing the following procedure. From

time to time, a focal individual (cooperator or defector) combining

other N{1 other randomly chosen individuals constitutes an

interaction group. Owing to the infiniteness of the population, the

random sampling implies that the composition of these N{1
individuals follows a binomial distribution. Individuals’s strategies

are pre-assigned and do not change with respect to the group

formation. In fact, the probability that there are S{1 participa-

tors among the N{1 individuals can be calculated as

N{1

S{1

� �
(1{z)S{1zN{S , where S can take the positive integer

from 2 to N. Of the S{1 participators, the probability that there

are k cooperators and the rest defectors is

S{1

k

� �
(

x

1{z
)k(

y

1{z
)S{1{k. In such a group, the expected

payoff is
rk:g(k)

S
for a focal defector, and

r(kz1):g(kz1)

S
{1 for

a focal cooperator. Averaging this quantity over all possible

configurations of the group, we can foretell the payoff of a defector

and a cooperator, respectively, as pD~
XS{1

k~0

S{1

k

� �

(
x

1{z
)k(

y

1{z
)S{1{k rk

S
g(k) and pC~

XS{1

k~0
S{1

k
(

x

1{z
)k

(
y

1{z
)S{1{k½r(kz1)

S
g(kz1){1�: Thus,

PD~dzN{1z
XN

S~2

N{1

S{1

� �
(1{z)S{1zN{SpD:

and

PC~dzN{1z
XN

S~2

N{1

S{1

� �
(1{z)S{1zN{SpC :

The first term in the right-hand side of PC denotes that one

cooperator is coerced to act like a loner since all other N{1
selected individuals are loners.

We have introduced function g(:) to characterize the probability

with which a group avoids the failure risk successively. For self-

Figure 2. Population dynamics whenever cooperators defectors, and loners compete to survive. The lines embedded with solid triangle,
square, and circle represent the evolutionary trajectories of cooperators, defectors and loners, respectively. For r~3, in both the linearly-dependent
and sigmoidally-dependent patterns, the evolution share the property that when cooperators abound, it is better to defect, while defectors’
prosperity puts the loners in the advantageous place forever, and thus loners take over the whole population. In the inverse sigmoidally-dependent
pattern, loners do thrive ensuing the defectors’ abundance. An exception emerges while the population consists of most cooperators, it drives to the
full cooperative state. Loners win the evolutionary race when the population starts with a state in which cooperators and defectors, and loners have
the same share. Parameters N~10, r~3. Upper row m~{0:4, middle row m~0, and low row m~10.
doi:10.1371/journal.pone.0063801.g002
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Figure 3. Population dynamics whenever cooperators defectors, and loners compete to survive. The lines embedded with solid triangle,
square, and circle represent the evolutionary trajectories of cooperators, defectors and loners, respectively. For r~6, irrespective of the risk removal
patterns, loners becomes the unique victor for the population starting with defectors accounting for the absolute majority. The abundance of loners
or cooperators invariably leads to the establishment of cooperators in the inverse sigmoidally and linearly dependent patterns, while leads to the

coexistence of cooperators and defectors in the sigmoidally-dependent pattern. Starting with the point of (
1

3
,
1

3
,
1

3
) responding to the fraction of

cooperators, defectors, and loners, the population navigates to extremely different equilibrium states under the three risk removal patterns.
Parameters N~10, r~6. Upper row m~{0:4, middle row m~0, and low row m~10.
doi:10.1371/journal.pone.0063801.g003

Figure 4. Population dynamics whenever cooperators defectors, and loners compete to survive. The lines embedded with solid triangle,
square, and circle represent the evolutionary trajectories of cooperators, defectors and loners, respectively. For r~10, cooperators pervade into the
whole population in the inverse sigmoidally and linearly dependent pattern, while loners completely dominate in the sigmoidally pattern, when
defectors abound at the starting point. In the other typical cases, cooperators uniformly take over the whole population, though sometimes the
evolutionary processes are different. Parameters N~10, r~10. Upper row m~{0:4, middle row m~0, and low row m~10.
doi:10.1371/journal.pone.0063801.g004

Cooperation in Risky Public Goods Games
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evident reasons, these two fundamental conditions, g(0)~0 and

g(N)~1, should be satisfied. Meanwhile, g(:) should be non-

decreasing in term of the cooperation level of a group in order to

make it have biological implications. Such functions are numerous.

