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Effects of the infectious period
distribution on predicted transitions
in childhood disease dynamics

Olga Krylova and David J. D. Earn

Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1

The population dynamics of infectious diseases occasionally undergo rapid

qualitative changes, such as transitions from annual to biennial cycles or to

irregular dynamics. Previous work, based on the standard seasonally forced

‘susceptible–exposed–infectious–removed’ (SEIR) model has found that

transitions in the dynamics of many childhood diseases result from bifur-

cations induced by slow changes in birth and vaccination rates. However,

the standard SEIR formulation assumes that the stage durations (latent

and infectious periods) are exponentially distributed, whereas real distri-

butions are narrower and centred around the mean. Much recent work

has indicated that realistically distributed stage durations strongly affect

the dynamical structure of seasonally forced epidemic models. We investi-

gate whether inferences drawn from previous analyses of transitions in

patterns of measles dynamics are robust to the shapes of the stage duration

distributions. As an illustrative example, we analyse measles dynamics in

New York City from 1928 to 1972. We find that with a fixed mean infectious

period in the susceptible–infectious–removed (SIR) model, the dynamical

structure and predicted transitions vary substantially as a function of the

shape of the infectious period distribution. By contrast, with fixed mean

latent and infectious periods in the SEIR model, the shapes of the stage dur-

ation distributions have a less dramatic effect on model dynamical structure

and predicted transitions. All these results can be understood more easily by

considering the distribution of the disease generation time as opposed to the

distributions of individual disease stages. Numerical bifurcation analysis

reveals that for a given mean generation time the dynamics of the SIR and

SEIR models for measles are nearly equivalent and are insensitive to the

shapes of the disease stage distributions.
1 Introduction
Mathematical modelling has proven to be an extremely powerful tool for

understanding epidemiological patterns and predicting how demographic

changes and control measures influence infectious disease dynamics [1–3].

The most commonly used framework for modelling transmission dynamics

involves dividing the population into compartments based on disease status

and using ordinary differential equations (ODEs) to specify flows between

the compartments. For diseases that confer permanent immunity, the simplest

case is the SIR model [1,4], in which the compartments represent susceptible,

infectious and removed individuals, while the SEIR model also includes an

exposed compartment, containing individuals who are in a latent stage

(infected but not yet infectious). These simple models implicitly assume that

the time an individual spends in each disease stage (e.g. latent or infectious)

is drawn from exponential distributions [2,5], which are unlike real

distributions of disease stage durations.

The dynamical effects of exponential versus more realistic distributions of

stage durations have been explored extensively in the literature [6–12], which

has revealed that changing the shapes of these distributions while keeping

their means fixed can have a large impact on predicted dynamics. Conse-

quently, it is important to re-evaluate any inferences drawn about real data
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from models that assume exponentially distributed stage dur-

ations. In this paper, we study the dynamics of a family of

SIR and SEIR models with stage duration distributions that

range from exponential, to realistically bell-shaped, to fixed.

We investigate how the shapes of latent and infectious period

distributions affect our predictions concerning epidemiological

transitions (e.g. from annual to biennial epidemic cycles) and

compare our results with conclusions previously made based

on exponentially distributed models [13–15]. As an illustrative

example, we apply our analysis to measles epidemics in

New York City from 1928 to 1972.
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Figure 1. Probability density functions for several Erlang distributions with
the same mean (13 days, marked with a vertical grey line) but different
shape parameter n (see equation (1.1)). The most extreme cases are the
exponential distribution (n ¼ 1) and the Dirac delta distribution (n!
1). (Online version in colour.)
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1.1. The shapes of real distributions of disease
stage durations

Many authors have estimated infectious period distributions by

fitting standard probability distributions (e.g. normal [16–18],

log-normal [19,20], gamma [9,21] or fixed [16,17]) to empirical

data. For transmission modelling, a gamma distribution with

an integer shape parameter—also known as an Erlang distri-
bution—is strongly preferred on theoretical grounds: the

Erlang distribution is equivalent to a sequence of independent

and identically distributed exponential distributions [6,22–24],

so compartmental transmission models with Erlang-distributed

stage durations can be expressed as ODEs (as opposed to the

integro-differential equations required to express compartmen-

tal models with arbitrarily distributed stage durations).

The Erlang distribution with shape parameter n and scale

parameter ng, Erlang (n, ng), has probability density

f ðx; n; ngÞ ¼ ðngÞn

ðn� 1Þ! xðn�1Þe�ngx; x . 0; n [ N: ð1:1Þ

The mean is 1/g and the variance is 1/ng2.

The Erlang distribution is more restricted in shape than

the general gamma distribution, but it is sufficiently flexible to

provide a good approximation of realistic stage duration distri-

butions. Figure 1 shows the probability density function of the

Erlang distribution with mean 1/g ¼ 13 days (vertical line)

and various shape parameters (n ¼ 1, 2, 3, 5, 8, 20, 100).

