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Abstract
Advances in genome sequencing technologies are enabling researchers to make rapid progress in
defining the entire repertoire of causal genetic changes in cancer. The response of patients with
cancer to therapy is often highly variable and there is an increasing number of examples where
mutations in cancer genomes have been shown to have a profound effect on the clinical
effectiveness of drugs. An urgent challenge for the research and clinical communities is how to
translate these genomic data sets into new and improved therapeutic strategies for the treatment of
patients. The use of large-scale cell line-based drug screens to identify genomic ‘biomarkers’ of
drug response for the stratification of patients has the potential to transform how patients with
cancer are treated.

All cancers arise as a result of the acquisition of somatic mutations in their genomes that
fundamentally alter the function of the protein product of key cancer genes [1]. In many
cases, cancers harbour several hundred mutations, a small number of which (commonly 5–
10 ‘driver’ mutations) are thought to be necessary for acquisition of the malignant
phenotype and, ultimately, carcinogenesis (Fig. 1). Such mutations are responsible not only
for the development of the cancer in the first instance, but also for maintaining the
proliferation and evasion of cell death that are the hallmarks of cancer [2]. A detailed
knowledge of such mutational events is crucial if one is to understand how cancers develop
as well as to design rational therapies to target the appropriate dysregulated pathways.

Over the past decade, several meticulous studies involving gene resequencing have begun to
characterise the genetic changes that occur in cancer and have revealed the presence of
substantial genomic heterogeneity across cancer genomes. To date, >400 genes have been
identified for which mutations (including somatic coding changes, amplification, deletions
and fusion genes) have been causally implicated in cancer (so-called ‘cancer genes’; http://
www.sanger.ac.uk/genetics/CGP/Census/) [3]. In many cases, these mutations occur only in
the context of a specific tissue or cancer subtype, and even within these many mutations
occur at a low frequency. Moreover, as discussed below, improvements in DNA sequencing
technologies are enabling scientists and clinicians to expand rapidly upon the work of these
studies and a complete genomic landscape of human cancers is beginning to emerge.

One of the hopes held following completion of the human genome sequence more than 10
years ago was that it would hasten a move towards personalised medicine for many human
diseases based on a detailed knowledge of the alterations in germline and cancer genomes.
The fundamental principles that underlie personalised cancer medicine are that: (i)
significant genomic heterogeneity exists among tumours, even those derived from the same
tissue and (ii) these differences can have a profound impact on the likelihood of a clinical
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response to treatment with particular therapeutic agents. Thus, a detailed analysis of the
genomic landscape of human cancer, coupled with detailed information on how cancer
mutations impact the clinical response to a drug, should in principle enable the improvement
of clinical effectiveness by accurately stratifying patients who are most likely to respond to a
specific treatment based on genomic biomarkers. Moreover, the identification of predictive
biomarkers during the early-phase development of new drugs would have an impact on the
cost, design and success of new cancer drug development.

Genomic biomarkers of drug response
Most of the current treatment regimens for cancer are based around the tissue of origin and
the clinical response of patients with cancer to treatment with a particular drug is often
highly variable. However, there is a compelling body of evidence, both clinical and
experimental, that for an increasing number of drugs used in the clinic, the likelihood of a
patient’s cancer responding to treatment is strongly influenced by alterations in the cancer
genome (Table 1). Arguably the most celebrated example of this has been the use of
imatinib, a small molecule inhibitor of the c-ABL oncogene 1, nonreceptor tyrosine kinase
(ABL1) to target the fusion protein product of the breakpoint cluster region (BCR)–ABL
translocation seen in chronic myeloid leukaemia (CML). The five-year survival rate for
patients newly diagnosed with chronic-phase CML who are treated with imatinib is 89% [4].
On the heels of this discovery came the finding that therapeutic targeting of the ERBB
family member, ERBB2 [human epidermal growth factor receptor 2 (HER2)], resulted in
response rates of 15–26% in HER2-overexpressing breast cancers [5,6]. HER2 is amplified
in 15–30% of breast cancers and carries an adverse prognosis [7].