For the sake of generality, we set g(k) to be

gm(h)~

{(1{2h)
1

2mz1z1

2
, 0ƒhƒ

1

2

(2h{1)
1

2mz1z1

2
,

1

2
ƒhƒ1

0
BBB@

with h~
k

N
being the cooperativeness of the group given that

there are k cooperators among the N actual participators. By

regulating m[({
1

2
,z?) the function gm(k) exhibits very rich

shapes, which can represent various patterns concerning the

dependence of the group’s success on its cooperativeness. For

example, in the case of m~{0:4, gm(h) is very closely to 0:5 in a

wide range of h[(0:2,0:8), meaning that the requirement for the

success of the group is demanding. gm(h) is a linear function for

m~0, indicating that the contribution of every cooperation weighs

equally in averting the risk. The condition mw0 renders gm(h) to

be a typical sigmoidal function. Of interest is that we can derive

the step function with
1

2
as the jump point as m approaches ?.

We here would like to pick up these three representative ms, say

inverse-sigmoidally cooperativeness-dependent pattern (m~
{0:4), linear cooperativeness-dependent pattern (m~0), and

sigmoidally cooperativeness-dependent pattern (m~10) to probe

how they would influence the evolutionary competition of the

three strategies.

Results

Population dynamics when loners are absent
Before entering into the full model admitting all the three

strategies, we first consider the special cases where the Loner strategy

is absent (i.e., z~0). In the absence of the loners, the replicator

equation _xx~x(1{x)(PC(x){PD(x)) suffices to character the

population dynamics where _xx means the time evolution of the

abundance of cooperators. Cooperators and defectors compete to

survive. The group size N of interacting individuals remains

unchanged over time. The payoff difference of cooperators and

defectors reads fC(x){fD(x)~
XN{1

k~0

N{1

k

� �
xk(1{x)N{1{k

½r(kz1)g(kz1)

N
{1{

rkg(k)

N
�. By setting fC(x){fD(x)ƒ0, we can

obtain rƒ
N

PN{1
k~0

N{1

k

� �
xk(1{x)N{1{k ½(kz1)g(kz1){kg(k)�

: ~Q(x),

equivalent to the dominance of defectors over cooperators.

Whenever the success of the production of common resource

linearly relies on the cooperativeness of the group, say g(k)~
k

N
, we

can accurately derive the mathematical formula of Q(x) as

Figure 5. Triangle plots illustrating the population dynamics for defectors (ed ), cooperators (ec) and loners (el ) for trajectories
starting from all possible initial frequencies for the inverse-sigmoidal risk removal pattern. Each vertex represents a homogeneous
population of that pure strategy. (A) For small interest rate r, except for the unique nontrivial fixed point (i:e:,e1) located inside the simplex S3 , there
also exists another nontrivial fixed point located in the line eced (i:e:,e2). In consequence, the inside area of the simplex S3 is divided into two
attraction basins, with one being loners’ and the other cooperators’. (B) For modest r, e1 and e2 as in plot (A) still exist. Instead the cooperators’
attraction basin covers absolutely large fraction of the inside area of the simplex S3 , and loners win the evolution for population starting from the
remaining area. If defectors are abundant, the population converges to the full cooperative state in a spiral way around the unstable fixed point e1 .
Otherwise, the population directly drives towards ec . (C) Further increase in r continue to expand the cooperators’ attraction basin. It should be
noted that even r~N , the attraction basin albeit narrow does not vanish. Relevant parameters N~10, m~{0:4 and (A) r~3, (B) r~6, (C) r~10.
doi:10.1371/journal.pone.0063801.g005
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N2

2(N{1)xz1
(see Text S1). As for inverse-sigmoidally coopera-

tiveness-dependent and sigmoidal cooperativeness-dependent pat-

terns, there is no possibility to get the simple mathematical

expression of Q(x). We can nonetheless look into the properties

of the algebraic equation fC(x){fD(x)~0 by numerical solving.