We write SInR and SEmInR to refer to the Erlang-distributed

SIR and SEIR models, where m and n refer to the shape par-

ameters of the latent and infectious period distributions,

respectively. Thus, SI1R (n ¼ 1) and SE1I1R (m ¼ 1, n ¼ 1)

denote the standard SIR and SEIR models with exponentially

distributed latent and infectious periods. Estimated values of

n and m can be inferred from appropriate clinical data and

vary widely for different infectious diseases, for example,

m ¼ 2, n ¼ 3 for SARS and m ¼ 20, n ¼ 20 for measles [9].
1.2. The Erlang-distributed epidemic models
In our analysis, we use standard Erlang-distributed SIR

(equation (1.2)) and SEIR models [6,8–10,23,24].

dS
dt
¼ nN0 � bSI � mS; ð1:2aÞ

dI1

dt
¼ bSI � ðngþ mÞI1; ð1:2bÞ

dI2

dt
¼ ngI1 � ðngþ mÞI2 ð1:2cÞ

..

.

and
dIn

dt
¼ ngIn�1 � ðngþ mÞIn: ð1:2dÞ
Here, S, I and R are the numbers of susceptible, infectious

and recovered (immune) individuals in the population. m, b

and g are the rates of per capita death, transmission and recov-

ery, respectively. m quantifies death from ‘natural causes’

(disease-induced mortality is assumed to be negligible). b is

the rate at which contacts between susceptible and infectious

individuals cause new infections (per susceptible per infected).

The term nN0 denotes the number of births per unit time, where

N0 is the population size at a particular ‘anchor time’ t0 and n

represents births per capita at time t0, but not at other times

(see also §§2.1 and 2.2 and electronic supplementary material,

section ‘Models’). This term is particularly important, because

secular changes in this birth rate can induce dynamical tran-

sitions [3,13–15]. In our formulation, the birth term (nN0) is

different from the birth term in typical SIR-based model formu-

lation, which assumes that births balance deaths with birth rate

being mN. We estimate nN0 based on demographic data and do

not assume that it scales with population size (e.g. we do not
assume that the birth rate is mN).

In equation (1.2), the infectious stage is broken up into

a sequence of n substages, each exponentially distributed

with mean 1/(ng). The full infectious period distribution is

the Erlang distribution with shape parameter n and scale

parameter ng, Erlang(n, ng).

Transmission of childhood diseases such as measles is

strongly influenced by seasonal changes in contact rates

among children [13,25]. We assume that the transmission

rate varies sinusoidally over the course of a year,

bðtÞ ¼ kblð1þ a cosð2ptÞÞ; ð1:3Þ
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where kbl is the mean transmission rate and a is the ampli-

tude of seasonal forcing. (See the electronic supplementary

material, section ‘Models’.)

A fundamental characteristic of an infectious disease is its

basic reproduction number, R0; which is the mean number of

susceptible individuals infected by one infectious individual

in a completely susceptible population [1]. Formally defining

and interpreting R0 in the presence of periodic forcing of

parameters requires considerable mathematical care [26,27];

however, what is important for our purposes here is that

the threshold for disease spread is determined by the more

easily defined basic reproduction number for the time-

averaged system [28]—i.e. the autonomous system in which

b(t) is replaced by kbl—and this is what we shall always

mean when referring to ‘R0’. Thus, R0 is the product of the

mean transmission rate kbl (cf. equation (1.3)) and the mean dur-

ation of infectiousness Tinf, and an epidemic can occur only if

R0 . 1: The exact expression for Tinf for Erlang-distributed

models is cumbersome (see the electronic supplementary mate-

rial, section ‘Models’) but for typical respiratory infections—for

which the duration of infection is much shorter than the

average host lifetime 1/m—it is always true that Tinf � 1/g

and hence

R0 �
nN0

m

kbl
g
: ð1:4Þ

The first factor here (nN0/m) does not normally appear in for-

mulae for R0 because it is typically assumed that births

balance deaths, and the population size is often absorbed

into the transmission rateb (see the ‘Models’ section of the elec-

tronic supplementary material for a more formal discussion of

this point). We assume that n changes slowly enough that it can

be regarded as constant for the purposes of defining R0 at a

given time.

Detailed descriptions of the SInR and SEmInR models can be

found in the electronic supplementary material, section ‘Models’.

1.3. Dynamics of epidemic models with
Erlang-distributed stage durations

In the past 20 years, the SInR and SEmInR models—and

other more general models—have received a great deal of

attention. Equilibrium stability analyses have been conducted

on ‘unforced’ models that assume constant contact rates

[6,7,29–32], and bifurcation analyses have been conducted

on ‘forced’ models in which contact rates vary seasonally

[6–12,33]. Lloyd [7] found that the biennial pattern observed

in the SI1R model is reproduced by the SInR model but with

much weaker seasonality. Nguyen & Rohani [10] found that

complex dynamics of whooping cough could be understood

based on the multiple coexisting attractors of an SE1I5R

model, whereas the simple SE1I1R model with the same

mean latent and infectious periods always predicts an asymp-

totically annual cycle. Wearing et al. [9] argued that the

traditional assumptions of exponentially distributed latent

and infectious periods may lead to underestimation of the

basic reproduction number, R0; and hence to underestimation

of the levels of control required to curtail an epidemic.

