
Biophysical Journal Volume 104 June 2013 2383–2391 2383
Exponential Sum-Fitting of Dwell-Time Distributions without Specifying
Starting Parameters
David Landowne,* Bin Yuan, and Karl L. Magleby*
Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
ABSTRACT Fitting dwell-time distributions with sums of exponentials is widely used to characterize histograms of open- and
closed-interval durations recorded from single ion channels, as well as for other physical phenomena. However, it can be difficult
to identify the contributing exponential components. Here we extend previous methods of exponential sum-fitting to present a
maximum-likelihood approach that consistently detects all significant exponentials without the need for user-specified starting
parameters. Instead of searching for exponentials, the fitting starts with a very large number of initial exponentials with logarith-
mically spaced time constants, so that none are missed. Maximum-likelihood fitting then determines the areas of all the initial
exponentials keeping the time constants fixed. In an iterative manner, with refitting after each step, the analysis then removes
exponentials with negligible area and combines closely spaced adjacent exponentials, until only those exponentials that make
significant contributions to the dwell-time distribution remain. There is no limit on the number of significant exponentials and no
starting parameters need be specified. We demonstrate fully automated detection for both experimental and simulated data, as
well as for classical exponential-sum-fitting problems.
INTRODUCTION
Exponential sum-fitting is often used to describe distribu-
tions of various natural phenomena (1–5). In exponential
sum-fitting, the distributions of interest are described by
the sums of exponentials, such that

f ðtÞ ¼
XN
k¼ 1

�
ak
tk

�
exp

��t

tk

�
; (1)

where f(t) is the function of the fitted sum of exponentials
used to describe the dwell-time distribution, N is the number
of summed exponentials, ak is the area (the fraction of the
total area of the dwell-time distribution) of exponential k,
tk is the time constant of exponential k, and the quotient
ak/tk gives the magnitude of exponential k at 0 time. The
time constant tk is the time for exponential k to decay to
1/e (0.368) of its 0 time value, which is the same as the
mean duration of all the dwell times in exponential k. An
inherent difficulty in exponential fitting is to identify the
number of summing exponentials and their parameters
(1,6–8). We now extend previous approaches of exponential
sum-fitting for the specific case of fitting dwell-time distri-
butions obtained from single ion channels.

Ion channels are integral membrane proteins comprised
of subunits that allow the passage of ions through cell mem-
branes (9). Ion channels gate their pores by changing their
conformation, with typically one or more open (conducting)
states and many closed (nonconducting) states (9). Such
gating has been successfully modeled with discrete-state
Markov-chain models (10–15). Such models predict that
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the distributions of open and closed dwell times will be
described by the sums of exponentials (16,17). A determina-
tion of the number of significant exponentials that sum to
describe the open and closed dwell-time distributions
provides an estimate of the minimal numbers of open and
closed states (16,17), respectively, but there is not typically
a one-to-one relationship between designated exponential
components and states (16–18). Nevertheless, the exponen-
tials and their sum provide a convenient means to describe
the dwell-time distributions consistent with the underlying
theory.

A difficulty with exponential sum-fitting of dwell-time
distributions, just as with the exponential sum-fitting of
other phenomena, has been to find all the significant expo-
nentials that contribute to the distributions (1,6,7), The
problem is further complicated because large numbers of
exponentials, often closely spaced, can be required to
describe the dwell-time distributions from single-channels
(19–21), consistent with theoretical predictions that large
numbers of kinetic states can contribute to gating (22–24).
Detecting such exponentials can be especially difficult,
because search routines often get trapped in local maxima,
preventing them from finding all exponentials. To overcome
these difficulties, we now present an automated analysis
method that consistently finds all of the significant exponen-
tials contributing to dwell-time distributions for simulated
single-channel data. A key feature of our automated analysis
is based on previous examples of exponential sum-fitting
(4,25–27). Instead of searching for the exponentials, the
fitting starts with essentially all possible exponentials so
that none are missed.

In practice, we have found that 20–40 initial exponentials
equally spaced in log time have been sufficient to find
the significant exponentials contributing to dwell-time
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distributions from single channels. In the automated anal-
ysis, once the time constants of the equally log-spaced
initial exponentials are set, the areas of the initial exponen-
tials are determined with maximum-likelihood fitting. In an
iterative manner, the analysis then removes exponentials
with negligible area and combines adjacent exponentials
with refitting to optimize the areas and time constants of
the exponentials until only those exponentials that make
significant contributions to the description of the dwell-
time distributions remain. There is no practical limit on
the number of significant exponentials, and no starting
parameters need be specified.
MATERIALS AND METHODS

Measuring, log binning, and plotting
single-channel dwell times

Methods for measuring dwell times from single ion channels, log binning

the dwell times to generate frequency histograms, and the theory and appli-

cation of maximum-likelihood fitting of dwell-time distributions with sums

of exponentials (or mixtures of exponentials when the data are converted to

probability density functions) have been extensively described (19,28–31).