Figure 1 demonstrates that there exists a threshold value r0 of r for

the three patterns. For rvr0, defectors outperform cooperators,

driving the population towards the full defective state, irrespective of

the initial frequency ratio of the two strategy types. If the reverse of

the inequality is true (i.e, rwr0), the population dynamics vary with

the risk removal pattern. In both cases where the success depends

inverse-sigmoidally and linearly on the group’s cooperativeness, the

system has a unique interior unstable fixed point xL (Figure 1A, 1B),

suggesting that the evolutionary fate of cooperators crucially

depends on the initial abundance x0 of cooperators. The abundance

x of cooperators evolves to ever lower value if the initial fraction of

cooperators x0 is x0vxL and the population ends up with all

defectors, but to ever higher value and cooperation gets stabilized if

x0wxL.

Very intriguing dynamics emerge for the sigmoidally cooper-

ativeness-dependent pattern. The equation fC(x){fD(x) possibly

has no, unique, two nontrivial roots as r varies, corresponding to

the rich dynamics that admits none, unique unstable and, one

stable and one unstable interior fixed point (Figure 1B). Of interest

is that the sigmoidal risk removal patter leads to the appearance of

two mixed internal equilibria whenever r approaches N from less

than N, overthrowing the absolute dominance of defectors over

cooperators. Cooperators become disadvantageous when rare

(below xL) and when abundant (above xR) with perfectly distinct

underlying causes. For a low cooperative population, groups have

fat chance to succeed. Contribution of cooperators vanishes

without any return, which hastens the demise of cooperators. As a

consequence, the population is eventually absorbed into a full state

of all defectors. For a highly cooperative population, collective

coordination becomes easier to achieve. Groups’ success is almost

for sure, which unbiasedly benefits the participants. The aggregate

payoff of defectors dotted in these groups exceeds that of cost-

bearing cooperators. Defectors therein reproduce at a more faster

rate, decreasing the fraction of cooperators in the population.

Therefore, the population consisting of above xR cooperation is

tugged back. Once the cooperation level lies between the two

internal equilibria, randomly formed groups are still likely to

succeed, but not so frequently as when x0 is above xR. The

intermittent success of groups indeed reduces defectors’ exploita-

tion on cooperators, resulting higher average payoff of cooperators

than defectors. Cooperators increases in abundance. As a result of

these two considerations, the coexistence of cooperators and

defectors becomes stable with the former accounting a fraction xR

(See Text S2).

Comparing the three panels in Figure 1 demonstrates that the

presence of risk substantially changes the population dynamics.

Cooperators have chance to survive provided that their initial

fraction is sufficiently high to overcome the coordination barrier

Figure 6. Triangle plots illustrating the population dynamics for defectors (ed ), cooperators (ec) and loners (el ) for trajectories
starting from all possible initial frequencies for the linear risk removal pattern. Each vertex represents a homogeneous population of that
pure strategy. (A) For small interest rate r, there is only one nontrivial fixed point (i:e:,e1) located inside the simplex S3 . All trajectories starting from
inside of the simplex S3 invariable lead to the unique convergent equilibrium el . (B) For modest r, except e1 , there also exists another nontrivial fixed
point located in the line eced (i:e:,e2). Instead the cooperators’ attraction basin covers absolutely large fraction of the inside area of the simplex S3 ,
and loners’ attraction basin is almost negligible. If defectors are abundant, the population dynamics oscillate around the unique unstable interior
fixed point e1 with increasing amplitude and eventually converges to the full cooperative state ec . Otherwise, the population directly drives towards
ec. (C) Further increase in r continue to expand the cooperators’ attraction basin. It should be noted that even r~N , loners’ attraction basin, albeit
narrows, does not vanish. Relevant parameters N~10, m~0 and (A) r~3, (B) r~6, (C) r~10.
doi:10.1371/journal.pone.0063801.g006
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(i.e., risk circumventing). However, whether cooperators can

pervade into the whole population crucially relies on the way

how the group’s success depends on its cooperativeness. Actually,

we have found that the population dynamics can be generally

classified into categories in terms of in terms of the risk avoidance

function. Whenever the role of cooperators’ contribution weakens

slowly (i.e., mvm0) as cooperators increases, there just exists a

unique unstable internal fixed point (xL in Figure 1) separating the

whole area into two sections, one the attraction basin of defectors

and the other that of cooperators. Whenever the role ramps down

quickly (i.e, mwm0), another stable fixed point appears corre-

sponding to the mixed state of cooperators and defectors besides

xL.