More recently, the use of epidermal growth factor receptor (EGFR) and anaplastic
lymphoma receptor tyrosine kinase (ALK) inhibitors in patients with lung cancer whose
tumours harbour EGFR mutations and echinoderm microtubule associated protein like 4
(EML4)–ALK rearrangements, respectively, has resulted in significantly improved response
rates compared with conventional therapies in those subsets of patients [8,9]. Importantly,
these genomic alterations typically account for <10% of the patient population and
exemplify the degree of diversity faced when considering personalised cancer medicine
targeting distinct subpopulations. Although recent studies have demonstrated that targeting
the 40–70% of cutaneous melanomas that harbour activating mutations in v-raf murine
sarcoma viral oncogene homologue B1 (BRAF) with the BRAF inhibitor vemurafenib
resulted in an approximately 50% response rate and improved survival of patients with this
aggressive cancer [10], it is probable that, for most solid tumours, the prevalence of specific
mutational events that are sensitised to drugs will be much lower. These observations
highlight not only the therapeutic potential of incorporating genomic biomarkers to define
patient populations, but also the challenge of identifying relatively low-frequency
subpopulations of patients who are drug responsive, even within a single tissue type. This
degree of heterogeneity challenges the traditional pharmaceutical industry model of the
‘blockbuster’ cancer drug and raises important questions as to how the industry will adapt its
business model to the potential need for a multitude of drugs targeting distinct patient
subpopulations even within the same tissue class.

Cancer genomics and next-generation sequencing
In recent years, remarkable advances in DNA sequencing technologies, known as next-
generation sequencing, have enabled the analysis of genes and genomes at a scale
unimaginable a decade ago [11]. So rapid are the advances it is now possible to imagine
realistically a time in the near future where it will be technically possible, and affordable, to
sequence all cancers and define their mutational burden. These advances are transforming
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understanding of cancer by making possible for the first time the complete characterisation
of the cancer genome across multiple tissue and cancer subtypes, providing new insights
into the origins, evolution and progression of cancer.

A major impetus for these technological advances in sequencing has been the potential for
improved cancer therapies, based on a detailed understanding of the genomic alterations
present. The drug-sensitising genotypes described previously have been used to argue that
the identification of additional cancer genes will help in identifying new drug targets as well
as defining drug response in subsets of patients with cancer. The International Cancer
Genome Consortium (ICGC) was launched with the goal of generating comprehensive
catalogues of genomic abnormalities (i.e. somatic mutations, abnormal expression of genes
and epigenetic modifications) in tumours from 50 different cancer types and to make the
data available to the entire research community to accelerate research into the causes and
treatment of cancer (http://www.icgc.org/) [12]. Currently, it has received commitments
from funding organisations in Asia, Australia, Europe and North America for 39 projects to
study >18,000 cancer genomes. Catalogues of somatic mutations for many of the most
prevalent cancer types are already becoming available and, in the near future, it will be
possible for any researcher to know the prevalence of almost every somatic mutation in a
given cancer.

The identification of the entire repertoire of human cancer genes has the potential to
transform cancer therapeutics. First, it could help identify new therapeutic targets for the
drug development pipelines of academia and the pharmaceutical industry. Many of the most
effective molecularly targeted drugs currently available (e.g. vemurafenib) inhibit the
enzymatic activity of the protein products of cancer genes with gain-of-function mutations
(i.e. oncogenes). Second, this information could empower researchers to determine
experimentally how catalogues of cancer gene mutations affect specific biological outcomes.
To exploit this wealth of knowledge fully towards improved cancer therapies, there is a
significant need to develop model systems for functional studies to determine
experimentally whether specific mutations have a functional role in drug response. We argue
here that established cancer cell lines, if screened at a sufficient scale to capture much of the
tissue-type and genetic diversity of human cancers, can in many instances faithfully model
the effect of cancer mutations on drug response and are a powerful model system to identify
new biomarkers of drug sensitivity.

Drug sensitivity profiling in cancer cell lines
The first human cancer cell line, HeLa, was established over 50 years ago and, since then,
cell lines have been generated from almost every cancer type and have become a standard
research tool in molecular biology. Although certain elements of cancer biology, including
invasion and metastasis, can only properly be studied in the context of more complex
experimental systems, such as mice models, cell lines have been shown to be robust models
for certain cancer cell-intrinsic studies. Significantly, they have been found to recapitulate
many of the important drug-sensitising genotypes observed in clinical practice [13]. For
example, the acute sensitivity of patients with CML to imatinib can be readily modelled in
cancer cell lines bearing the BCR–ABL translocation. Indeed, much of the understanding of
cancer cell biology, including aspects of signalling and gene regulation, has come from
studies of cancer cells in culture.