Log binning allows dwell times from microseconds to hours to be binned in

just a few hundred bins with a constant relative time resolution (19,29,30).

Although it would be possible to analyze the data for the analysis to be

presented here without log binning, the log binning allows meaningful plots

of distributions spanning up to seven orders of magnitude of the dwell times

examined here, and it reduces the time required for fitting 107 intervals by

~60,000 fold, from months to just a few minutes on a Windows-based

desktop computer as the fitting time depends mainly on the number of

bins (~150) rather than the number of intervals. Plots of the dwell-time

distributions in this article use the Sigworth and Sine transform (29) which

plots the square root of the number of intervals per bin versus log time, with

the peak amplitude of each transformed exponential located at its time

constant.

To find the appropriate bin for an observed interval, the log of the interval

duration in sample periods is multiplied by the number of bins per log unit

(30). The result of this operation is that some bins have no events and other

bins may have greater or fewer events than indicated by the magnitude of

the fitted dwell-time distribution at the midtime of the bins. This distortion

of the data, which is only significant at short times, has negligible effect on

the fitting but can distort the plots of the simulated and binned data,making it

difficult to visually compare simulated and fitted distributions at short times.

To reduce the visual discontinuities in the plots from log binning, a small

sample interval of typically 0.0001–0.001 ms was used when binning the

dwell times, and corrections of the binned data at brief times were applied

(19,30). The fitting was always performed on uncorrected data.
Simulation of dwell-time distributions

The dwell times for a simulated dwell-time distribution were generated

with an algorithm (in abbreviated format)

For k ¼ 1 to N

While nak > 0.5

dwell ¼ tkð�logeðRNDÞÞ
nak ¼ nak � 1

Wend

Next k,

where N is the number of exponentials, n is the total number of dwell times

to simulate, ak, and tk are the area and time constants, respectively, of expo-
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nential k, dwell is the duration of each successively generated dwell time,

RND is a random number between 0þ (~5 � 10�8) and

1.0, �loge(RND) converts the linear random numbers to exponentially

distributed dwell times with a mean of 1.0, and Wend returns the loop to

While. If the last value of nak before exiting the loop is >0.5, then an inter-

val is generated. Unless stated otherwise, 107 intervals were simulated for

each dwell-time distribution to reduce stochastic variation to low levels,

as the major focus of the fitting was to determine whether the automated

analysis program could find the significant exponentials, not to explore

the effects of stochastic variation. As a second method of generating

near-perfect dwell-time distributions, we calculated the number of intervals

in each bin rather than using a random number generator. The distributions

generated by the two methods visually superimposed, and near-identical

visual results were obtained when fitting the distributions, but as would

be expected, the errors for fitting the near-perfect distributions were reduced

somewhat compared to fitting the stochastic distributions. The results pre-

sented in this article for the four classic examples of exponential sum-fitting

are for fitting calculated distributions of near-perfect data for comparison to

previous studies where near-perfect data were fit, whereas the results based

on experimental data are for simulated distributions, so that the conse-

quences of decreasing the number of dwell times in a distribution, which

would increase stochastic variation, could be examined. Binning for both

simulated and calculated distributions was at 25 bins/log unit (30).
Significance of an additional exponential and the
number of dwell times required for significance

Whether an additional exponential was significant when fitting distributions

with sums of exponentials was determined from the loge of the likelihood

ratio, LLR, given by

LLR ¼ LLN � LLN�1; (2)

where LLN and LLN�1 are the loge of the likelihoods that the experimental

data were drawn from a distribution described by N or N � 1 exponentials,

respectively. Twice the value of the LLR is distributed asc2, with the number

of degrees of freedom equal to 2 for an additional exponential (19,32,33). On

this basis, an additional exponential was considered significant with

P < 0.05, P < 0.01, P < 0.001, P < 0.0001, and P < 0.00001 when the

LLR was >2.995, >4.605, >6.908, >9.210, and >11.51, respectively.

Having determined with Eq. 2 that there are N significant exponential

components in a distribution containing nD intervals, it can be useful to

estimate the minimum number of intervals nN drawn from the same

distribution that would be required to detect all N significant exponentials,

as is done in the Results and Discussion section. Such a calculation is

possible because (for perfect data) the LLR ratio scales directly with the

number of intervals in a dwell-time distribution (19,28), such that (19)

nN ¼ nD
2:995

LLR
; (3)

where LLR is defined by Eq. 2.
Definition of relative error

Relative error in estimating an exponential parameter is defined as the abso-

lute value of the fractional difference between true andfitted values, such that

Relative error ¼
����
�
True� Fitted

True

�����; (4)

where the true values are the values used to simulate the data. Where

indicated, average relative error estimates are presented as the mean 5

SD of individual relative error estimates.