Population dynamics when cooperators, defectors and
loners compete to survive

Let us now focus on what influence the risk-averse loners

exercise on the population dynamics. Figure 2 clearly illustrates

the evolutionary trajectories of the population starting with four

typical mixes under the three different risk removal patterns for

r~3. Each mix corresponds to a mixed state of cooperators,

defectors and loners. For such small r, loners pervade the whole

population in most of the twelve cases. Of interest is that

cooperators are still able to win the evolutionary race provided

that the population starts with cooperators themselves or loners

holding the absolute majority for m~{0:4. The rationale behind

this phenomena can be intuitively comprehended. To flip the coin

determines the success of groups consisting of defectors and

cooperators who fail to compete with loners from the perspective

of statistics. Only when several cooperators agglomerate together,

such high cooperative groups with probabilities close to 100%
succeed in averting the failure risk. Cooperators from these groups

are able to beat loners and defectors. Differently, the likelihood is

enhanced for the cases m~0 and m~10 when the group’s

cooperativeness is above 0:5 yet below 1. Consequently,

interspersed defectors can more frequently exploit and therein

outperform the cooperators, which occasions the prevalence of

defectors following the spawning of cooperators, as do loners after

defectors. Once dominating, loners establish forever, vanishing the

cyclical dominance of rock-paper-scissor type.

As r rises to the moderate level, the cycle still does not exist,

while cooperators have more chances to establish (Figure 3).

Irrespective of the risk removal pattern, loners take over the whole

population if defectors account for the overwhelming majority at

the outset of the evolution (Figure 3B, 3F, 3J). Depending on the

risk removal patterns, the population exhibits rich dynamics. Of

the remaining three starting mixes, cooperators and defectors

always coexist under the sigmoidal pattern (Figure 3I, 3K, 3L)

while cooperators evolve to be the only survivors in the inverse

sigmoidally pattern (Figure 3A, 3C, 3D). However, loners win out

after a transiently cyclical dominance for the population starting

with equal fractions under the linear pattern (Figure 3H). This also

implies that the fixed point (
1

3
,
1

3
,
1

3
) is unstable. The population

starting from this point would oscillate around it with the

amplitude increasing. Until eventually, loners homogenize the

population. With r arriving at r~10, cooperation stands

conspicuously advantageous as the evolution most of the time

ends up with the triumph of cooperators (Figure 4), apart from that

Figure 7. Triangle plots illustrating the population dynamics for defectors (ed ), cooperators (ec) and loners (el ) for trajectories
starting from all possible initial frequencies for the inverse-sigmoidal risk removal pattern. Each vertex represents a homogeneous
population of that pure strategy. (A) For small interest rate r, all orbits starting from the inside area of S3 converge to el . (B) Moderate r delimits the
inside area into two attraction basins. The equilibrium e2 , a coexistence state of cooperators and defectors, accounts a relatively large area as its
attraction basin. The rest of the inside area is the loner’s attraction basin. (C) Further increase in r makes the e2 coincide with ec and its attraction area
spreads almost the whole inside area. Relevant parameters N~10, m~10 and (A) r~3, (B) r~6, (C) r~10.
doi:10.1371/journal.pone.0063801.g007

Cooperation in Risky Public Goods Games

PLOS ONE | www.plosone.org 7 June 2013 | Volume 8 | Issue 6 | e63801



loners occasionally directly spread into the whole population after

beating the prevalent defectors in the sigmoidal pattern (Figure 4F,

4J).