With an increased understanding of the extent of genomic heterogeneity that exists in cancer
has come a need for experimental systems that are both capable of recapitulating this
variation and amenable to perturbations of biological function to understand the impact of
cancer gene mutations. To this end, many researchers have turned to established human
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cancer cell lines. The first systematic approach to using cell lines to address heterogeneity in
drug response was the 60-cell line panel (NCI60) of the National Cancer Institute [14]. This
screen of 60 cell lines, encompassing a range of tissue types across a large panel of chemical
compounds, was the forerunner of all high-throughput cell-based drug profiling. Although it
introduced the concept of screening compounds across cell lines to identify sensitive and
resistant populations [15], it is now known that the number of cell lines screened was
insufficient to capture the genomic diversity observed in cancer, which was likely to impact
on drug response. This is because it is now known that cancer genomes are remarkably
heterogeneous and that many cancer genes are present in only a small fraction of any tumour
type. Therefore, large numbers of cell lines are required in any screen to identify rare mutant
subsets that have altered sensitivity to cancer therapeutics. Indeed, it is probable that in
excess of 1000 cell lines would be required to have sufficient power to detect drug-
sensitising mutations that are present in <10% of any given tumour type.

Cell-based drug screens of chemical libraries have traditionally been the preserve of the
pharmaceutical industry, given the expense of operating large-scale automated screening
platforms. In most instances, these screens were performed using a small panel of cell lines,
or even a single cell line, against a very large panel of chemical compounds. However, more
recently, academic research groups have begun to perform large-scale screens of cancer
drugs across hundreds of different cancer cell lines. The aim of these efforts is to screen a
smaller number of compounds across a large number of cell lines to capture as much of the
genetic variation that occurs in cancer and that impacts on drug sensitivity as possible.

The Genomics of Drug Sensitivity in Cancer (GDSC) project, a joint UK–USA initiative
funded by the Wellcome Trust, was established in 2009 to screen >1000 genetically
characterised human cancer cell lines against 400 cancer drugs, with the goal of identifying
genomic alterations that affect drug response (Fig. 2). These data are being made publically
available, with sensitivity data for >8000 drug–cell line combinations for 23 drugs currently
available through the web portal (http://www.cancerRxgene.org). A similar initiative is
being pursued in a collaboration between the Broad Institute and the pharmaceutical
company Novartis, namely the Cancer Cell line Encyclopedia (http://
www.broadinstitute.org/ccle).

A key element of these efforts is combining large drug-sensitivity data sets across a broad
collection of cell lines together with detailed genomic information, including somatic point
mutation, gene amplifications and deletions, and gene expression data. The integration of
these data can be tremendously effective for identifying genomic features associated with
drug response. It is probable that the immediate focus of these analyses will be the 464
genes that are currently known to be mutated and causally implicated in cancer development
[3]. However, over the next few years, the power of these studies to make connections
between mutations and drug response is likely to increase significantly as the efforts of the
ICGC, and other large-scale cancer-sequencing projects, expand and refine the list of human
cancer genes. Additionally, ongoing efforts to sequence the coding exons of all
approximately 22,000 human genes across all 1000 cancer cell lines used for drug screening
will make them an increasingly powerful model to link drug sensitivity with the genomic
changes known to occur in cancer.

Moving towards clinical applications
The central role of mutated cancer genes in mediating the proliferation and survival of
cancer cells render them potential ‘Achilles’ heels’ to be exploited for biomarker discovery.
Many thousands of patients each year are recruited into clinical trials of new cancer drugs
and almost every drug used in the clinic today has been part of this process. These clinical
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trials offer both an opportunity and a challenge. On the one hand, there are tumour banks
linked to meticulously collected clinical data, including information identifying which
patients responded to the therapy. On the other hand, this tissue is invariably in the form of
formalin-fixed paraffin-embedded (FFPE) samples, with issues such as DNA degradation
and contamination with necrotic or apoptotic cells that preclude their analysis by
conventional next-generation sequencing protocols. However, it appears increasingly
possible to develop assays that specifically target only the exons of mutated cancer genes for
next-generation sequencing and to do this using FFPE tissue samples. This area is currently
under investigation by several research groups and it appears probable that, in the future,
many hundreds of genes can be profiled from each tumour in a cost-efficient manner [16]. In
the context of clinical trials, the application of next-generation sequencing technology to
archived FFPE samples with linked response and survival data opens up the possibility of
improving the use of current drugs and potentially repositioning compounds that were
initially unsuccessful during early-phase patient trials. Additionally, we argue that next-
generation sequencing of tumour samples, where possible, should be considered as standard
practice to inform the outcome of all new clinical trials.

