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Ecological factors exert a range of effects on the dynamics of the evolutio-

nary process. A particularly marked effect comes from population structure,

which can affect the probability that new mutations reach fixation. Our interest

is in population structures, such as those depicted by ‘star graphs’, that amplify

the effects of selection by further increasing the fixation probability of advan-

tageous mutants and decreasing the fixation probability of disadvantageous

mutants. The fact that star graphs increase the fixation probability of beneficial

mutations has lead to the conclusion that evolution proceeds more rapidly in

star-structured populations, compared with mixed (unstructured) populations.

Here, we show that the effects of population structure on the rate of evolution

are more complex and subtle than previously recognized and draw attention to

the importance of fixation time. By comparing population structures that

amplify selection with other population structures, both analytically and

numerically, we show that evolution can slow down substantially even in

populations where selection is amplified.

1. Introduction
The rate of evolution measures how quickly new traits can be established in a

population. Typically, this is a function of three factors: mutation rate, popu-

lation size and the fixation probability of new mutations [1–3], but there is

increasing recognition that ecological influences, such as population structure

[4,5] and the number of competing beneficial mutations [6–10] contribute

additional layers of complexity.

The effect of population structure can be particularly strong. This is evident

from theoretical studies of evolution on graphs, which show that fixation prob-

ability can be enhanced in certain spatially structured populations, compared

with unstructured (i.e. well-mixed) populations. Within the category of struc-

tured populations, some spatial arrangements, for example, those referred to

as ‘stars’, can significantly amplify the effects of selection [4]. This means that

in populations with such structures, the fixation probability of beneficial

mutations is greater than in unstructured populations of the same size, whereas

the fixation probability of deleterious mutations is smaller than in equally sized

unstructured populations. Given that a beneficial mutation has a higher likeli-

hood of fixation in a star-structured population, it follows that the rate of

evolution will be more rapid in populations with star structures [4].

Only spatially structured populations with specific structures show amplify-

ing effects. Indeed, for the large class of population structures in which every

individual has the same probability of replacement by an offspring from a

neighbouring node, fixation probability is unaffected by population structure,

as proved in the isothermal theorem [4]. This implies that there are many popu-

lation structures where the rate of evolution ought not to differ between

structured and unstructured populations.

The effect of population structure on the rate of evolution is of more than just aca-

demic interest. Evolution is often used in both directed and non-directed experiments

to achieve particularendpoints, forexample, in biotechnology [11,12]. Drawing upon

graph theory, a selection experiment that aimed to deliver a catalytically efficient

enzyme would have a greater chance of success in a star-structured population.

Given opportunities provided by robot-driven manipulations, a selection experiment
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Figure 1. Representation of the four population structures considered in this
study. Periodic boundary conditions are assumed for the two-dimensional lattice.
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performed on a ‘super-star’ could be theoretically guaranteed to

deliver to the experimenter the most efficient possible solution

[4]. Population structures that amplify selection therefore have

the potential to open new avenues of research.

Here, motivated by the need to understand the ecological

context of evolutionary change more fully, we explore the

dynamics of evolution in finite populations on different struc-

tures. While computational graph theorists have examined

many subtleties pertaining to deme structure [4,13–20], and

for frequency-dependent selection in particular [5,21–26],

the broader issue of fixation probability and its relationship

to the rate of evolution has received little attention.

Focusing first on star-structured populations we show

that, whereas the fixation probability is amplified in such popu-

lations, the rate at which beneficial mutations go to fixation is

significantly retarded, compared with well-mixed populations.

We present a transparent and robust mathematical approxi-

mation that draws attention to underlying complexities and

the role of relevant ecological factors. We also provide numerical

examples for the rate of evolution in a lattice structure popu-

lation in one- and two-dimensions. In both cases, we show

that the fixation probability is not affected by the population

structure, but the fixation time is. We argue that four primary

factors are required in order to predict the rate of evolution:

mutation rate, population size, the fixation probability of new

mutations and time to fixation. Only under conditions where

the mutation rate is vanishingly small can the influence of the

fixation time, mediated by population structure, be neglected.
2. Background
The reference case for evolutionary dynamics on graphs is

well-mixed populations: changes in fixation probability and

fixation time are typically compared with corresponding

quantities in unstructured populations. Moreover, the

Moran process in well-mixed populations can be studied in

great detail by analytical approaches [2,3,27–29].