The primary theme of recent work on SInR and SEmInR

models has been that the shapes of stage duration distri-

butions can significantly affect the qualitative dynamics of

infectious diseases. Given this, it is important to re-examine

previous work that has attempted to explain observed disease
dynamics based on SI1R or SE1I1R models, and determine

whether the conclusions of these previous studies remain

valid when the analyses are repeated using models with

more realistically distributed stage durations. Our particular

focus in this paper is on epidemiological transition analysis,

by which we mean predicting qualitative changes in epidemic

dynamics induced by demographic and behavioural changes

in the host population [3,13,15]. As an illustrative example,

we analyse measles incidence in New York City for the

period 1928–1972, which was first investigated by London &

Yorke [25,34] and has been the subject of numerous studies

over the past 40 years [13,15,35,36]. We also investigate

whether the dynamics of a given SEmInR model can be

approximated with an SInR model.

We begin by describing the method of transition analysis

in §2. In §3, we apply transition analysis, based on SInR and

SEmInR models, to measles dynamics in New York City from

1928 to 1972. We consider the role of the distribution of

the disease generation time (as opposed to the latent and

infectious periods) in §4 and summarize our results in §5.
2. Predicting epidemiological transitions
Many infectious disease time series display occasional, rapid

changes in qualitative dynamics, such as transitions from

annual to biennial cycles or to irregular dynamics [1,35].

Previous work has shown that these transitions appear to be

driven by demographic and behavioural changes that induce

bifurcations in the SE1I1R model [3,13,15]. We would like to

know whether the qualitative inferences made previously

based on the SE1I1R model remain valid when the analysis is

repeated with more realistic SEmInR models.

Earn et al. [13] used the SE1I1R model to show that knowing

the changes in birth and vaccination rates—or, more generally,

changes in the rate at which susceptible individuals are

recruited into the population—it is possible to predict the

occurrence of bifurcations that change the period of epidemic

cycles. We briefly revisit that argument here in the more

general context of the SInR model.

2.1. Theoretical motivation for transition analysis
In equation (1.2a), the factor n was formulated as the birth

rate but can be thought of more generally as the susceptible

recruitment rate. Suppose that this rate changes to n0, which

might occur because the birth rate has changed or because

we have begun to vaccinate a proportion p of the population

(in which case n0 ¼ n(1 2 p)). To understand the dynamical

effect of this change from n to n0, consider the following

simple change of variables:

S0 ¼ n

n0
S; I0k ¼

n

n0
Ik; for 1 � k � n: ð2:1Þ

If we insert these expressions in equation (1.2) and solve the

equations for the primed variables we obtain, for example,

dS0

dt
¼ nN0 � b

n0

n
S0I0 � mS0: ð2:2Þ

That is, the equations for the primed variables are identical

to the original equations (with the original susceptible

recruitment term n), but with the transmission rate changed

from b to bn0/n. Thus, the dynamical effect of a change in

susceptible recruitment by a given factor is identical to the
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Figure 2. Asymptotic and perturbation analysis of the sinusoidally forced SI1R model (equations (1.2), n ¼ 1) parameterized for measles (g21 ¼ 13 days, n ¼
0.02 yr21, a ¼ 0.08). (a) Asymptotic analysis: the bifurcation diagram for the model with control parameter R0. The ordinate shows the proportional prevalence
of infection at the start of each year, so annual cycles are indicated by a single point at each R0, biennial cycles by two points, triennial cycles by three, and so on.
Heavy curves correspond to stable cycles while light curves indicate unstable cycles. A dotted vertical line is drawn at R0 ¼ 17, indicating the estimate of the basic
reproduction number at the ‘anchor time’ t0. Two types of bifurcations occur in this diagram: period doublings (also called pitchforks or flips) and tangent bifur-
cations (also called folds or saddle – node bifurcations). (b) Perturbation analysis: the natural period of damped oscillations (the transient period) onto each attractor,
as described in step 2 of §2.2. The transient period curves are labelled according to the corresponding attractor in the (a): transient period of the annual attractor (1),
biennial attractor (2), triennial (3) and so on. The light line indicates a region where the annual cycle is unstable and the period of repelled transients is phase-
locked at exactly 2 years [37]. (Online version in colour.)
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dynamical effect of changing the transmission rate by exactly

that factor,

n! n0 ) b! b
n0

n
and R0 ! R0

n0

n
: ð2:3Þ

Consequently, we can use a bifurcation diagram with the trans-

mission rate b, or equivalently the basic reproduction number

R0 (because R0 is proportional to b), as the control parameter

to predict transitions in dynamical behaviour induced by

changes in susceptible recruitment rate. Figure 2 shows such

a bifurcation diagram based on the sinusoidally forced SI1R

model (equation (1.2), n ¼ 1) with parameters chosen to corre-

spond to measles (and with an estimated value of R0 ¼ 17 at

some given time, say t0, marked with a dotted vertical line).