FIGURE 1 Detecting the exponentials summing to describe a simulated

dwell-time distribution for closed intervals based upon an idealized single-

channel recording. (A) The simulated dwell-time distribution (blue open

circles) and the eight underlying exponential components from Table 1

(red lines) are presented with the Sigworth and Sine transform (29), which

plots the square root of the number of closed intervals in each bin versus the

duration of the closed intervals on a logarithmic time axis. Bin width

remains constant on the logarithmic time axis, giving an exponential

increase in bin width as interval duration increases. The peak of each trans-

formed exponential indicates the time constant of that exponential. The

automated fitting of the dwell-time distribution detected eight exponentials

(dashed black lines) that superimposed the exponentials used to simulate

the distribution. The fitted distribution (solid black line) superimposed

the simulated distribution (blue open circles). The eight underlying expo-

nentials were detected without the user specifying either the number of ex-

ponentials or the starting parameters for the exponentials. N¼ 107 intervals

simulated. (B) The 20 starting exponentials automatically generated by the

program are plotted (black lines). The fitting for this and the other figures

typically started at 0.003981 ms. (C) Normalized estimates of the time con-

stants (t1–t8) and areas (a1–a8) of the eight exponential components for six

different simulations and fittings (Table S1). The data are plotted as the

observed (fitted) values divided by the values used to simulate the distribu-

tion from Table 1. The same eight exponentials were detected in each case.
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Approach for automated determination of all
significant exponentials

Many different approaches have been considered to search for the number

of exponentials and their parameters for exponential sum-fitting of distri-

butions (1–4,7,8,19,25–28,34–37). We apply and extend various aspects of

some of these previous approaches to develop an automated analysis for

exponential sum-fitting of dwell-time distributions obtained from single

ion channels. A key feature of our automated analysis is that the fitting

starts with essentially all possible detectable exponentials as defined by

their time constants, so that none are missed, a technique applied pre-

viously (4,26,27). Exponentials with negligible areas are then removed,

those with time constants so close that they cannot be distinguished are

combined, and those that make statistically insignificant contributions

are removed, leaving only those exponentials that significantly improve

the likelihood. Hence, it is not necessary when using the automated

analysis to specify either the number of exponentials or their starting

parameters.

The analysis method is summarized below in 10 steps. Fitting, when

indicated in the various steps, is done using the method of maximum

likelihood, as described previously (19,28).

1. Log bin the data. The experimentally observed dwell times are log

binned into open and closed dwell-time distributions (30). These

distributions are then analyzed separately.

2. Generate the time constants for essentially all possible significant

exponentials. The time constants of the fastest and slowest initial expo-

nentials are assigned the values of the briefest and longest observed

dwell times, respectively. The time constants of the exponentials in

between are then equally spaced on a logarithmic time axis and given

equal areas that sum to 1.0. We found that 20 initial exponentials were

sufficient for the examples in this article. An examination of fitted

dwell-time distributions in published single-channel dwell-time distri-

butions suggests that 20 initial exponentials would also be sufficient to

find the significant exponentials in those distributions. For 20 exponen-

tials, the initial area of each exponential was set to 0.05 (Fig. 1 B).

Having the ratios of the time constants of adjacent initial exponentials

no greater than the minimal ratio of significant adjacent exponentials in

the experimental data should assure that the significant exponentials in

the data are detected. This would be the case because the fitting would

start with approximations of all possible significant exponentials iden-

tified on the basis of their time constants. The number of significant

exponentials in experimental data is not known, so the number of initial

exponentials could be increased for the initial analysis. There is no

drawback to starting with more initial exponentials than might be

needed to detect the significant exponentials, except for a time penalty

in the fitting. An approach toward estimating the number of initial

exponentials to use for fitting is presented in the Supporting Material.

3. With the time constants fixed, a maximum-likelihood fit to find the

most likely area for each of the 20 initial exponentials is performed.

With the time constants fixed, fitting areas is a well-conditioned prob-

lem that readily converges (6).

4. Delete the end exponentialswith insignificant area. The two to three fast-

est and slowest exponentials typically have areas of 0.0. To delete these

end exponentials, the fastest and slowest exponentials with areas greater

or equal to 10�5 are taken as the new fastest and slowest exponentials.