Many population structures do not differ from the

Moran process in well-mixed populations in terms of the

fixation probability. An ingenious proof that all population

structures in which all individuals have the same probability

to be replaced by a neighbour, the so-called isothermal theorem,

can be found in Lieberman et al. [4]. The same authors show that

fixation probabilities can be very different from well-mixed

populations in more complex graphs. The range of graph

structures considered here is shown in figure 1.

Population structures that increase the fixation probabil-

ities of advantageous mutants, but decrease the fixation

probabilities of disadvantageous mutants, are called ampli-

fiers of selection. Similarly, population structures that

decrease the fixation probabilities of advantageous mutants,

but increase the fixation probabilities of disadvantageous

mutants, are called suppressors of selection [4,30].

While fixation probability has been explored in detail

on various graphs, the time taken for mutations to proceed

to fixation has received considerably less attention. Numeri-

cal analyses have shown that the time to the fixation of a

mutant is typically greater in population structures that

amplify the intensity of selection, relative to well-mixed

populations [4,15,18,24]. For special structures such as rings

(one-dimensional lattices with periodic boundary conditions)

and stars, interesting analytical results have been obtained [17].
However, basing the idea that amplifying selection

increases the rate of evolution entirely on fixation probabil-

ities is problematic. Figure 2 illustrates that while a star-

structured population increases the fixation probabilities of

advantageous mutants, this process can take much longer

compared with the same process in a well-mixed population.

Previously, it has been argued that strong amplification of

selection requires large graphs and thus fixation times

increase rapidly [4]. However, because the fixation times

scale with the population size differently for well-mixed

populations and graphs, this increase in fixation times

becomes even more pronounced.
3. Fixation probabilities and fixation times
Let us first recall some properties of general birth–death

processes, as this forms the basis forouranalytical considerations.

In these processes, only transitions to the neighbouring states are

possible, which means in our case that the number of mutants

changes at most by one. For arbitrary birth–death processes,

there are exact expressions for the probability and time to fixation

[3,27,31,32]. We denote T+( j) for the probability to go from j
to j+1 mutants in a single time step (we always assume that

j¼ 0 and j¼ N are absorbing, T+(0)¼ T+(N)¼ 0, and that all

other transitions are possible). The probability to go from l
mutants to fixation (i.e. to N mutants) is given by

fNðlÞ ¼
1þ S

l�1
k¼1P

k
j¼1ðT�ð jÞ=Tþð jÞÞ

1þ S
N�1
k¼1 P

k
j¼1ðT�ð jÞ=Tþð jÞÞ

: ð3:1Þ

The average time that this process takes starting from a

single mutant is given by

t ¼
XN�1

k¼1

Xk

l¼1

fNðlÞ
TþðlÞ

Yk

m¼lþ1

T�ðmÞ
TþðmÞ : ð3:2Þ

Many other quantities can be computed for such a process,

for example, the average time the process spends in each state
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Figure 2. Typical trajectories (10 independent runs) for a population size of N ¼ 50 for mutants with a twofold fitness advantage, r ¼ 2. In the well-
mixed population, the mutant goes to fixation 50% of the time. This is identical for the ring-structured population, but it rises to 75% in the star. The time
to fixation, on the other hand, is substantially longer for structured populations: for the star, it takes approximately N times as long for either fixation or extinction
(filled squares represent the times where a trajectory has reached either extinction or fixation of the mutants, filled circles show the points where new
mutants arise).
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before it reaches a boundary or the moments of the distribution

of fixation times [2,27,33,34]. We also consider the probability

that there are ever K mutants in the system, fK(1). For any

birth–death process, this is obtained by making the state

with K mutants absorbing, which leads to

fKð1Þ ¼ 1

1þ S
K�1
k¼1 P

k
j¼1ðT�ð jÞ=Tþð jÞÞ

: ð3:3Þ

Another quantity that we consider is the average time

spent in a state, the so-called sojourn time. As this is straight-

forward to compute but somewhat technical, we refer to the

literature for the concrete equations [27,33,34].

These equations can be used directly for the well-mixed

population and the ring. The gist of our approximations for

the star-structured population is to map the dynamics onto

a birth–death process, such that we can use the same

equations as above.

(a) Well-mixed populations
As a reference case, we consider a Moran process in a well-

mixed population. The probability to select one out of j
mutants with fitness r for reproduction (at random, but pro-

portional to fitness) and a wild-type for death (at random) is

given by

Tþð jÞ ¼ rj
rjþN � j

N � j
N

; ð3:4Þ

whereas the probability that a wild-type reproduces and

replaces a mutant is given by

T�ð jÞ ¼ N � j
rjþN � j

j
N
: ð3:5Þ

Because T2( j )/Tþ( j ) ¼ 1/r, the fixation probability simply

becomes

fNðlÞ ¼ 1� ð1=rlÞ
1� ð1=rNÞ ; ð3:6Þ

a result well known from population genetics [1,2].