We now full characterize the population dynamics by a three

dimensional simplex S3, whose each point has three components

denoting the fractions of cooperators, defectors, and loners

respectively. For m~{0:4, a small enhancement factor r divides

the inside of the simplex S3 into two attraction areas, with the

larger one being the loners’ and the other one cooperators’

(Figure 5A). In both linearly and sigmoidally cooperativeness-

dependent patterns, the same enhancement factor r leads to that

loners progressively pervade the entire population and eventually

dominate, reflecting by that each orbit starting from any point

inside S3, with exception of fixed points if they do exist, drives

towards and ends at the pure state of loners (Figure 6A, 7A),

resembling the results widely reported in the public enterprizes

absent of risk. This distinction can be attributed to the following

interpretations. As have established, loner is the payoff-maximiz-

ing strategy for small r in the absence of the failure risk. The

presence of risk indeed reduces the expected payoff of both

defectors and cooperators in comparison to most traditional

studies (i.e., without risk) for identical group composition. Payoff of

loners remains unaffected. Though depending on the coopera-

tiveness, the group’s success is not so hard in the linear and

sigmoidal patterns as that in the inverse-sigmoidal pattern,

therefore defectors parasited in groups of most cooperators and

loners have much more chances to hitch cooperators’ contribu-

tion. The exploitation induces the evolutionary trajectory to move

forward along the direction of increasing defectors, who are

emulated by the loners. Differently, as the group’s success is such

strongly on its cooperativeness for m~{0:4, the successful group

must bring much payoff for cooperators than for defectors, thus

the trajectory starting in the area covering immensely few

defectors would drive towards the full cooperative state.

We are most concerned about whether cooperation can survive

whenever r approaches yet sill below N. It is shown that the

presence of risk extinguishes the population dynamics of rock-

paper-scissors type. Whenever the success strongly depends on

group’s success (m~{0:4 and m~0), the attraction basin of

cooperators covers a relatively large area of the inside of the

simplex S3 (Figure 5B, 6B). For the evolution starting from the

point near the line eCeL, it directly progresses to the full

cooperative state. Of interest is that whenever the starting point

is located in the remaining part of cooperator’ attraction area, it

takes a different way to arrive at eC . The dynamics of trajectory

exhibit oscillatory behavior. Owing to the instability of e2, the

multitude of the oscillation keeps growing. Before arriving at the

attractors, if defection can rise to a high level, defectors in turn are

defeated and vanish, since the required threshold of cooperators

for groups’ success is hard to satisfy. In this situation, loners play

the role of salvaging the population out of the conundrum of all

defecting. Once the abundance of these saviors suffices to

substantially regulate the actual interaction group size, cooperators

are able to swiftly soar and eventually homogenize the whole

population. Therefore, the increment of defectors are self-

destructive, and loners bridge the population to the full

cooperative state after transiently dominating. An exception is

that if defectors are almost pervaded into the whole population,

loners would take over before cooperators procure chance to

deluge. For m~10, group’s success depends on its cooperativeness

to the weakest extent of the three invested patterns. The oscillatory

trajectory around e3 quickly converges to the coexistence state of

cooperators and defectors. The attraction basin of this attractor

covers substantial fraction of the simplex S3 (Figure 7B). For r~N,

all interior fixed points disappear. As have shown, cooperators and

defectors show positive frequency dependence whenever loners are

absent. However, stability of defection is eliminated with the

addition of loners while stability of cooperation is robust. Although

the microscopic roadway differs for different risk removal pattern,

the system mostly converges to the full cooperative state

(Figure 5C, 6C, 7C). It should be noted that the attraction area

of loners, albeit stingily narrow, still exists, which differs from the

situation without risk.

We would like to make longitudinal comparison with relevant

works. We extend Pacheco et al [31] model, which is just the case

of m~z? in our model, to more general cases. Generally

speaking, the effect of the risk removal pattern can be categorized

into two classifications. There exists a threshold m0 of m (see Table

S1). For mvm0, defectors and cooperators display the property of

positive frequency dependence. Initial staring point determines

their evolutionary fate. For mwm0, the population dynamics can

possibly admit none, unique, and two equilibria as r varies.