Steps 2 and 3 are then repeated, but with the new fastest and slowest ex-

ponentials setting the range to distribute the exponentials.We found that

setting the minimal area to 10�5 for retention of an exponential was

sufficient for all the examples presented in this study (the smallest

area was 0.000046) and should be sufficient for the large number of

published distributions we have examined, because the areas of the

smallest fitted exponentials in those distributions were >10�5. Hence,

retention of exponentials with areasR10�5 for step 4 and step 5 should

be suitable for the analysis of most (if not all) single-channel data

published so far, without the need to adjust this parameter. To look for
Biophysical Journal 104(11) 2383–2391



TABLE 1 Eight exponentials used to simulate the dwell-time

distribution in Fig. 1

Exponential t (ms) Area

1 0.039 0.539

2 0.139 0.220

3 0.547 0.111

4 1.48 0.0815

5 4.12 0.0379

6 11.9 0.00880

7 146.0 0.00170

8 3390.0 0.000046

The time constants (t) and areas are from Table 4 in McManus and

Magleby (19).
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significant exponentials with areas <10�5 in distributions with

>100,000 intervals, this value could be reduced (see Supporting Mate-

rial).

5. Delete all exponentials with negligible (<10�5) area. (For the data in

Fig. 1, six exponentials were automatically deleted, leaving 14.) A

plot of the fit at the end of step 5 is presented in Fig. S1 A in the

Supporting Material.

6. Apply maximum-likelihood fitting to find the most likely areas and

time constants of the remaining exponentials. This is the first time

that the time constants are free parameters. The fitting makes small ad-

justments in the time constants to move them to the most likely values

while adjusting the areas to match the new time constants. The number

of exponentials after step 6 are the same as in step 5, as step 6 step does

not eliminate exponentials. A plot of the fit at the end of step 6 is pre-

sented in Fig. S1 B in the Supporting Material.

7. Combine exponentials with very close time constants. Adjacent expo-

nentials whose time constants differ by<2% are combined into a single

exponential with an area equal to the sum of the two areas and a time

constant between the two weighted for the difference in areas. This

process is carried out by systematically moving down the list of expo-

nentials arranged in order of decreasing time constant, with refitting

after every combination. For the data in Fig. 1, four exponentials

were removed through combining adjacent exponentials, leaving 10.

Less than 2% was selected for the criterion for combining exponentials,

as the likelihood was essentially unchanged after such combinations for

107 fitted intervals. Consequently there is essentially no chance that a

significant exponential would be excluded through combination for

single-channel data by using this criterion.

8. Determine the best fit with one less exponential. Each exponential is

then removed one at a time, followed by refitting (after which the expo-

nential is replaced), with each fit and its likelihood value saved. The fit

with the best likelihood then gives the maximum-likelihood value and

exponential parameters for fitting with one less exponential.

9. Determine the number of significant exponentials and their parameters.

Step 8 is repeated until a decrease in the number of exponentials by one

makes the likelihood of the fit significantly worse, as indicated when

the LLR of fits for N, compared to N � 1, exponentials is >2.995

(19,33). The fit with N exponentials then indicates the number of sig-

nificant exponentials and the most likely parameters for each of those

exponentials.

10. Exclusion of brief erroneous exponentials. For single-channel

recording, very brief dwell times are not detected due to the limited

frequency response of the recording systems. Hence, the maximum-

likelihood fitting does not start at 0 time but at a time equal to typically

twice the dead time, where dead time is the duration of the briefest

detected intervals (28,30). For such fitting, an erroneous exponential

with a time constant typically much shorter than the dead time can oc-

casionally be reported by the fitting program if the tail of the erroneous

exponential improves the likelihood. Such erroneous exponentials are

possible with missed events, because the majority of the area of the

erroneous exponential is not fitted, so it provides no penalty. Such erro-

neous brief exponentials were automatically eliminated by excluding

reported exponentials with time constants less than the dead timewhose

fitted area contributes <10�5 of the total fitted area of the dwell-time

distribution, and then refitting. Erroneous exponentials do not arise

for exponentials with longer time constants, because the vast majority

of the area of the longer exponentials is included in the fitting. If

apparent erroneous exponentials are not excluded by these criteria,

then the user could change the parameters for exclusion.

Whereas the fixed parameters in the previous steps have been sufficient for

all the examples examined in this study, they may need adjustment for other

types of channels and data. As is the case for all fitting programs, fitting of

data simulated with parameters similar to those obtained for the experi-

mental data can be used to test the ability of the program to detect exponen-

tials for different types of data, and adjustments can be made if necessary.
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Search routine for automated maximum
likelihood fitting