If the susceptible recruitment rate was n0 at time t0 and n1 at

time t1, then we would predict that at time t1 the system

would behave as if the basic reproduction number had chan-

ged by the factor n1/n0, i.e. the effective reproduction number

at time t, is

R0;eff ¼ R0
n1

n0
: ð2:4Þ

There is an important subtlety upon which our ability

to predict transitions depends critically. In the equation for

dS/dt (equations (1.2a)), the susceptible recruitment rate

appears as a constant (n does not depend explicitly on time

t or population size N ), and we use mass-action incidence
(bSI) rather than standard incidence (bSI/N ). If the suscep-

tible recruitment term were taken to be nN rather than nN0,

and we were to use standard incidence then the variable

change in equation (2.1) would have no effect (the differential

equations are invariant to the scaling transformation given by

equation (2.1)) and we would never predict dynamical tran-

sitions resulting from changes in the susceptible recruitment

rate. One can debate on theoretical grounds whether one

model formulation or another is most plausible biologically

[38]; we favour our formulation because it leads to correct

predictions concerning dynamical transitions [13,15]. We

are interested in the effects of changes in n over time, but

the changes of interest occur slowly compared with the epi-

demic timescale, which is why we can treat n as constant in

the dS/dt equation.
2.2. The method of transition analysis
Given a time series of reported disease incidence or mortality

(for a disease for which we have estimates of the mean latent

and infectious periods), a full transition analysis proceeds as

follows [13,15]. First, in order to clarify what needs to be

explained, plot the disease time series together with its esti-

mated frequency structure at each time point (e.g. Fourier

power spectra for subsets of the full time series or, preferably,

a wavelet spectrum for the full time series [39,40]). Second,

for some ‘anchor time’ t0 in the time series, obtain an estimate
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of the basic reproduction number R0; preferably using data

other than the focal time series (e.g. annual age-specific

data [1]). Third, estimate the susceptible recruitment rate n

at each point of the disease time series and infer the effective

reproductive number R0;eff at all times by inserting the esti-

mated n values into equation (2.4) (where n0 ¼ n(t0) and

n1 ¼ n(t) for an arbitrary time t). Fourth, identify time inter-

vals during which n is roughly constant (hence during which

the dynamical features of the disease time series can be

expected to be approximately stationary). Finally, based

on the estimated value of R0;eff in each of the ‘dynamically

stationary time intervals’, predict transitions in qualitative

dynamical behaviour (e.g. changes in the structure of the

wavelet spectrum, especially the positions of peaks), as follows.

(1) Asymptotic analysis (to identify the periods of attractors of

the model, which are reached asymptotically) [10–15]:

construct a bifurcation diagram with R0 as the control

parameter, over a range of R0 that includes the value esti-

mated for time t0 and the full range of R0;eff determined

via equation (2.4) (figure 2a). From this diagram, we can

easily infer the periods of cyclical attractors of the

system. We call these resonant periods because they are

exact subharmonics (i.e. integer multiples) of the period

of seasonal forcing (1 year). (See the electronic supplemen-

tary material ‘Bifurcation analysis of the seasonally forced

SIR model using XPPAUT’ for a step-by-step guide to

creating diagrams such as figure 2 using XPPAUT [41].)

(2) Perturbation analysis (to estimate the periods of the

transients associated with each attractor): over the same

range of R0 as in the asymptotic analysis, plot the periods

of the transients associated with—i.e. the periods of

damped oscillations onto—each cyclical attractor (figure

2b). We call these non-resonant periods because they can

take any real value and are not entrained by seasonal for-

cing. Non-resonant periods may be detected in observed

epidemic time series, because transients can be sustained

by demographic stochasticity [15,42]. Non-resonant

periods can be calculated by linearizing about the fixed

points and cycles of the model’s 1-year-stroboscopic map

[14,15]. If the period of a given attractor is k and the domi-

nant eigenvalue of the associated k-cycle of the

stroboscopic map is lk (which is complex for typical dis-

ease parameters), then the associated transient period is

Tk ¼
2pk

jArgðlkÞj
: ð2:5Þ

(3) Stochastic analysis (to estimate the relative importance

of transient versus asymptotic dynamics): the wavelet

spectrum has peaks at the most important periods in

the time series (which we attempt to predict with steps

1 and 2) but also shows the magnitude of the peaks,

which cannot be estimated by asymptotic and pertur-

bation analysis of a deterministic model. The relative

magnitudes of spectral peaks of observed time series

can be estimated from spectra of simulations of stochastic

realizations of the model, with the expectation that

smaller population sizes (which are subject to greater

demographic stochasticity) will stimulate more transient

dynamics, leading to larger spectral peaks at non-

resonant periods [3,15]. Because the stochastic analysis

addresses the details rather than the main features of

dynamical transitions, we do not conduct it in this
paper (though we make occasional reference to stochastic

effects). We note, however, that understanding these

details is an area of very active research, and powerful

analytical approaches for estimating power spectra for

recurrent epidemic processes have been developed

recently [11,43–45]. Ultimately, a complete transition

theory would need to account for all the dynamical

characteristics of stochastic epidemic models, which

include alternation between asymptotic and transient

behaviour [15], switching between different attractors

[13,46], phase-locked cycles at one fixed period [37] and

interactions with repellors [47].

In §3, we use the SInR and SEmInR models to conduct tran-

sition analysis of the well-known New York City measles

time series [34]. Our main question is: do we predict different

transitions if we base our theoretical analysis on the SInR

rather than on the SI1R model, or the SEmInR rather than

SE1I1R model?