(b) Ring (one-dimensional lattice)
For the one-dimensional lattice, exact analytical results are

possible, because there will always be a connected cluster of
mutants. The probability to increase the number of mutants

from j to j þ 1 is given by

Tþð jÞ ¼
0; for j ¼ 0;N
r

jrþN � j
; for 1 , j , N;

8<
: ð3:7Þ

whereas the probability to decrease the number of mutants

from j to j – 1 is

T�ð jÞ ¼
0; for j ¼ 0;N
1

jrþN � j
; for 1 , j , N:

8<
: ð3:8Þ

Note that T2( j )/Tþ( j ) ¼ 1/r for all 0 , j , N. This implies

that the fixation probability is the same as for the well-

mixed population and that the probability to reach a certain

number of states is not affected by this population structure.

However, the average time to fixation does not depend on

this ratio alone, but also on Tþ( j ). Because Tþ( j ) is typically

of the order of 1/N and thus smaller than in a well-mixed

population, fixation will take longer on this population struc-

ture. The exact values can be obtained from equation (3.2).

(c) Star-structured population
In Lieberman et al. [4], it has been shown that star-structured

populations (figure 1) have a fixation probability which is

given by the corresponding fixation probability of the well-

mixed population equation (3.6), except that the fitness of the

mutant r is replaced by r2. This implies that the star is an ampli-

fier of selection. The average fixation time for this population

structure has been calculated exactly by Broom & Rychtár

[17]. Here, we provide an alternative approximation which is

easier to handle, because it allows mapping the dynamics

that take place on the star to a birth–death process. This

allows calculation of sojourn times and similar quantities

based on the same approximation.

The transition probabilities necessary to change the

number of mutant nodes can be separated into two cases. If

the central node is not occupied by a mutant and there are

j mutants in the leaf nodes, then the probability to increase

the number of mutant leaf nodes from j to j þ 1 is

Tþ0 ð jÞ ¼ 0 (we denote the state of the central node by a

lower index), because the wild-type nodes can only receive

wild-type offspring from the central node. The probability
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to decrease j to j 2 1, T�0 ð jÞ, is the probability to choose the

central node for reproduction times the probability that the

offspring is placed in a mutant leaf node,

T�0 ð jÞ ¼
1

rjþN � j
j

N � 1
: ð3:9Þ

If there is a mutant in the central node, then the number

of mutant leaf nodes cannot decrease, T�1 ð jÞ ¼ 0, because

they are only connected to the central mutant node. The prob-

ability that the mutant in the central node can place an

offspring in a wild-type leaf node is

Tþ1 ð jÞ ¼
r

rð jþ 1Þ þN � j� 1

N � j� 1

N � 1
; ð3:10Þ

T�0 ð jÞ and Tþ1 ð jÞ are at most of the order of N – 1. In well-

mixed populations (equations (3.4) and (3.5)), they are of the

order of N0, which already implies that the fixation process

on the star will be of the order of N21 slower than in a

well-mixed population. The probabilities to switch the central

node are given by

T0!1ð jÞ ¼
rj

rjþN � j
ð3:11Þ

and

T1!0ð jÞ ¼
N � j� 1

rð jþ 1Þ þN � j� 1
; ð3:12Þ

and these are of the order of N0 at most. Thus, for large N, the

central node switches much faster than all other nodes. We

can use this separation of time scales and assume that the

central node is always in equilibrium to calculate the tran-

sition probabilities of an approximated birth–death process

as an average (weighted by the relative probability that the

central node is in the respective states),

Tþð jÞ � Tþ0 ð jÞ|fflffl{zfflffl}
¼0

T1!0ð jÞ
T0!1ð jÞ þ T1!0ð jÞ

þ Tþ1 ð jÞ
T0!1ð jÞ

T0!1ð jÞ þ T1!0ð jÞ

¼ 1

N � 1

j(N � j� 1)r2

NðN � 1Þ þ 2Njðr� 1Þ þ jð jþ 1Þðr� 1Þ2

ð3:13Þ

and

T�ð jÞ � T�0 ð jÞ
T1!0ð jÞ

T0!1ð jÞ þ T1!0ð jÞ
þ T�1 ð jÞ|fflffl{zfflffl}

¼0

T0!1ð jÞ
T0!1ð jÞ þ T1!0ð jÞ

¼ 1

N � 1

j(N � j� 1)

NðN � 1Þ þ 2Njðr� 1Þ þ jð jþ 1Þðr� 1Þ2
:

ð3:14Þ

Again, these quantitates are of the order of N21 smaller than

the corresponding values in well-mixed populations. The

ratio between the two transition probabilities, which deter-

mines the probability of fixation, is T2( j )/Tþ( j ) ¼ 1/r2

here, whereas we obtain 1/r for a well-mixed population.

