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Abstract
Current dimensionality reduction methods can identify relevant subspaces for neural
computations, but do not favor one basis over the other within the relevant subspace. Finding the
appropriate basis can further simplify the description of the nonlinear computation with respect to
the relevant variables, making it easier to elucidate the underlying neural computation and make
hypotheses about the neural circuitry giving rise to the observed responses. Part of the problem is
that, although some of the dimensionality reduction methods can identify many of the relevant
dimensions, it is usually difficult to map out and/or interpret the nonlinear transformation with
respect to more than a few relevant dimensions simultaneously without some simplifying
assumptions. While recent approaches make it possible to create predictive models based on many
relevant dimensions simultaneously, there still remains the need to relate such predictive models
to the mechanistic descriptions of the operation of underlying neural circuitry. Here we
demonstrate that transforming to a basis within the relevant subspace where the neural
computation is best described by a given nonlinear function often makes it easier to interpret the
computation and describe it with a small number of parameters. We refer to the corresponding
basis as the functional basis, and illustrate the utility of such transformation in the context of
logical OR and logical AND functions. We show that although dimensionality reduction methods
such as spike-triggered covariance are able to find a relevant subspace, they often produce
dimensions that are difficult to interpret and do not correspond to a functional basis. The
functional features can be found using a maximum likelihood approach. The results are illustrated
using simulated neurons and recordings from retinal ganglion cells. The resulting features are
uniquely defined, non-orthogonal, and make it easier to relate computational and mechanistic
models to each other.
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1 Introduction
A central challenge in the study of sensory processing neurons lies in discerning the features
of a given stimulus that influence spiking behavior. It has become apparent in recent years
that many neurons are selective for more than one stimulus feature (Atencio et al., 2008;
Cantrell et al., 2010; Chen et al., 2007; Fairhall et al., 2006; Felsen et al., 2005; Fox et al.,
2010; Hong et al., 2007; Horwitz et al., 2005, 2007; Kim et al., 2011; Maravall et al., 2007;
Rust et al., 2005; Sincich et al., 2009; Touryan et al., 2002), sometimes as many as a dozen,
leading to highly nonlinear and potentially very complex input/output relationships.
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Dimensionality reduction methods, such as spike-triggered covariance (STC) and its
extensions (Bialek and de Ruyter van Steveninck, 2005; de Ruyter van Steveninck and
Bialek, 1988; Paninski, 2003; Park and Pillow, 2011; Pillow and Simoncelli, 2006; Schwartz
et al., 2002, 2006) or maximally informative dimensions (MID) and its extensions
(Fitzgerald et al., 2011a; Rajan and Bialek, 2012; Sharpee et al., 2004), are able to produce
linear subspaces which are relevant to the spiking activity of a neuron according to some
metric (e.g. changes in stimulus covariance caused by spiking or mutual information).
However, these and other dimensionality reduction methods specify features not uniquely,
but up to a linear combination of them. Often, the results are presented in terms of
orthogonal bases. Such orthogonal representations make it difficult to infer the
corresponding neural computation that often involve a set of overlapping stimulus features,
as in many types of motion computations (Gollisch and Meister, 2010). Here we show that
for certain types of computations the relevant subspace produced by these methods contains
extractable information about the functional neural circuitry involved in sensory processing.

The STC or MID subspaces are defined by a set of basis vectors which are often interpreted
as the stimulus ‘features’ encoded by a neuron. However, it may be more appropriate to say
that the features are defined by a functional basis, which spans the same subspace. The
functional basis is a set of features that best accounts for the observed nonlinearities in the
neural response using a pre-defined function. While the STC and MID bases certainly have a
meaning in terms of their respective metrics, they might not coincide with the functional
basis, which one may hope will yield insights into the underlying neural circuitry and may
be amenable to interpretation. For example, the functional basis may be non-orthogonal,
which cannot be matched by orthogonal STC bases. It is possible to order dimensions
according to how much information they capture (Pillow and Simoncelli, 2006), but the
resultant features also often come out to be orthogonal. In addition, the functional basis may
help achieve a more concise description of the nonlinear gain function that describes how
the neural spiking probability varies with stimulus components along the features. The
nonlinear gain function together with the set of stimulus features forms the so-called linear-
nonlinear (LN) model of the neural response (Chichilnisky, 2001; de Boer and Kuyper,
1968; Meister and Berry, 1999; Schwartz et al., 2006; Victor and Shapley, 1980).