The theory and method of maximum-likelihood fitting of dwell-time distri-

butions with sums of exponentials (or mixtures of exponentials when the

data are converted to probability density functions) have been described

previously (19,28). The search routine used for maximum-likelihood fitting

in the various steps above does not have to find the exponentials, only adjust

the parameters of each of the starting exponentials to maximize the likeli-

hood that the data were drawn from a dwell-time distribution described by

the sum of the exponentials. This is the case because all possible significant

exponentials, which are the starting exponentials, are approximated by the

end of step 3 in the previous section. Steps 4–9 then remove the extra

exponentials while retaining the significant exponentials. Search routines

that jump one or more parameters large distances would not be suitable

for the maximum-likelihood fitting in the steps above because they may

get trapped in local maxima by moving the parameters for an exponential

away from one of the potentially significant exponentials defined in the

initial starting parameters. A direct search approach based on Patternsearch

(38) was used to avoid this possibility by adjusting the parameters one at a

time in small steps.
RESULTS AND DISCUSSION

Automated detection of the exponentials in
simulated dwell-time distributions based on
experimental data without the need to specify
starting parameters

Fig. 1 A presents an example of automated detection of the
eight exponential components that sum to form a dwell-time
distribution. The eight exponential components (Table 1)
are plotted as red lines in Fig. 1 A and are based on the eight
significant exponential components fitted to experimental
data recorded from a large-conductance Ca2þ-activated
Kþ channel (19). Using the areas and time constants of
the components, 107 intervals were simulated, log binned,
and plotted as blue open circles to obtain the distribution
predicted by the sum of the exponentials. The plots in
Fig. 1, A and B, are presented in the Sigworth and Sine trans-
form (29), where the square root of the number of intervals
in each bin is plotted against the mean duration of the inter-
vals in that bin on a logarithmic time axis. The bin width
increases logarithmically, giving constant bin width on the
logarithmic timescale. With this transform the time of the
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peak amplitude of each exponential component indicates the
time constant of that component (29).

The simulated dwell-time distribution was fitted with
sums of exponentials to find the significant underlying expo-
nential components. The fitted components (Fig. 1 A, black
dashed lines) superimposed the initial components (Fig. 1 A,
red lines), and the sum of the fitted components (Fig. 1 A,
solid black line) superimposed the simulated distribution
(Fig. 1 A, black line with blue circles), indicating that the
eight exponential components used to simulate the distribu-
tion of dwell times were found by the automated analysis
without specifying either the number of exponentials or
their starting parameters. It was not necessary to specify
starting exponentials for the fit because the automated anal-
ysis generated a sufficient number of starting exponentials
logarithmically spaced in time so that there would be one
or more starting exponentials with time constants close to
those of any possible underlying exponentials. This can be
seen by comparing the time constants (peaks of the expo-
nentials) of the starting exponentials in Fig. 1 B to the
time constants of the exponential components that sum to
generate the dwell-time distribution in Fig. 1 A.

Repeating the analysis in Fig. 1 A for five additional data
sets, each simulated with a different random number seed,
detected the same eight exponentials used to simulate the
data (Fig. 1 C and Table S1), with relative errors (Eq. 4)
in the estimates of the 16 parameters for the areas and
time constants of the eight exponentials of 0.023 5 0.028
(mean 5 SD) based on estimates obtained from the 16
parameters estimated from each of the six different simula-
tions and fittings. In >1000 simulations and fittings of
distributions with 1–10 exponentials with a wide range of
time constants and areas, all significant exponential compo-
nents were found using the automated analysis.

How is it possible to detect the significant exponentials in
the simulated data including the eight exponentials that sum
to describe the distribution in Fig. 1, when it has been stated
(and restated) in the literature that determining both the
areas and time constants for fitting sums of exponentials
can be hopeless or require an increase in the accuracy of
the data to limits that are far beyond the capability of present
measuring devices (6,7). Certainly, exponential sum-fitting
can be ill-conditioned when the data are inadequate, with
very few data points, or when data are obtained over limited
time ranges or with very closely spaced exponentials or with
much noise (7,8). However, for single-channel data, tens of
thousands to many hundreds of thousands of open and
closed intervals can be recorded over wide time ranges to
reduce the stochastic variation and increase the ability to
detect exponentials (19,31). For example, the eight expo-
nentials in Table 1 were determined from analysis of
114,350 closed intervals recorded from a BK channel,
where the experimentally observed dwell times spanned
nine orders of magnitude in frequency of observation and
six orders of magnitude in duration (19). The dwell-time
distribution of the experimental data fitted with eight signif-
icant exponentials is presented in Fig. 8 A in McManus and
Magleby (19). (For the experimental data, intervals with
true durations <30 mS were not detected (missed events)
due to filtering (28). Including the missed events in the
distribution gives ~170,000 true intervals underlying the
experimental data.)
Testing the automated fitting program for less
than ideal data

To test whether the automated analysis could also find the
significant exponentials for less-than-ideal data, the analysis
was applied directly to experimental dwell-time distribu-
tions from BK channels, and the results were compared to
those from applying our previous fitting programs to the
same experimental data. This analysis is different from the
one represented in Fig. 1, for which a known number of spec-
ified exponentials was used to simulate ideal data. When
fitting experimental data, the number of exponentials is not
known, but theoretical considerations suggest that large
numbers of open and closed states (>50) may contribute to
dwell-time distributions from BK channels (22–24). Appli-
cation of the automated analysis to experimental data from
BK channels found either the same significant exponentials
as found using our previous programs or, in two cases, one
additional significant exponential, suggesting that our previ-
ous programs did not always have a sufficient number of
starting parameters to find all significant exponentials. There
was not one case where the automated analysis found fewer
significant exponentials than had our previous analysis
methods. Hence, our automated analysis, without the need
to specify starting parameters, was as good or better at
finding the significant exponentials than our previous pro-
grams, which used>100 different sets of starting parameters
based on years of fitting data from BK channels.