This implies an amplification of selection on the star structure

compared with the well-mixed population. For the fixation

probability of a single mutant, we obtain

fNð1Þ ¼ 1� ð1=r2Þ
1� ð1=r2NÞ : ð3:15Þ

This is exactly the result given by Lieberman et al. [4]
Note that we have effectively reduced the population

size by one, treating the central node separately. This must

be taken into account when we look at fixation probability

or fixation time based on the full equations (3.1) and (3.2).

Figures 2 and 3 compare this approximation with numerical

simulations, confirming the validity of our approximation.

However, for the probability to ever reach K mutants, our

approximation fails when K is small. Instead, the probability

to ever reach K ¼ 2 is

f2ð1Þ ¼ T0!1ð1Þ
T�0 ð1Þ þ T0!1ð1Þ

: ð3:16Þ

The probability f3(1) can be obtained in a similar way.

For the probability to reach more than three mutants, we

can take the following approximation: in the term for

the probability to reach K nodes, we use our approximation

for the transition probabilities for all terms up to K – 2,

but for the K – 1 term, we use the probability to increase

the hub node rather than the approximated probability,

which yields

fKð1Þ ¼ 1þ
XK�2

j¼1

Yj

i¼1

T�ðiÞ
TþðiÞ þ

T�ðk � 1Þ
Tþðk � 1Þ

YK�2

i¼1

T�ðiÞ
TþðiÞ

� ��1

ð3:17Þ
Figures 3 and 4 illustrate that this approximation works

very well for K � 3.

(d) Two-dimensional lattice
For two-dimensional lattices, an initially connected cluster of

mutants can break up during the process, which does not

allow simple analytical considerations anymore. However,

we include numerical results for this population structure

in our comparisons, see figures 3 and 4.

Moreover, the fixation probability in such systems is still

the same as in a well-mixed population, as a consequence

of the isothermal theorem [4].
4. The effective rate of evolution
The rate of evolution is typically considered a function of

the fixation probability, but not of fixation time. The under-

lying assumption is that the waiting time until a successful

mutant appears is much larger than the time it takes for

this mutant to sweep through the population. As illustrated

in figure 2, although the time for a successful mutant to

emerge is much smaller in a star graph, the time until the

new mutant has reached fixation is substantially longer. Is

it still meaningful to argue that the star graph has a higher

rate of evolution in light of this illustration? We propose to

consider the effective rate of evolution instead, which is the

average of the rate of the appearance of a successful mutant

and the rate of fixation of the mutant.

The average rate of rate-limited processes is the harmonic

mean of the rates. In our case, there are two processes

involved: the process until a successful mutant arises and

the process of its fixation. The rate of appearance of new suc-

cessful mutations is given by Nmf(1). The time for fixation is

t and thus the corresponding rate is t21. Hence, the effective

rate of evolution r should be

r ¼ 1

1=NmfNð1Þ þ t
: ð4:1Þ
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For m! 0, this reduces to the usual rate of evolution,

r ¼ mNfN(1). This simpler result is also a good approximation

whenever 1=NmfNð1Þ�t or, equivalently, m�1=NtfNð1Þ. If

new types fixate from ‘standing genetic variation’ instead

(large m), the process is limited by t only (but in that case,

mutant clones will typically no longer be independent, because

several mutants start their way to fixation simultaneously).

For illustration, let us focus on neutral evolution. In a well-

mixed population, we have fN(1) ¼ N21 as well as t ¼ N
(N 2 1) for neutral evolution. Thus, the rate of evolution is

r ¼ 1

1=ðmþNÞðN � 1Þ � mð1� mN2Þ: ð4:2Þ

Usually, only the first term is considered to be of interest:

the neutral rate of evolution equals the mutation rate.