Here we explore the boolean operations corresponding to logical OR and logical AND
computations, which are thought to describe the computations of some real neurons, such as
those that contribute to translation invariance (Riesenhuber and Poggio, 1999; Serre et al.,
2007), various types of motion computation (Gollisch and Meister, 2010), build selectivity
to increasingly complex stimulus features (Barlow and Levick, 1965) or implement
coincidence detection (Carr and Konishi, 1988). We show that operations of this kind have
clearly defined functional bases. The functional bases may span the same subspace as STC
basis, yet they allow for easier interpretation of the neural computation and the likely neural
architecture underlying it. We describe a way to extract the functional feature set from the
STC basis and demonstrate the method on several biologically inspired stimulated neurons
as well as recordings of salamander retinal ganglion cells.

1.1 Functional bases
Consider a neuron encoding a D dimensional stimulus S. The neural response y is binary
(when considered in a small time window), with y = 0 meaning the cell is silent and y = 1
meaning the cell spikes. The instantaneous firing rate of such a neuron is proportional to P(y
= 1|S), the conditional probability of a spike. The neuron is said to be selective for n features
of the stimulus if P(y = 1|S) = f(x1, x2, …, xn), where xi = S · vi is the projection of the
stimulus onto a vector vi. The collection of vectors {vi} represents the stimulus features for
which the neuron is selective.
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1.1 Non-orthogonal feature sets—For neurons beyond the sensory transduction stage,
the features {vi} are determined by the relevant stimulus features of afferent neurons, and
are in general not orthogonal. For example, a retinal ganglion cell may combine inputs from
several bipolar cells that have overlapping receptive fields (Asari and Meister, 2012; Cohen
and Sterling, 1991). The STC analysis would typically yield the sum and difference between
the bipolar cells receptive fields, as schematically illustrated in Figures 1 and 5. Although
the neural response function f can be defined in terms of any linearly independent basis
formed from a linear combination of the feature vectors, we are interested in finding a basis
that is more closely related to its biological function. Many types of functions can be
described using logical operations. Therefore, in this work we focus on finding
representations of f that make such logical descriptions explicit, and refer to the
corresponding basis as the functional basis.

As an example, consider a neuron selective for a set of features {v1, v2.., vn}, using a noisy
logical OR operation

(1)

where ηi is Gaussian noise added to xi and θi is the spiking threshold along dimension vi. A
particular instance of this type of neuron is shown in Fig. 1A for n = 2. In this figure, open
blue dots represent stimuli for which y = 0 and the red dots represent stimuli for which y =
1, separated by the thresholds (dashed lines) along the dimensions v1 and v2.

The horizontal s1 and vertical s2 axes of the plot form the basis that a method like STC or
MID might recover (in this case they actually correspond to STC dimensions), but a more
natural choice of basis is given by v1 and v2. These features v1 and v2 have a simple
meaning in the computation performed by the cell, cf. Eq. (1). By comparison, the nonlinear
gain function would require a more complex description in terms of s1 and s2, e.g. the
threshold value along s1 dimension depends on the value of s2. In a general case the
description of the nonlinear gain function along a set of n axes requires a large number of
parameters, such as  values where Nbins is the number of bins along each of the
dimensions.

This leads to the “curse of dimensionality” that makes it difficult to map out and/or describe
the nonlinear computation at a conceptual level with respect to more than a few relevant
dimensions (although recent computational approaches (Park et al., 2011) make it possible
to build predictive models with respect to many dimensions simultaneously). The
transformation to the functional basis provides a way to model the nonlinear gain function
with a small number of parameters, such as the threshold θi, scale and noise magnitude
along each of the axes in the functional basis. The number of parameters increases linearly
with the number of relevant dimensions, and not exponentially as in the case of
nonparametric descriptions.