We also compared the results obtained by the automated
fitting program to results obtained when the fitting was with
programs in which fitting could be started with the para-
meters used to simulate the data. The significant exponen-
tials found by the automated analysis program were
essentially identical to those obtained when the fitting was
started with the simulation parameters, and this was the
case for smaller data sets of 1000 intervals as well as for
larger ones, indicating the robustness of the fitting algorithm
to find the significant exponentials.
Errors in exponential sum-fitting introduced by
fitting too few dwell times

The previous sections indicated the consistent ability of the
automated fitting algorithm to find the significant ex-
ponentials in simulated and experimental single-channel
data. Nevertheless, there are limitations to the detection of
exponentials based on the number of fitted intervals (19).
Biophysical Journal 104(11) 2383–2391
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We now consider the limits of detection as related to the
number of fitted intervals for simulated distributions based
on the eight exponentials in Table 1 that were used to simu-
late the data for Fig. 1. Eq. 3 is first examined to determine
whether it can provide an estimate of the number of intervals
needed for detection of the eight significant exponentials.
Errors associated with reducing the number of intervals
below the number required to detect all eight exponentials
are then examined.

Log-likelihood estimates from the six simulations and fit-
tings of 107 intervals presented in Table S1 indicated that the
LLR (see Eq. 2) for nine versus eight exponentials ranged
from 0.5 to 2.5. These LLR values are less than the 2.995
required for significance at P < 0.05 (see Materials and
Methods), indicating that nine exponentials were not signif-
icantly better than eight in any of the six simulations. Hence,
no false exponentials were detected. The LLR for eight over
seven significant exponentials ranged from 195 to 258,
indicating eight significant exponentials versus seven at
P � 0.00001 for each simulation. Hence, all eight signifi-
cant exponentials were detected in each simulation of 107

intervals.
Given LLRs of 195–258 for eight significant exponentials

over seven for fitting 107 intervals, Eq. 3 indicated that
~116,000–154,000 dwell times would be required to detect
eight significant exponentials. To test this prediction, we
simulated four separate distributions, as in Fig. 1 A, but
with 135,000 dwell times each (the median between
116,000 and 154,000), and found that eight significant expo-
nentials were detected in two of the four simulated distribu-
tions, and that seven were detected in the other two. Hence,
with ~135,000 dwell times, all eight significant exponentials
would be detected in about half the experiments, consistent
with the approximate number of dwell times required for the
threshold of detection calculated from Eq. 3. When the num-
ber of simulated dwell times was increased to 170,000, eight
significant exponentials were consistently detected (Fig. S2
A), and when the number of simulated dwell times was
reduced to 30,000, seven significant exponentials were
TABLE 2 Identifying the four exponentials in Boliden 3 and Bolide

Boliden 3

Magnitude Rate (ms�1) t (ms) Nor. Area

0.714866 10.00000 0.100000 0.016770

0.183963 0.734125 1.362166 0.058784

0.078444 0.105668 9.463603 0.174148

0.022392 0.007001 142.8367 0.750298

Boliden 4

Magnitude Rate t Nor. Area

0.841884 3.478609 0.287471 0.091044

0.098694 0.702992 1.422491 0.052813

0.049751 0.146201 6.839898 0.128014

0.009850 0.005089 196.5023 0.728129

Magnitudes and rate constants are from Table 2 of Watson (34). The time consta

normalizing to an area of 1.0. The relative errors (Eq. 4) for the eight estimated