Another question that we will address is: can we approxi-

mate the dynamics of the SEmInR model using the SInR

model? This question is motivated by the fact that the

dynamics of the SE1I1R model can be approximated using

the SI1R model. It is well-known that the equilibrium and

stability properties (e.g. the period of damped oscillations

onto the equilibrium) of the unforced SI1R and SE1I1R

models correspond if the mean infectious period in the SI1R

model is associated with the sum of the mean latent and

mean infectious periods in the SE1I1R model [1, p. 668]. The

measles bifurcation diagram shown in figure 2 for the sinu-

soidally forced SI1R model is virtually identical to the term-

time forced SE1I1R measles bifurcation diagram produced

previously by Earn et al. [13]. Therefore, we analyse the

SInR model with mean infectious period 1/g ¼ 13 days (the

sum of the real mean latent period of 8 days and the real

mean infectious period of 5 days for measles).
3. Transition analysis using SInR and
SEmInR models

In this section, we use the well-known measles incidence time

series for New York City (1928–1972) as an illustrative

example with which to compare the results of transition

analysis using SInR and SEmInR models with stage duration

distributions varying from exponential to fixed. The

New York City measles data were originally digitized and

studied by London & Yorke [25,34]. Previous transition

analysis of these data [13,15] has been restricted to the pre-

vaccine period (up to 1963). Here, we are able to extend

our analysis to 1972 using vaccination data for 1963–1972

(see the electronic supplementary material, section ‘Vacci-

nation level calculations’).

3.1. Description of the data
3.1.1. Reported incidence and inferred frequency structure
Figure 3a shows monthly reported cases of measles in

New York City (together with estimated susceptible recruit-

ment rate) and figure 3b shows the frequency structure of

the data over time as a wavelet spectrum. Two spectral

peaks are evident for the full duration of the time series,

one at a period of 1 year and a second at a period that
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changes over time (2–3 years from 1928 to about 1946,

exactly 2 years from about 1946 to 1965, and 2–4 years

from about 1965 to the end of 1972).
3.1.2. Estimated susceptible recruitment
Based on age-incidence and age-seroprevalence data for

England and Wales (1950–1968), the basic reproduction

number for measles has been estimated to be R0 ≃ 17 in the

pre-vaccination era [1, fig. 3.9 and 3.10, and table 4.1, p. 70].

Because, in New York City, the birth rate was approximately

the same as in England and Wales (in the pre-vaccination

era), we use this value as an estimate for R0 in New York

City in 1960, which we take to be our ‘anchor time’ t0.

Measles vaccine was introduced in the United States in

1963 [51], so susceptible recruitment until 1963 can be taken

to be associated entirely with births. However, newborns

do not enter the well-mixed susceptible pool immediately,

for two reasons: (i) maternally acquired immunity can take

up to a year to wane [1, p. 50], (ii) before entering pre-

school, children typically have much lower contact rates

with other susceptibles. Hence, the impact of changes in

birth rate on transmission dynamics is delayed, approxi-

mately by the time between birth and entering the

well-mixed susceptible pool. We took this delay, tS, to be 2
years, but our conclusions are not sensitive to this parameter

(e.g. taking it to be 0 or 5 years makes little difference (dotted-

dashed and dotted curves in figure 3)). Note that tS should be

less than 5 because the mean age at infection was about 5

years [1, fig. 8.1, p. 156]. Thus, we take the susceptible recruit-

ment rate in 1960 to be the ratio of the number of births in

1958 (B(t0 2 tS) ¼ 167 660) to the estimated population of

New York City in 1960 (N0 ¼ 7 781 984), i.e. nðt0Þ ≃ 0:02

[52]. At other times t,

nðtÞ ¼ Bðt� tSÞ
N0

ð1� pðt� tSÞÞ ; ð3:1Þ

where p(t) is the proportion of new recruits at time t who were

vaccinated before entering the well-mixed susceptible pool.

Note in equation (3.10) we use N0, not N(t): recruitment is nor-

malized relative to the population size at the ‘anchor time’ t0

[13]. After 1963, the susceptible recruitment rate is substantially

reduced by the introduction of vaccination (figure 3).

The birth and measles vaccination data that we insert in

equation (3.1) are discussed in the electronic supplementary

material, section ‘Vaccination level calculations’. The result-

ing annual susceptible recruitment rate is shown in figure

3a. There are three distinct periods during which the recruit-

ment rate was roughly constant: 1929–1946 with n � 0.015,

1950–1963 with n � 0.02 and 1966–1971 with n � 0.008.
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Therefore, from equation (2.4), we estimate the effective

reproduction number to be R0;eff � 12 for 1928–1946,

R0;eff � 17 for 1950–1963 and R0;eff � 7 for 1966–1971.
3.2. Asymptotic and perturbation analysis
Previous transition analyses of the New York City measles

incidence time series were based on the SE1I1R model with

mean latent and infectious periods tE ¼ 8 days and tI ¼ 5

days, respectively [13,15]. Given data from which the full

latent and infectious period distributions can be estimated

(rather than just their means), it would be sensible to fit

Erlang distributions to the actual stage duration distributions

and begin the transition analysis from the corresponding
SEmInR model. Forexample, Wearing & Rohani [9] used measles

case data from Gloucestershire, UK, for the period 1947–1951

[53] to estimate tE ¼ 8 days with the shape parameter m � 20

and tI ¼ 5 days with the shape parameter n � 20. Even in

situations in which only the means of the stage duration dis-

tributions can be estimated, an SEmInR model (with m . 1 and

n . 1) is likely to be a more accurate representation of reality

than an SE1I1R model. So, for example, Keeling & Grenfell [8]

considered an SEmInR model with m ¼ 8 and n ¼ 5, i.e. one

day on average in each latent and infectious substage, as a

reasonable improvement of the SE1I1R model.