Another computation relevant to biology is the logical AND operation, described by

(2)

An example of this function is shown in Fig. 1B for n = 2. Again, the features defined by the
threshold directions are not orthogonal and therefore could not be found using STC.
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We note that the fact that the neural response function depends on n features (as in Eqs. (1)
and (2)) does not exclude the possibility that the relevant subspace will have a lower
dimensionality d < n. This will happen when the n features are linearly dependent. For
instance, a boolean function can have n planar thresholds in a d dimensional relevant
subspace where n > d. However in practice it is unlikely that different inputs to a neuron will
have linearly dependent stimulus features. For example, if there are three presynaptic
neurons, it is unlikely that each one of them is not sensitive to at least partly novel aspects of
the stimulus.

1.2 Finding the functional bases for boolean computations
The features encoded by the different pathways in a neural circuit are confined to a subspace
in the high dimensional stimulus space. Therefore, finding a functional basis can be
simplified by first extracting this subspace using existing dimensionality reduction methods
such as STC. Once that subspace is determined, an analytical function representing the
boolean OR and AND operations can be fit to identify a set of functional features.

1.1 Dimensionality reduction—The STC method is designed to work with Gaussian
stimuli, and as such, we draw samples S(t) for t = 1, 2, …, T from a D dimensional zero
mean normal distribution (0, Cprior), where Cprior is the covariance matrix. Applying Eq.
(1) with n features produces a model cell spike train {y(t)}, which can be used to calculate
the spike-triggered covariance Cspike, defined by the elements

(3)

The change in covariance caused by spiking is ΔC = Cspike − Cprior. By diagonalizing ΔC
we obtain the dimensions along which the covariance is altered by the neural response.
These can be identified by the eigenvectors that have nonzero eigenvalues. This procedure is
valid for uncorrelated and/or spherically symmetric stimuli (Bialek and de Ruyter van
Steveninck, 2005; Chichilnisky, 2001; Samengo and Gollisch, 2012; Schwartz et al., 2006).
Other methods can be used to find the relevant subspace for more complex stimuli
(Fitzgerald et al., 2011a; Park and Pillow, 2011; Sharpee et al., 2004). Here we focus on
uncorrelated stimuli, because this work is devoted to finding a specific basis within the
relevant subspace, and not the subspace itself.

The accuracy with which the relevant subspace is found can be quantified using an overlap
metric (Rowekamp and Sharpee, 2011) with respect to the subspace spanned by the features
used by the model:

(4)

where U and V are d × D matrices whose rows are the normalized eigenvectors {ui} and
features {vi}, respectively. This metric is bounded between 0 and 1, with 0 meaning the two
subspaces have no overlap and 1 meaning they are identical, and gives us a way to evaluate
our confidence in the dimensionality reduction step. Note that if the number of features {vi}
is larger than the dimensionality d of the relevant subspace, one can still choose d features
that span that space to compute the overlap.
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1.2 Maximum likelihood models—Given this reduced space, we wish to find the
functional basis by looking for linear combinations of the vectors ui that best approximate a
logical OR or logical AND computation. Such functions have the general form

(5)

(6)

where each Aα is a d dimensional vector that describes the components of αth axes of the
functional basis within the STC basis. The function g(UT Aα · S) is some threshold-like
function that describes the spike probability along the direction of the αth functional feature
of the computation.

To make progress, we must choose a specific functional form of g(UT Aα · S). An obvious
choice is the logistic function gα = 1/(1 + exp(aα + UT Aα · S)), where aα determines the
location of the transition from silence to spiking. This choice of g is able to handle noise in
the computation, as well as different thresholds along different features. It is also
analytically quite tractable and has an information theoretic interpretation as the least biased
response function (Fitzgerald et al., 2011b) consistent with encoding of a linear component
along the functional feature.

The parameters {Aα} and {aα} can be found by maximizing the log likelihood. For a logical
OR, this is

(7)

where Fα = UT Aα are the functional basis vectors. Note that the functional basis vectors are
not normalized to length 1. This optimization problem can be implemented using a
straightforward conjugate gradient algorithm. In the end, the parameters {aα} that determine
the threshold positions are unimportant if all that is desired is an estimate of the functional
basis. The typical run time for the algorithm with 200,000 stimulus frames each of which
had 256 pixels is around 5 minutes on a 3.2 Ghz desktop computer. Convergence time
increases linearly with data set size and the number of basis vectors fit, and was not affected
by the signal-to-noise ratio of the dataset. The code is publicly available at http://cnl-
t.salk.edu/Code/.