(mean 5 SD). N ¼ 107 simulated dwell times.
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consistently detected. With 30,000 dwell times, the two ex-
ponentials with time constants of 4.12 and 11.9 ms were
combined into a single exponential with an intermediate
time constant and combined area. With 10,000 simulated
dwell times, only six significant exponentials were found
(Fig. S2 B), with the slowest exponential of 3390 ms now
also missing, as expected, because there would be, on
average,<1 dwell time (0.000046� 10,000) from the slow-
est exponential in the distribution because of its very small
area (Table 1). In the severe case of only 1000 simulated
dwell times, only four of the eight significant exponentials
were found (Fig. S2 C). The slowest exponential of
3390 ms was missing, as expected, the next two slowest
exponentials of 148 ms and 11.9 ms were combined into
an exponential at ~50 ms, and the other three significant
exponentials were combinations of the five remaining
underlying exponentials. Thus, decreasing the number of
dwell times in a distribution can be expected to decrease
the number of significant exponentials (19) for both the
automated analysis presented here and for all methods of
exponential sum-fitting, depending on the complexity of
the gating mechanism. It follows that the number of signif-
icant exponentials then places a lower limit on the number
of exponentials contributing to the distribution, as there
may be insufficient data to detect all the exponentials, and
because some of the exponentials may have too small of
an area for detection or have time constants too close to
those of other exponentials to be detected.
The automated analysis can find the exponentials
in classic examples of exponential sum-fitting

As a further test of the ability of the automated fitting pro-
gram to find the significant exponentials, we examined
whether it could find the exponentials in four different
classic exponential-sum-fitting problems, where detection
of the exponentials can be difficult. The first two classic
examples were Boliden 3 and Boliden 4 from Table 2 in
Watson (34). The results are presented in Fig. 2 and Table 2.
n 4

Fit area Error Fit t Error

0.016762 0.000460 0.100311 0.003110

0.058686 0.001673 1.361681 0.000356

0.174068 0.000457 9.45156 0.001273

0.750485 0.000249 142.8085 0.000198

Fit area Error Fit t Error

0.091098 0.000593 0.287973 0.001745

0.052618 0.003702 1.422578 0.000061

0.128046 0.000253 6.830302 0.001403

0.728237 0.000148 196.4776 0.000125

nt (t) is given by 1/rate. Nor. area is the area of the four exponentials after

parameters for Boliden 3 and for Boliden 4 were similar at ~0.0015 0.001



FIGURE 2 Automated fitting detects the exponentials underlying

simulated dwell-time distributions based on Boliden 3 and Boliden 4 in

Table 2 in Watson (34). The time constants and areas of exponentials

used to simulate the dwell-time distributions are in columns ‘‘t’’ and

‘‘Nor. Area’’ in Table 2. (A and B) Red lines plot the exponential compo-

nents used for the simulation, blue open circles the simulated distributions,

black dashed lines the exponentials detected by fitting the simulated distri-

butions, and solid black lines the sum of the detected exponentials. For both

Boliden 3 and Boliden 4, the four underlying exponentials are detected with

minimal error (Table 2).

FIGURE 3 Automated fitting detects the exponentials underlying a

simulated dwell-time distribution based on Evans GV in Table 2 in Watson

(34). The time constants and areas of exponentials used to simulate the

dwell-time distributions are in columns ‘‘t’’ and ‘‘Nor. Area’’ in Table 3.

Red lines plot the exponential components used for the simulation, blue

open circles the simulated distributions, black dashed lines the exponentials

detected by fitting the simulated distribution, and the solid black line the

sum of the detected exponentials. The three underlying exponentials are

detected with minimal error (Table 3).
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The parameters defining the exponential components were
used to simulate dwell-time distributions with log binning,
which were then fit with the automated analysis. Boliden 3
examines detection of four exponentials with progressively
increasing areas and time constants, and Boliden 4 examines
detection when one of the exponentials has less area than the
two adjacent exponentials. For both examples, the automated
analysis found the four exponentials used to simulate the
dwell-time distributions, with minimal relative error in the
areas and time constants of ~0.001 5 0.001. For both Boli-
den 3 and Boliden 4, each with four significant exponentials,
the LLR for five versus four significant exponentials was ~0,
indicating that five exponentials were not better than four,
and the LLR for four versus three significant exponentials
was 22,020 for Boliden 3 and 5580 for Boliden 4, indicating
that the four exponentials were found in each case and were
highly significant (P � 0.00001). The true exponentials,
fitted values, and relative errors are given in Table 2.

The next classic example of exponential sum-fitting
examined was Evans GV from Table 2 of Watson (34).
Evans GV tests the ability to detect an exponential of small
area (0.004979) whose time constant is only threefold
longer than that of the preceding exponential. The findings
are in Fig. 3 and Table 3, where the three underlying expo-
nentials were detected with negligible relative error in the
estimated parameters (0.0059 5 0.0042). The LLR for
four versus three exponentials was ~0, and for three versus
two was 2123, giving the three highly significant exponen-
tials (P � 0.00001).

In the fourth classic example examined with the auto-
mated method, we simulated and fit a distribution of dwell
times based on Eq. 4-23.17 used for the classic Lanczos
example (7). It is the Lanczos example that has often been
referred to when stating that it can be hopeless to estimate
both magnitudes and time constants with exponential sum-
fitting. The Lanczos example tests the ability to detect three
exponentials when two are highly overlapping and the third
has a smaller area and longer time constant (Fig. 4 and Table
4). When the entire time range of the simulated distribution
was fit from ~0.004 to 12.6 ms, the areas and time constants
of the three exponentials in the Lanczos example were found
with minimal relative error of 0.0022 5 0.0008 (Fig. 4 and
Table 4). The LLR for four versus three significant exponen-
tials was ~0 and for three versus two significant exponentials
it was 1651, giving three highly significant exponentials (P
� 0.00001).