The second term is only relevant for sufficiently large m,

m � N22. On a star, we still have the same fixation probability

under neutral evolution, but t � N(N 2 1)2, leading to

r ¼ m

1þ mNðN � 1Þ2
� mð1� mN3Þ: ð4:3Þ

In this case, the usual approximation will fail for m � N�3, i.e.

for much smaller m than in a well-mixed population. Under

selection, the issue becomes even more crucial, because the

rate at which successful mutants appear increases: with

larger fixation probabilities, the first term in the denominator

of equation (4.1) decreases, increasing the influence of the

second term (which also decreases with selection). This illus-

trates that the assumption of small mutation rates is a much

more restrictive requirement in structured populations

compared with unstructured populations.
5. Discussion
The rate of evolution is typically deduced from three factors:

mutation rate, population size and the fixation probability of

new mutations. Analyses here show that a fourth factor,

namely the time for new mutations to fix, typically requires

consideration when populations are structured.

Time to fixation is influenced by population structure,

although its effects are complex and at times counterintuitive.

Although fixation time and fixation probability arise from the

same quantities they are not directly linked. This is most

apparent when comparing well-mixed populations to struc-

tured populations with isothermal properties (i.e. a

population where the probability of being replaced is identi-

cal at every position). For both well-mixed and isothermal

structured populations, fixation probability is identical. How-

ever, the time to fixation can be strikingly different (figure 2).

An intuitive explanation appeals to the fact that transition

probabilities are strongly affected by local population struc-

ture. In well-mixed populations, there is always the

possibility that the number of mutants changes—this hap-

pens when the mutant is chosen for either birth, or death.

By contrast, in structured populations, the number of

mutants can only increase when a mutant at the boundary

between mutant and wild-type domains is chosen for birth

(and results in replacement of a wild-type individual)—

most changes replace an individual by an identical individual

from a neighbour within the same domain and thus have no

effect on the frequency of the mutant. Given that the prob-

ability of a state change in well-mixed populations is

usually greater than in structured populations, it follows

that the time to fixation is faster in the former.

Decreasing transition probabilities by a factor slows down

population dynamics, leading to an increase in the fixation
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time. However, this decrease in transition probability has no

effect on the probability of fixation. In general, the probability

of fixation (in structured and unstructured environments) is

solely determined by the ratio of two probabilities: the prob-

ability to increase the number of mutants in each state and

the probability to decrease the number of mutants. Changing

both probabilities by a factor leaves their ratio unaffected and

thus the probability of fixation remains the same.

The same reasoning holds for all isothermal population

structures, for which this ratio—and hence the fixation

probability—is exactly the same as in the well-mixed popu-

lation. Examples for such structures include the ring and

the lattice discussed here, but also many other regular

population structures.
The issue becomes much more subtle for population struc-

tures that affect both the fixation probability and the fixation

time. For example, the star structure affects the ratio of transition

probabilities and this leads to a higher fixation probability

for advantageous mutants. Such structures have been termed

amplifiers of selection, because they increase the probability

of fixation for mutants with the same selective advantage com-

pared with well-mixed populations. This implies that it takes

less time for an advantageous mutant to go to fixation. How-

ever, the process of fixation can take substantially longer in

star-structured populations compared with well-mixed popu-

lations. Thus, the time for new mutations to fix can be much

longer in a star-structured population (which amplifies selec-

tion) compared with a population structure that does not

amplify selection, compare figure 2. The increase in fixation

time counteracts the amplifying effects of the star.

Considerations of the rate of evolution are typically based

on the assumption that mutations arise in succession. When

mutation rates rise above a certain threshold, it is likely that

different mutants will be simultaneously propagating in a

population, and hence clonal interference may also play a

role in the rate of evolution [7]. We have shown that, for a

given mutation rate, population structure can substantially

affect this threshold. For example, in a star-structured popu-

lation, clonal interference will play a role for mutation rates

that would generate negligible interference in a mixed popu-

lation of the same size. Specifically, for neutral evolution in a

well-mixed population, clonal interference becomes a factor if

the mutation rate becomes significant compared with N22.

For neutral evolution on the star, mutants take much longer

to spread and hence the likelihood of multiple simultaneous

mutants is higher. As a result, clonal interference arises when

the mutation rate becomes significant compared with only

N23, that is, at a threshold which is a factor of N times smaller

than it would be if the population were freely mixing.

In summary, we have shown that the time for new

mutations to go to fixation needs to be included in consider-

ations of the rate of evolution. Fixation probability and

fixation time both depend on the same quantities but one

does not follow from the other. In a star-structured popu-

lation, the two work in opposition, such that the probability

that a new mutation sweeps in is high, but the time taken

to sweep is long. The net effect on the rate of evolution is a

combination of both these effects.
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