2 Results
2.1 Model cells

Three model cells were created to test whether maximizing Eq. (7) is able to recover the
functional basis vectors. In all cases 200,000 stimulus samples were created from a
uncorrelated Gaussian distribution, with Si ∈ {0, …, 255} representing the ith pixel intensity
of an image. The response models were chosen to be logical OR functions, defined in the
same manner as Eq. (1). The thresholds along each feature direction were set to the same
value within a given model. The Gaussian noise was added to the projections in such a way
that the overall probability of a spike was between 0.2 and 0.4 for all models. The STC
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subspace in all cases had an overlap  > 0.95, indicating a very good recovery of the model
subspaces.

The first model considered is an example of a translationally invariant feature detector,
shown in Fig. 2A. The functional basis vectors are 4 shifted versions of a center-surround
feature, located in the four corners of the image. These features overlap and are not
orthogonal and therefore the STC basis, shown in Fig. 2B, is formed from linear
combinations of these features. The logical OR functional dimensions make the computation
performed by the cell difficult to interpret in the STC basis. The maximum likelihood OR
solution for the functional basis with four features is shown in Fig. 2C, and matches quite
well with the true features.

We also fit a maximum likelihood AND function to the STC basis for comparison. The
outcome for the logical AND functional basis is shown in Fig. 2D. Each of the four features
is very nearly identical, indicating that the optimal solution for a logical AND is in fact not a
logical AND at all, but rather a logistic function along a single dimension. This qualitative
observation is quantified below.

The performance of these fits can be evaluated by comparing the predicted spike probability
as a function of the stimulus to that obtained from the true model cell upon repeated
presentations of a group of stimuli. This is shown in Fig. 2E for a 50 frame section of a
200,000 frame stimulus presented 10 times to the model cell. The spike probability obtained
from the model (top panel) matches very well with the maximum likelihood logical OR
(middle panel) and has a correlation coefficient of r = 0.97 across all 200,000 frames. The
maximum likelihood logical AND, on the other hand, has a poorer performance, with r =
0.77. This comparison provides a way to determine how much like an OR or AND operation
is the computation performed by a real cell.

If one assumed no a priori about knowledge of the number of features in this example, one
can determine the optimal number of features to fit by performing a maximum log
likelihood calculation for a given number of features included into the model, cf. Fig. 2F. In
the case of the logical OR, the log likelihood increases as the number of features are added
up to four. When the number of features is increased beyond four (which is the correct
number for this model), no further increases in log likelihood are observed. This happens
because extra features are either noise-like and have such large thresholds associated with
them that they do not affect the spiking, or they reproduce one of the earlier features. In the
case of the logical AND function, the log likelihood does not increase as additional features
are added into the model, because all of the features are roughly the same. Thus, finding the
number of features where the log likelihood saturates provides a way to determine the
correct number of features for a given model. The choice of a particular model structure,
such as the logical AND or logical OR model can be made according to which models yields
larger log likelihood.

As another example of an invariant computation, we tested a rotationally invariant model,
shown in Fig. 3. The model is selective for a curved feature at 8 different orientations (Fig.
3A). Using STC, the 8 dimensional subspace was recovered, Fig. 3B, but had little
resemblance to the functional feature set. The maximum likelihood estimate shown in Fig.
3C, however, clearly recovers the functional basis.

Up to this point we have been fitting maximum likelihood functions with nML = nmodel and
considered the case with no overcompleteness where nmodel equals the dimensionality d of
the relevant subspace. However, the number of features is not known a priori and therefore
nML may be varied to find the best fit. An example of this is shown in Fig. 4 using the
rotationally invariant model cell. The functional basis for nML = 7, Fig. 4, recovers 6 of the
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features very well while the 7th feature is a linear combination of the last two with one
orientation dominant over the other. For nML = 9, Fig. 4B, recovers all 8 features well while
the 9th is mostly redundant with some slight overfitting to the noise in the neural
computation. The redundant dimensions are associated with large threshold values such that
they seldom contribute to the model spiking.