If the simulated distribution for the Lanczos example was
fit from ~0.004 ms to shorter times of 3.6 and 2.1 ms rather
than to 12.6 ms, then the three exponentials in the Lanczos
function were still found, but with increased average relative
errors of ~0.02 and ~0.46, respectively. Fitting the distribu-
tion to 1.15 ms found only two significant exponentials with
large errors, just as in the classic Lanczos example where the
data were fit to 1.15 ms. Hence, the Lanczos sum-fitting
example as originally presented (7) is highly ill conditioned
because of the lack of data at longer times needed to define
the longer exponentials, not because all applications of
exponential sum-fitting are ill conditioned.

Consistent with our findings and this conclusion, a fitting
of the Lanczos example to 3.6 time units in a previous study
using a rather different method also found the three expo-
nentials (36), just as our automated analysis did.
Biophysical Journal 104(11) 2383–2391



TABLE 3 Identifying the three exponentials in Evans GV

Magnitude Rate (ms�1) t (ms) Nor. Area Fitted area Area error Fitted t t error

0.100043 0.599936 1.66684 0.829566 0.831361 0.002164 1.67126 0.002649

0.009985 0.300123 3.33197 0.165508 0.163660 0.011163 3.32364 0.002499

0.000099 0.099965 10.0035 0.004927 0.004979 0.010615 9.93884 0.006464

Magnitudes and rate constants are from Table 2 in Watson (34). The time constant (t) is given by 1/rate. Nor. area is the area of the three exponentials after

normalizing to an area of 1.0. The relative error (Eq. 4) for the six estimated parameters was 0.0059 5 0.0042 (mean 5 SD). Estimates are based on 107

simulated dwell times.
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Uses and limitations of exponential sum-fitting

Our automated fitting method found the eight exponentials
summing to form the dwell-time distribution in Fig. 1. It
also found the exponentials in additional large numbers of
tests of simulated data (not presented), as well as the expo-
nentials in distributions based on four different classic expo-
nential-sum-fitting problems. Nevertheless, there are limits
to the detection of exponentials. The limits are set by the
number, relative areas, and relative time constants of the ex-
ponentials, the time range of the data compared to the time
constants of the exponentials, the number of fit dwell times
(Eq. 3), and the stochastic and experimental variation in the
data, including experimental noise (7,8,19,26,34). Some of
these limits were illustrated in the previous sections and in
Fig. S2. Consequently, for complex gating mechanisms, or
even for simple ones, and especially when the analysis is
based on a thousand or even ten thousand intervals rather
than hundreds of thousands, there are likely to be exponen-
tials arising from the gating that are not detected in the
dwell-time distributions. Why bother, then, with the fitting
of significant exponential components to dwell-time distri-
butions? 1), Exponential sum-fitting provides a quantitative
method to describe dwell-time distributions to summarize
experimental data for publication and for comparison to
data obtained under different experimental conditions and
FIGURE 4 Automated fitting detects the exponentials underlying a

simulated dwell-time distribution based on Eq. 4-12.17 in Lanczos (7).

The time constants and areas of exponentials used to simulate the dwell-

time distributions are in columns ‘‘t’’ and ‘‘Nor. Area’’ in Table 4. Red lines

plot the exponential components used for the simulation, blue open circles

the simulated distribution, black dashed lines the exponentials detected by

fitting the simulated distribution, and the solid black line the sum of the

detected exponentials. The three underlying exponentials are detected

with minimal error (Table 4).
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from other studies. 2), Exponential sum-fitting can provide
an estimate of the minimum number of states that contribute
to the gating of the channel, with one state per exponential,
although components and states are not necessarily directly
related (16–18). The minimal number of states can serve as
a starting point to develop gating mechanisms. 3), Alterna-
tively, any viable proposed gating mechanism should
generate at least as many exponential components as the
number of significant exponentials determined with ex-
ponential sum-fitting. Whereas exponential sum-fitting is
useful initially as a tool in kinetic analysis, further develop-
ment of kinetic gating mechanisms from single-channel data
typically involves global fitting of data obtained over a
range of experimental conditions, including taking the
correlation information in the data into account, to obtain
sufficient information to define the models and parameters
(10–13,15,21,32).

In conclusion, we have presented an automated method
that can be used to detect all of the significant exponentials
contributing to dwell-time distributions from single-channel
data without the need to specify starting parameters.
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