Therefore, we have studied two very typical cases m~0 and

m~10, since they suffice to address the population dynamics. To

better compare the results, especially when loners are introduced

we have also studied a third case of m~{0:4. The most

interesting regime is the emergence of two equilibria (i.e., xL and

xR in Figure 1C). And xL corresponds to the collective

coordination barrier. Once overcome, the population is eventually

stabilized at xR, defining the final fraction of cooperators. Actually,

presence of risk plays diametrically opposite role in sustaining

cooperation. For population consisting of rare cooperators, risk

makes cooperators’ effort almost drain away, and thus speeds up

the doom of the population. If initially cooperators abound, they

are always able to coexist with defectors. These works [21,35] also

dealt with risk in public goods game, but altruists are willing to

cooperate just in order to protect remaining account from losing,

which is decisively different from our model. Even so, risk also

leads to the emergence of two equilibria possessing similar

property of stability as in our model. This result was experimen-

tally verified in [28]. Therefore, risk universally plays the role of

double-edged sword in public goods transactions. For more

realistic situation, individuals are instinctively inclined to abstain

from engaging in the risk public goods enterprizes but subsist on

some safe solitary actions. For moderate r, loners hold a very small

area as their eventual territory. But most time, they just act to

extricate the population especially whenever defectors are

abundant. These results may be conducive to the risk manage-

ment.

Discussion

We have extended the traditional public goods game to the

systems in which groups of interacting individuals would undergo

the foraging failure risk. Overcoming the risk is positively

dependent on group’s cooperativeness. Only those groups

circumventing the risk successfully can create the public resource

and subsequently divide evenly to all engaging individuals. The

dependency is characterized by the function gm(h). Three

strategies, loner, cooperation and defection are feasible to

individuals. For very low interest rate, risk is detrimental to the

evolution of cooperation most of the time. However, once

cooperators enjoy the absolute dominance in number, they are

able to take over the whole population. As r increases to moderate

level, three risk removal patterns induce qualitatively different

dynamics. If the likelihood that the success of the joint venture

relies on the group’s cooperativeness in a linear or more strong

way, defectors fail to pervade the whole population. The
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population is always stabilized at a pure state of either all

cooperators or all loners, with r determining their respective

attraction basins. Invoking the sigmoidal function to represent the

risk function embodies the idea that ‘‘three in a boat, two row’’.

The third one can always enjoy the efforts of the two rowers. In

this setting, the dependency is not so strong as in the linear pattern.

Results show that the basin of attraction of loners accounts for a

nonnegligible fraction of the whole state space. Most frequently

defectors can coexist with cooperators by parasitizing on

cooperators. Taken together, the harder the group succeeds, the

higher cooperation level the population arrives provided cooper-

ators can build up. Increasing r strengthens the role of loners

acting as the rescuers than as the terminators of the population.

Our model captures the risk elements in the collective

coordination, making population dynamics differ essentially from

the traditional public goods game in two fronts. On the one hand,

for the population just consisting of cooperators and defectors,

when cooperators are abundant, they will eliminate, or at least

coexist with defectors. The positive frequency dependency of

cooperators relaxes the dilemma that defectors always wipe out

cooperators especially for the modest enhancement factors. On the

other hand, loners most of the time play the role of salvaging the

population out of ‘‘the tragedy of the commons’’ [13], and help the

population drive towards the full cooperative state, which is

contrast with the cyclical dominance of cooperators, defectors and

loners widely reported in previous studies [17–19].
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33. Szolnoki A, Perc M, Szabó G (2009) Topology-independent impact of noise on

cooperation in spatial public goods games. Phys Rev E 80: 056109.

34. Santos FC, Santos MD, Pacheco JM (2008) Social diversity promotes the

emergence of cooperation in public goods games. Nature 454: 213–217.

35. Santos FC, Pacheco JM (2011) Risk of collective failure provides an escape from

the tragedy of the commons. Proc. Natl. Acad. Sci. USA 108: 10421–10425.

36. Perc M (2009) Evolution of cooperation on scale-free networks subject to error

and attack. New Journal of Physics 11: 033027.

37. Perc M, Szolnoki A (2008) Social diversity and promotion of cooperation in the

spatial prisoner’s dilemma game. Phys Rev E 77: 011904.

38. Semmann D, Krambeck HJ, Milinski M (2003) Volunteering leads to rock-

paper-scissors dynamics in a public goods game. Nature 425: 390–393.

39. Skyrms B, Irvine RC (2001) The stag hunt. Proc. Address. Am. Phil. Assoc. 75:

31–41.

40. Smith JM, Price JR (1973) The Logic of Animal Conflict. Nature 246: 15–18.

41. Stander PE (1992) Cooperative hunting in lions: the role of the individual.

Behav. Ecol. Sociobiol. 29: 445–454.
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