The value of the functional basis model in finding invariant dimensions is that no prior
assumption is made about the type of invariance. By comparison, the recent method of
maximally informative invariant dimensions (MIID) requires one to specify the type of
invariance prior to doing the analysis (Eickenberg et al., 2012; Vintch et al., 2012). The
MIID method also imposes a constraint that all of the features are identical except for shift
in position or change in angle. Thus, functional basis and invariant methods approach the
problem of characterizing neural feature selectivity with invariance from two different
perspectives and in principle find the same dimensions if the assumptions made are
congruent with the neural computation. Which method is most appropriate for analysis
depends on what prior knowledge one has about the system and the degree to which
invariance is exact.

To illustrate how the functional basis model can tackle a non-invariant case, we apply it to
an example model cell with features that are not shifted or rotated copies of each other.
Here, we considered computation inspired by properties of retinal ganglion cells, cf. Fig. 5.
This cell encodes 9 blob-like features (Fig. 5A) which could represent the receptive fields of
individual bipolar cells (Cohen and Sterling, 1991), and therefore the model could be
interpreted as a logical OR retinal ganglion cell. Again the STC basis, shown in Fig. 5C,
makes it difficult to interpret the feature selectivity of this model neuron. At the same time,
the maximum likelihood OR linear combination of those vectors, shown in Fig. 5B, matches
well with the model features. Thus, one of the main advantages of using functional basis
representation is that it can characterize the neural computation in cases where the
invariance type is not known a priori or invariance is not exact.

2.2 Application to retinal ganglion cell recordings
We now illustrate how the approach works for characterizing encoding of retinal ganglion
cells (RGCs) in the salamander retina probed with uncorrelated stimuli. The white noise
stimulus consisted of binary checks forming frames with 40 × 40 pixels. The stimulus had
137,145 frames at a rate of 60 Hz. There were a total of 53 cells in the dataset with a wide
range of activity from 118 to 30,908 total spikes (median 5,453 spikes). The dataset was
collected as part of a previous study and the electrophysiological methods are described
there (Marre et al., 2012). As with the model cells, the first step of the analysis was to find
the relevant subspace. We decided to focus on the spatial profile of the neurons as a way of
illustrating the potential of this method for reconstructing receptive field properties of
neurons (or parts of the neural circuit) that are presynaptic to ganglion cells. In the case of
retinal ganglion cells, one might hope that the functional bases would then describe
receptive fields of bipolar cells feeding into a given ganglion cell or nonlinear pieces within
the dendritic computation of the ganglion cell (Soodak et al., 1991). To take into account
temporal integration properties of RGCs, we computed the spatiotemporal spike-triggered
average (STA) for each neuron (de Boer and Kuyper, 1968). We then performed the singular
value decomposition (Press et al., 1992) of the spatiotemporal STA and took the first
principal temporal vector as the estimate of the neuron’s temporal kernel. Applying this
filter to stimuli yields a set of spatial patterns that can then be associated with the measured
neural responses. Subsequent analyses were carried out on 16 × 16 patches of these
temporally filtered spatial-only stimuli. The patches were centered at the location of the
maximum of the STA of a given neuron. To find the relevant subspace, STC analysis was
performed and the relevant vectors were determined by comparing the resulting eigenvalue
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distribution with the eigenvalue distribution of a series of spike trains whose association
with stimuli was broken. The association between stimuli and responses was broken by
shifting the spike train forward by various amounts, with a minimal amount of the shift. The
advantages of this procedure compared to shuffling spike trains is that preserves all of the
higher-order structure in the spike train in addition to the average spike rate (Bialek and de
Ruyter van Steveninck, 2005). In our case, the minimal amount of shift was set to 100
frames. The STC analysis was then performed on 40 of such shifted spike trains and the
eigenvalue distributions from these analyses were combined. The eigenvalues from the
measured (unshifted) spike train/stimuli pairs were considered as significant if they lay
outside the bounds of the eigenvalue distribution obtained with shifted spike trains. Of the
53 cells, 30 neurons had more than one relevant stimulus feature and therefore of interest for
further investigation using functional bases. The number of spikes available for these cells
ranged between 192 to 21,894 (median 5,426). For the example cell, which produced 8389
spikes, the STC method yielded four significant dimensions, cf. Fig. 6A. The STC
dimensions have commonly observed spatial profiles, with the dominant feature being
uniphasic and the secondary, tertiary, and quaternary feature containing two or more
subregions of opposite polarity, similar to what was found in the primary visual cortex (Rust
et al., 2005).