Our primary question, however, is how the predictions of

transition analysis vary as a function of stage duration distri-

bution and whether the previous transition analyses based on
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the SE1I1R model have led us to correct or incorrect inferences.

We therefore consider the full range of Erlang distributions

for the latent and infectious periods and study the SEmInR

model with 1 � m �1 and 1 � n �1. Note that we chose

the mean latent and infectious periods to be fixed (1/s ¼ 8

days; 1/g ¼ 5 days). Because our general goal is to evaluate

the robustness of dynamical inferences to model structure, we

begin by analysing the simpler SInR model with 1 � n �1.
3.2.1. Predictions of the SInR model

3.2.1.1. Asymptotic analysis
Figure 4 shows a sequence of SInR bifurcation diagrams for var-

ious values of the shape parameter (n ¼ 1, 3, 10, 1) together

with the corresponding distributions of the infectious period

(each with a mean of 13 days). Stable branches are shown as

heavy curves, whereas unstable branches are shown as light

curves (in the online version, stable branches of different

periods are shown in different colours). The case n ¼ 1 is iden-

tical to figure 2a. As n increases from 1 to 1, each of the

branches undergoes further bifurcations. Chaotic attractors

(superimposed in light grey) are evident for n ¼ 10 and

dominate for a substantial range of R0 for n ¼1.
The vertical dashed dark grey line at R0 ¼ 17 in figure 4

corresponds to the estimated basic reproduction number

for the year t0 ¼ 1960. The effective reproduction number is

also estimated to be 17 throughout the 13 year period t ¼
1950–1963, because the birth rate did not change appreciably

during this time and measles vaccine was not yet invented.

The other two vertical dashed grey lines at R0 ¼ 7 and

R0 ¼ 12 correspond, respectively, to the estimated effective

reproduction number during the periods t ¼ 1928–1946 and

t ¼ 1966–1971, as computed from equations (2.4) and (3.1).

The bifurcation tree of the standard SI1R model (n ¼ 1)

shows a biennial cycle for R0 ¼ 17; coexistence of annual and

triennial cycles for R0 ¼ 12; and coexistence of annual and

4- and 5-year cycles for R0 ¼ 7: Hence, the model correctly

predicts the biennial pattern observed from 1950 to 1963

in New York City, but appears at first sight to predict incor-

rectly that there are multiple coexisting non-annual cycles at

other times.

However, in the ranges of R0 for which multiple attrac-

tors coexist, and in particular for R0 ¼ 12 and R0 ¼ 7;

stochastic simulations spend almost all of their time in the

basin of the annual attractor [15]. Thus, the resonant period

of 1 year observed in New York City from 1928 to 1946

and from 1966 to 1971 is also consistent with the SI1R model.
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Because of the series of bifurcations that occur rapidly as

n is increased, the SInR model for any n . 1 exhibits more

complex dynamics than the SI1R model and is harder to

reconcile with the observed transitions in New York City

measles. More often than the SI1R model, the SInR model

with n . 1 has coexisting long-period stable cycles that are

not observed in practice. As with the SI1R model, stochastic

simulations can be expected to remain primarily in the vicin-

ity of the ‘primary’ attractor, but unlike the SI1R model, the

primary attractor of the SInR with n . 1 often predicts the

wrong resonant period for New York City measles. For

example, for n ¼ 10, the dominant attractor for R0 ¼ 17 has

a period of 4 years (not 2 years), and the dominant attractor

for R0 ¼ 12 has period two (not one). In the presence of

noise, the 4-year cycle may be difficult to distinguish from

a 2-year cycle, but the predicted 2-year cycle for R0 ¼ 12 is

nothing like the measles data it ought to explain.

3.2.1.2. Perturbation analysis
Just as perturbing an orbit away from a stable equilibrium can

induce transient, damped oscillations onto the equilibrium,

perturbing an orbit away from a periodic attractor can induce

transient, damped oscillations onto the stable cycle. Although

more cumbersome to calculate for a non-equilibrium attractor

[15], transient orbits in the vicinity of a periodic attractor

have a well-defined characteristic period of oscillation.
Figure 5 summarizes the transient dynamics of the SInR

models for n ¼ 1, 3 and 10. For each periodic attractor,

the non-resonant period, i.e. the period of damped oscil-

lations onto the attractor, is plotted on the y-axis as a

function of R0: The curves are labelled according to the

period of the corresponding attractors in figure 4. Light

grey lines are used in ranges of R0 where the corresponding

periodic orbits are unstable; in these regions, the model dis-

plays phase-locked transient dynamics at the indicated

period (i.e. the transient period is fixed and is the same as

the period of the stable attractor), which is a prerequisite

for a period-doubling bifurcation [37].

In the case of the SI1R model, the non-resonant periods

associated with all the non-annual attractors are too long to

be observable in the New York City measles time series. The

non-resonant period associated with the annual attractor does

agree well with the wavelet spectrum shown in figure 3. For

the SInR models with n . 1, the non-resonant periods associ-

ated with multi-year attractors are shorter and often should

be observable in principle. For example, for R0;eff ¼ 12 the

SI10R model (n ¼ 10) predicts a transient period of 4.5 years.