The need to integrate genomic biomarkers effectively into routine clinical practice for the
treatment of cancer represents an equally large challenge. As mentioned above, a limited
repertoire of genetic biomarkers is already used for patient stratification during treatment,
such as the use of imatinib for the treatment of patients with CML bearing the BCR–ABL
gene fusion; however, genetic biomarkers are not widely used in general (Table 1). This
appears likely to change in the years to come; for example, since 2009, Massachusetts
General Hospital in Boston has already genetically tested >1000 cancers for >100 recurrent
mutations across 19 cancer-related genes. In several instances, these mutations are linked to
clinical end-points and can act as biomarkers to help identify the best course of treatment.
Although the impact of many mutations on clinical response to treatment is currently
unknown, the generation of large data sets linking patient response with genetic information
might ultimately prove invaluable in identifying new genomic biomarkers. In a similar
effort, the National Health Service (NHS) of the UK has launched a stratified medicine
programme to use genetic information to group patients based on their probable response to
treatment. A phase I feasibility study will involve testing for approximately 20 genetic
markers already linked to treatment response in >9000 colorectal, breast, prostate, lung,
ovarian and skin cancers, with the ultimate goal of rolling out the service nationally.

To be most effective in the clinical setting, these types of service will need to identify
accurately specific genetic changes in tumours and provide clear information in a timely
manner to assists oncologists in determining the best course of treatment for their patients.
Indeed, the emergence of web-based tools with the aim of matching cancer mutations to
specific therapies are another indication of the fundamental shift that is occurring in the
approach to the diagnosis and treatment of patients with cancer by embracing the use of
genetic biomarkers (e.g. http://cancercommons.org/ and http://www.mycancergenome.org/).

Concluding remarks
The transformation in understanding of cancer genetics that is currently underway will have
the greatest utility if combined with biological assays where one can begin to interpret the
functional significance of cancer gene mutations. This is a crucial unmet need at present if
one is to begin to determine the extent and contexts in which alterations in cancer genomes
are able to subvert normal cellular processes. One approach already discussed has been to
screen a large panel of cancer cell lines that are being subjected to the same level of
comprehensive genomic characterisation as human tumour samples, against a range of
cancer drugs and to correlate drug response with mutational status. These, and other
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systematic efforts, will provide a rich source of data-led hypotheses for clinicians and
scientists alike and are the inevitable next step in the journey from an understanding of the
cancer genome to improving the survival of patients with cancer.
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FIGURE 1.
The complexity of somatic alterations in human cancer genomes. A Circos plot showing the
whole-genome catalogue of somatic mutations from the malignant melanoma cell line
COLO-829. This genome has approximately 30,000 somatic base substitutions and 1000
somatic insertions and/or deletions. In coding exons, 272 somatic substitutions are present,
including 155 missense changes, 16 nonsense changes and 101 silent changes. The number
and types of mutation are highly variable across different cancer genomes. Chromosome
number and karyotype are indicated on the exterior of the plot. Key: blue lines, copy number
across each chromosome; red lines, sites of loss of heterozygosity (LOH); green lines,
intrachromosomal rearrangements; purple lines, interchromosomal rearrangements; red
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spots, nonsense mutations; green spots, missense mutations; black spots, silent mutations;
brown spots, intronic and intergenic mutations (merged).
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FIGURE 2.
A schematic workflow for high-throughput cell-line screening to identify genomic features
associated with drug response. (a) A library of clinical and preclinical cancer drugs is
screened (b) against a panel of cancer cell lines in 384-well plate format. (c) Drug sensitivity
is measured over a nine-point titration of concentration and a curve-fitting algorithm is used
to derive a signature of response, including the half-maximal inhibitory concentration (IC50)
and slope of dose response curve. (d and e) Drug-sensitivity data are correlated with
genomic features, including point mutations, gene amplification and deletion, as well with
gene-expression data to identify genomic features associated with drug sensitivity. (f) In this
example, the association between v-raf murine sarcoma oncogene homologue B1 (BRAF)
mutations and sensitivity to a BRAF inhibitor is identified. Each circle represents the IC50
(natural log) of a single cell line and red line indicates the mean IC50 for BRAF-mutated or
wild-type (WT) cell lines.
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