To find the functional basis for this example neuron, we fit both the logical OR and AND
model. In this case, we focus the presentation of results on the logical OR model, which
accounted better for the responses of this cell than the logical AND model. First, the data set
was split into four sections, as in the jackknife method (Efron and Tibshirani, 1998). By
excluding one section for use as a test set to evaluate model performance while the other
three sections were used as training sets to fit the model, we had four data sets with which to
make a comparison of the functional models. Since the individual test sets have different
information contents, the log likelihoods cannot be directly compared. Rather, we computed
a normalized log likelihood difference to compare models A and B:

(8)

where LA and LB are the log likelihoods of model A and B, respectively, computed
according to Eq. (7). If the mean log likelihood difference across all test sets, 〈ΔLA,B〉, was
significantly greater than 0, then model A was regarded to be the better model. [The errors
were computed using the jackknife method (Efron and Tibshirani, 1998) by scaling the
standard error of the mean by t − 1, where t is the number of test datasets, to take into
account that the training datasets are not independent.] For the example RGC neuron, the
mean log likelihood difference ΔLOR,AND = 0.0026 ± 0.0001. Comparing logical OR and
logical AND to the LN model with nonparametric nonlinearity yielded values ΔLOR,LN =
0.5454 ± 0.006 and ΔLAND,LN = 0.5436 ± 0.006, respectively. This shows that for the
example cell, logical OR and logical AND both perform better than the non-parametric LN
model in making predictions but the logical OR function is a better functional basis model
than the logical AND. We note that increasing the number of functional bases did not
increase the log likelihood of the logical OR model (logical OR model with respect to five
features yielded the log likelihood difference ΔLOR5;OR4 = −0.0042 ± 0.0285). The features
of the functional basis corresponding to the logical OR model are shown in Fig. 6B. Unlike
the STC dimensions in panel A, all of the components of the logical OR model in panel B
are spatially localized and describe sensitivity to decrements in light intensity in neighboring
but displaced parts of the visual field. These dimensions may correspond to the receptive
fields of bipolar cells feeding into this RGCs. The expected number of bipolar inputs is ~ 10
(Cohen and Sterling, 1991). Although this is somewhat greater than the four features we
observe here, the number of bipolar inputs is known to vary depending on eccentricity,
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ganglion cell type, and species. It is also possible that the functional basis dimensions we
observe here correspond to nonlinear subunits within the dendritic fields of RGCs, as has
been discussed for cells in the cat (Soodak et al., 1991) where 2 – 4 subunits were observed.
In any case, the subunits that we observe here are physiologically plausible and provide a
way to describe functionally separate inputs to a given RGC.

One may also compare this approach to methods that characterize inputs by specifying that
relevant features are the same up to position invariance, as in the MIID method. On one
hand, MIID method can allow one to potentially obtain more precise estimates of relevant
features by pooling measurements from different parts of the visual field. On the other hand,
one might be interested in the variability observed at different spatial positions. In particular,
for the example cell we are considering the four functional bases features are not exact
copies of each shifted to different positions. To determine how important was to consider the
individuality of different functional bases dimensions, we compared log-likelihood of the
functional basis logical OR model with that of models built on nine identical features shifted
by one pixel from the peak of STA, respectively. The log likelihood difference of the
invariant dimension model and the log likelihood logical OR model averaged across test sets
for the example cell was ΔLOR,MIID = 0.8710 ± 0.0011. [We also tried the translation
invariant model with larger shifts from the STA peak, but these yielded even worse
predictive power.] Thus, in this case the functional basis transformation yielded much better
predictive power compared to the model where features are constrained to have the same
profile shifted to different positions in the visual field.

Similar results were obtained across the population of 30 cells with multidimensional
relevant subspaces. The number of relevant dimensions per neuron varied from two to four,
with 15 cells having two features, 9 cells having three relevant features, and 6 cells having
four relevant STC features. All but two of these cells were best fit by the logical OR
functional basis model when compared to the logical AND model (Fig. 7A). No cell was
better fit by the LN model than the functional basis model (Fig. 7B). In fact, both functional
basis models performed better than the non-parametric LN model for every cell. In all cases,
the log likelihood saturated when the number of functional basis features chosen was equal
to the number of STC basis vectors. Using the same procedure described in the previous
paragraph, MIID was applied and compared to the logical OR model. No cells were better
described by invariant dimensions compared to functional bases representation (Fig. 7C).