However, it is not observed in the incidence power spectra

(figure 3). The lack of any indication of non-resonant periods

associated with non-annual attractors in the wavelet spectrum

for measles in New York City appears to cast further doubt

on the usefulness of the SInR model for measles.
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3.2.1.3. Summary of SInR transition analysis
Overall, from the point of view of measles transition analysis,

the SI1R model is just as successful as the SE1I1R model

studied previously [13,15]. However, the SInR model with

n . 1 is far less successful; as n increases the dynamical struc-

ture of the model becomes more and more complex and the

predicted resonant and non-resonant periods stray further

and further from the observed spectral peaks in the

New York City measles time series.

Figure 6a summarizes our asymptotic analyses of the

full sequence of SInR measles models (n ¼ 1 to 1) with a two-

parameter ðR0;nÞ bifurcation diagram for the main branch
of the bifurcation tree in figure 4. The boundaries of the regions

in figure 6 correspond to the major bifurcation points high-

lighted with circles (for flips) and squares (for saddle–nodes)

in figure 4. As n! 1 (i.e. as the infectious period distribution

approaches a delta function), the main branch of the bifurcation

tree undergoes a period-doubling cascade in the grey region

(R0 � 12� 15). Figure 6b also describes the ðR0;nÞ plane, but

shows contours of constant non-resonant periods associated

with the annual cycle on the main branch (this is the most

likely non-resonant period to be observable because it is the
shortest; figure 5). The hatched region is characterized by

phase-locked transient dynamics at a period of 2 years.

Note that because n is a discrete parameter it cannot be

used as a continuation parameter in XPPAUT, hence we

had to resort to separate continuation analyses for each n.

The sequence of main-branch bifurcation diagrams that we

constructed for the SInR measles model (using 24 values of

n from 1 to 1) is shown in the electronic supplementary

material, section ‘Main branch of the SInR model’.

3.2.2. Predictions of the SEmInR model
We now apply precisely the same analyses to the more realis-

tic SEmInR models. Figures 7–9 for the SEmInR models

correspond to figures 4–6 for the SInR models.

Because we are now modelling both the latent and infec-

tious stages directly, we can use accepted estimates for their

mean durations (mean latent period 1/s ¼ 8 days, mean

infectious period 1/g ¼ 5 days) [9]. In addition, we now

have two shape parameters (m for the latent stage and n for

the infectious stage). We examine several illustrative m,n
values studied previously in the literature: m ¼ 1, n ¼ 1

[1,13], m ¼ 8, n ¼ 5 [8] and m ¼ 20, n ¼ 20 [9].
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Figure 7 presents asymptotic analysis of the SEmInR

model. The bifurcation structure of the model changes as m
and n are increased, but the changes are less substantial

than figure 4 shows as n is increased in the SInR model.

Figure 8 presents the results of perturbation analysis of the

SEmInR model. Again, narrowing the stage duration distri-

butions alters the transient periods, but less than figure 5

shows for the SInR model.

The degree of dependence of SEmInR dynamics on stage

duration distributions is clearest from the two-parameter

bifurcation diagrams and transient-period contour plots

shown in figure 9, which should be compared with figure 6

for the SInR model. Regardless of the shapes of the stage

duration distributions, the predicted resonant and non-

resonant periods are very similar. Regardless of m and n,

for R0 ¼ 17; we predict a resonant period of 2 years and

an unobservably long non-resonant period (more than 7

years), for R0 ¼ 12 we predict a 1-year resonant period

and a 2–3 year non-resonant period, and for R0 ¼ 7 we

predict a 1-year resonant and 3–4 year non-resonant

period. Consequently, transition analysis based on any of

these SEmInR models is consistent with the New York

City measles time series and wavelet spectrum (figure 3) as

well as for the other measles time series considered

previously [13–15].
We are led to conclude that transition analysis is robust to

the shapes of the distributions of the latent and infectious

periods (provided we include both).
4. The role of the generation time distribution in
the dynamics of the SInR and SEmInR models

It is surprising that narrowing the infectious period distribution

in the SInR model (apparently making it more realistic) makes

the model worse as a predictor of dynamical transitions

(figure 6). Because the effect of narrowing the shapes of the

latent and infectious period distributions in the SEmInR is

much smaller (figure 9), it is tempting to infer that the inclusion

of a latent stage is essential for producing a robust model of the

population dynamics of an infection that really does have a sig-

nificant latent period. In fact, in this section, we identify the key

factor that changes the structure of the SInR bifurcation diagram

as n gets larger, and we argue ultimately that any SInR or SEmInR

model is as good as any other from the point of view of tran-

sition analysis (including the SI1R or SE1I1R models) provided

they are parametrized appropriately.