The transformation to the functional basis can also be helpful for the interpretation of the
nonlinear response function. For the example neuron in Fig. 6D, the two-dimensional
nonlinear firing rate function,

(9)

with respect to STC dimensions si and sj has a characteristic “crescent-like” shape, which is
one of the types of nonlinearities previously reported in RGCs (Fairhall et al., 2006). The
logical OR provides a natural way to explain the occurrence of crescent-like nonlinearities
as arising from a sensitivity to similar but not identical features each of which can trigger the
neural response. Such nonlinearities are common in both visual (Fairhall et al., 2006; Rust et
al., 2005) and auditory (Sharpee et al., 2011) systems. It is noteworthy that the nonlinearity
of the model neuron built according the logical OR in Fig. 1 has also crescent shape.
Returning to the example retinal neuron, we observe that the crescent shape of the
nonlinearity observed in the STC basis (panels C,D) is unfolded by the transformation to the
functional basis (panels E, F), as it should have been. Furthermore, the measured
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nonlinearities (panels D and F) are closely reproduced by the nonlinearities predicted by the
model (panels C and E) in both the STC and functional bases.

3 Discussion
The concept of feature extraction using a linear subspace has found much success in the
analysis of sensory processing neurons. However, simply discovering the relevant subspace
is not necessarily the end of the story if the goal is to gain insights into the neural circuitry
responsible for the processing of sensory information.

Dimensionality reduction methods such as STC or MID identify the relevant subspace by
finding a basis that captures significant changes in the stimulus covariance due to spiking or
large amounts of the mutual information. Despite the meaning inherent in these bases, the
resulting features are not necessarily the easiest to interpret in terms of functional
computations. This is because standard dimensionality reduction methods describe the
neural input/output function using an orthogonal bases whereas the relevant features of
afferent inputs to a given neuron are often non-orthogonal. On the other hand,
dimensionality reduction methods for characterizing neural feature that are explicitly based
on assumptions of invariance (Eickenberg et al., 2012; Vintch et al., 2012) can account for
non-orthogonal features, but cannot capture individually in the receptive field subunits,
which is also an important part of neural representation (Gauthier et al., 2009; Liu et al.,
2009). The functional basis representation provides a compromise in that it does not impose
a relationship between the relevant stimulus features, e.g. they do not have to be shifted or
scaled copies of each other. At the same time, searching for functional basis representations
that correspond to biologically relevant nonlinearities, such as logical OR and AND
nonlinearities (Riesenhuber and Poggio, 1999; Serre et al., 2007), allows one to determine
types of invariance pertinent to the responses of a given neuron instead of imposing them a
priori.

The results obtained by standard dimensionality reduction techniques and the functional
basis methods are related in that they share the same relevant stimulus subspace, differing
only in the choice of basis within that subspace. However, finding a functional basis
representation is not dependent on dimensionality reduction methods such as STC or MID.
In principle, a maximum likelihood model of a logical OR or AND response function with n
features could be fit in the full D dimensional stimulus space. The appropriate number n of
significant features can be determined by maximizing the log likelihood with respect to the
number of features just as was done in the reduced subspace. Performing the computation on
the full stimulus space can be, however, a computationally daunting task. Thus, the search
for the functional basis can be performed effectively and in a much more timely manner
within the reduced subspace.

Although we have only considered two specific computational forms, the idea of finding a
functional basis may be extended to other types of functions if simplifying features can be
suitably defined. There are, however, many computations for which the functional basis is
impossible to define without detailed knowledge of the underlying circuitry. For instance, a
radially symmetric function in two dimensions, such as in the energy model of a complex
cell in area V1 of the visual cortex (Adelson and Bergen, 1985; Rust et al., 2005), is equally
well described by any choice of basis. Even in this case however one can take advantage of
the deviations from the true radial symmetry that characterize a particular complex cell
under consideration to find the number of threshold-like units that can best account for its
responses. Another example is when irregularities within the retinal circuitry can help
separate individual inputs to a given RGC (Field et al., 2010; Liu et al., 2009; Soo et al.,
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2011). In summary, finding a functional basis can help bridge the divide between low-
dimensional descriptions of neural responses and the underlying neural circuitry.
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Figure 1.
Computations in two dimensions with non-orthogonal features. Each dot represents a high
dimensional stimulus that has been projected onto this relevant subspace with axes s1 and s2
recovered by STC method. The red dots are stimuli for which y = 1 and the blue circles are
those for which y = 0. Both logical OR (A) and logical AND operations (B) with two non-
orthogonal features v1 and v2 are defined by two thresholds (dashed lines) which lie
perpendicular to the feature directions. In the case of logical OR, any stimulus above either
threshold causes a spike (corrupted by Gaussian noise), whereas for a logical AND function
stimuli must be above all thresholds to elicit spikes. In both panels the parts of the thresholds
that determine spiking behavior are shown in black and the irrelevant parts in gray. Note that
logical OR nonlinearity leads to the “crescent-shape” distribution of spike-eliciting inputs
that are common in sensory systems (Fairhall et al., 2006).
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Figure 2.
Translationally invariant model cell. The computation performed by the model is a logical
OR operation on a center-surround feature, shifted to the four corners of the receptive field
(A). The STC basis (B) and the maximum likelihood OR functional basis (C) both span the
same space, but are much different in their appearance and interpretation. A maximum
likelihood AND fit (D) finds four identical features, which does not match any of the model
features. (E) Comparing the model spike probabilities generated from repeated presentations
of a stimulus sequence to the predicted spike probabilities shows the logical OR fit
outperforms the logical AND fit significantly, with correlation coefficients of r = 0.97 and r
= 0.77 respectively. (F) The average log likelihood per time bin for logical AND and OR
models with different number of functional basis vectors. (G) The transformation matrix
from the STC to the functional bases (here, each vector was normalized to length one for
presentation purposes).
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Figure 3.
Rotationally invariant model cell. The computation performed by the model is a logical OR
operation on a curved feature. The functional basis of the model (A) is defined by rotating
the feature to 8 different orientations. The STC basis is shown in panel (B) and the
maximum likelihood functional basis in panel (C). The presentation order of the features in
(C) was chosen to match the corresponding features of the model logical OR.
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Figure 4.
Changing the number of functional features. A maximum likelihood OR fit with nML = 7
(A) and nML = 9 (B). With nML < nmodel, some of the features appear as linear combinations
of the true features, whereas for nML > nmodel, some of the features are redundant and begin
to fit the noise in the computation. The threshold values along those features is so large that
they seldom contribute to the model spiking.
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Figure 5.
Logical OR model of a simulated retinal ganglion cell. Each of the 9 blob-like features (A)
represents the receptive fields of individual bipolar cells feeding into a retinal ganglion cell.
Shown in (B) is the maximum likelihood OR functional basis and in (C) is the STC basis.
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Figure 6.
An example RGC stimulated by white noise. The STC basis (A) is rotated according the
logical OR functional basis method to produce the functional basis (B). The relevant image
features are plotted relative to the average standard deviation per pixel. Unlike the STC
basis, the image features in the functional basis are localized. To show the relative
positioning of functional basis features relatively to the neuron’s receptive field, we fit these
features with two-dimensional Gaussians. Ellipses show one standard deviation contours
from Gaussian fits to the four functional basis features. Black ellipses correspond the
functional basis feature with which they are overlayed, gray ellipses correspond to the other
three functional basis features. We show the two-dimensional nonlinearity predicted (see Eq.
9) by the functional basis method (C) together with the empirically determined nonlinearity
from the spiking data (D) in the STC basis. The predicted nonlinearity (E) also closely
matches the empirical nonlinearity (F) when plotted in the functional basis projection space.
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Figure 7.
The difference in log likelihoods of the logical OR model against the logical OR model (A),
LN model (B), and MIID (C) are plotted across the population of cells. The dashed line
marks the threshold value at zero corresponding to the cross-over between the models that
are being compared for the ability to predict the neural responses. The logical OR model
outperformed the logical AND model and the non-parametric LN models for the majority of
neurons.
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