When using an SIR rather than SEIR model, we chose the

mean infectious period to be 13 days, the sum of the actual

mean latent (8 days) and mean infectious (5 days) periods.
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Figure 9. Two-parameter bifurcation diagrams and transient-period contour plots for the measles SEmInR model (mean latent period 1/s ¼ 8 days, mean infec-
tious period 1/g ¼ 5 days). Each panel corresponds to different values of the shape parameter (m) of the latent period distribution. Regions are labelled according
to the asymptotic dynamics on the main branch: ‘1’ (single annual attractor), ‘2’ (single biennial attractor), ‘1 and 2’ (coexistence of annual and biennial attractors).
Other annotations are as in figure 6. (Online version in colour.)
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Our motivation was that it is well known that the dynamics

of the unforced SI1R model is almost identical to that of the

unforced SE1I1R model if this association is made. In particu-

lar, the period of damped oscillations about the equilibrium

is then identical in the SI1R and SE1I1R models [1, p. 668].

It is instructive to note that the mean disease generation
time1 in the SE1I1R model is equal to the sum of the mean

latent and infectious periods. So, the association we have

made between the mean infectious period in the SI1R

model and the sum of the mean latent and infectious periods

in the SE1I1R model amounts to making sure both models have

the same mean generation time. But for more general SEmInR

models, the mean generation time is not equal to the sum of

the mean latent and infectious periods. Indeed, the mean

generation time in an SEmInR model is [55, eqn. 5.9]

Tgen ¼
1

s
þ nþ 1

2n

� �
1

g
: ð4:1Þ

From formula (4.1), we see that the mean generation time

does not depend on the shape of the latent period distri-

bution (only its mean 1/s), but decreases as the infectious

period distribution gets narrower (i.e. as n increases) if the
mean infectious period is kept fixed. If the mean generation

time is the key factor affecting the dynamics of the SEmInR

model then we can now easily see why figure 6 shows so

much more variation than figure 9: the mean generation

time Tgen decreases from 13 to 6.5 days as n increases from

1 to 1 in the SInR model (1/s ¼ 0, 1/g ¼ 13 days), whereas

Tgen decreases only from 13 days to 10.5 days as n increases

from 1 to 1 in the SEmInR model (1/s ¼ 8 days for any

value of m, 1/g ¼ 5 days).

Figure 10 shows another version of the two-parameter

(R0 versus n) bifurcation diagram for the SInR model.

Rather than fixing the mean infectious period as in figure 6,

for each n we set the mean generation time to be the same

as that in the SEmInR model with the same value of n. The

result in figure 10 is now negligibly different from each of

the panels of figure 9 (some details are also discussed in

the electronic supplementary material, section ‘Invariance

of the period-doubling bifurcation point’).

Finally, in figure 11, we show yet another version of the R0

versus n bifurcation diagram for the SInR model, this time

keeping the mean generation time fixed at 13 days for all

values of n (in contrast to figure 10, where the mean generation

time for each SInR model was chosen to be the same as in the
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SEmInR model with the same value of n). Figure 11 makes clear

that from the point of view of transition analysis—and to a large

extent more generally for understanding the dynamics of
SEmInR models—the key parameter that needs to be estimated

is the mean generation time, not the mean latent or mean infec-

tious period themselves and certainly not the shapes of these
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distributions. For a given mean generation time, it makes little

difference which SInR or SEmInR model we use, so we might

as well work with the simplest, the SI1R model.
oyalsocietypublishing.org
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10:20130098
5. Discussion
We set out to determine whether the results of previous ‘tran-

sition analyses’ of recurrent epidemic patterns of childhood

diseases [3,13,15] were robust to the assumed shapes of the

latent and infectious period distributions (which were taken

to be exponential in previous work). We focused on measles

and undertook a systematic analysis of the sequence of SInR

and SEmInR models for measles, and concluded that for a

given mean generation time, transition analyses based on

any SInR or SEmInR model will lead to the same predictions

for measles. Consequently, transition analyses of measles

dynamics can be safely conducted using the very simplest

SI1R model. It is important to emphasize, however, that the

mean generation time must be estimated correctly for this

to work; in particular, it is not true that the real mean gener-

ation time is the sum of the mean latent and infectious periods.

The key graph that establishes that SInR dynamics are

nearly invariant for measles, if the mean generation time is

fixed, is figure 11 (where the mean generation time is set to

13 days). In future work, we will construct the equivalent

graph for a sequence of mean generation times that covers

the range of typical recurrent infectious diseases, in order

to determine whether transition analyses of other diseases
can also be safely conducted with the simple SI1R model.

There is also considerable scope for analytical develop-

ments that complement our numerical analysis and build

on previous analytical work associated with the role of the

generation time distribution [56–59].

Consistent with previous work [6,7,10], we found that if we

fix the mean infectious period (rather than the mean generation

time) then narrowing the infectious period distribution (which

reduces the mean generation time) leads to more complex

dynamics. Previous work has also investigated the stochastic

dynamics of SInR and SEmInR models and examined character-

istics such as the critical community size for disease persistence

[6,12]. In future work, we will re-examine inferences con-

cerning the stochastic dynamics of these models in light of

the now-evident importance of the mean generation time for

their deterministic dynamics.

We thank Jonathan Dushoff and the other members of the Mathematical
Biology Group at McMaster University for helpful comments and dis-
cussions. We were supported by the Natural Sciences and Engineering
Research Council of Canada (O.K. by an NSERC Postgraduate Scholar-
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1The generation time is also called the generation interval, the serial
interval or the case-to-case interval. It is the time from initial infection
of a primary case to initial infection of a secondary case [54].
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