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1Department of Civil and Environmental Engineering, and 4Engineering Systems Division, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
2Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
3Sociology and Economics of Networks and Services Department, Orange Labs, 38 rue du Général Leclerc,
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Human mobility is differentiated by time scales. While the mechanism for long

time scales has been studied, the underlying mechanism on the daily scale is

still unrevealed. Here, we uncover the mechanism responsible for the daily

mobility patterns by analysing the temporal and spatial trajectories of thou-

sands of persons as individual networks. Using the concept of motifs from

network theory, we find only 17 unique networks are present in daily mobility

and they follow simple rules. These networks, called here motifs, are sufficient

to capture up to 90 per cent of the population in surveys and mobile phone

datasets for different countries. Each individual exhibits a characteristic

motif, which seems to be stable over several months. Consequently, daily

human mobility can be reproduced by an analytically tractable framework

for Markov chains by modelling periods of high-frequency trips followed by

periods of lower activity as the key ingredient.
1. Introduction
Our modern society and the environment are shaped by people’s mobility pat-

terns at different scales. Long-time and long-distance trips consist generally of

rare and infrequent events such as international flights or movements between

cities. By contrast, short-time trips mostly consist of intracity travels such as

commuting to work or grocery shopping. These trips exhibit high regularity,

typically following the daily circadian rhythm. Studies of human mobility at

large scales, motivated by understanding the global spreading of epidemics

[1–6], have unravelled interesting properties of the underlying mobility

patterns.

Nowadays, large-scale human mobility patterns are described by three

widely accepted indicators: the trip distance distribution p(r), the radius of

gyration rg(t) and the number of visited locations S(t) over time [7–9]. The

trip distance distribution of the entire population follows a power law

pðrÞ �r�b with b � 1.59 [7].

Individual trajectories can be extracted from mobile phone data [10–13]. This

enables the study of the area an individual visits which is characterized by the

radius of gyration rg(t) [8]. This individual rg can be understood as the character-

istic distance an individual travels during a given time-period t. The distribution

of the radius of gyration reveals heterogeneity in the population; most individ-

uals travel within a short radius, but others cover long distances on a regular

basis. Thus, each individual follows p(r) within his or her characteristic distance

rg(t). The distribution p(rg) within the population yields the power law observed

in the aggregated trip distance distribution p(r).
The frequent return to previously visited locations is captured by the

number of visited places over time S(t). This value grows sublinearly as

S(t) � tm with m ¼ 0.6 capturing individuals’ tendency for revisiting locations

[9]. These three measures contain the basic ingredients to describe the individ-

ual trajectories, in which frequent travels occur between a limited number of

places, with less frequent trips to new places outside an individual radius.

Such behaviour for large time scales can be reproduced by an exploration
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Figure 1. Decomposition of the mobility profile over 10 days into daily mobi-
lity patterns for two anonymous mobile phone users. The home location of
each user is highlighted and connected over the entire observation period
with a grey line. While the entire mobility profiles (black circles and grey
lines in the xy-plane) are rather diverse, the individual daily profiles
(brown to red from bottom to top for different days) share common features.
The aggregated networks consist of N ¼ 16 (22) nodes and M ¼ 37 (43)
edges with an average degree of kkl ¼ 2M=N ¼ 4:6 ð3:9Þ. By contrast,
the daily average number of nodes is kNl ¼ 4:4 + 1:8 ð3:9 + 1:3Þ,
and the average number of edges is kMl ¼ 5:3 + 2:8 ð4:2 + 2:2Þ.
The left user prefers commuting to one place and visits the other
locations during a single tour, whereas the right user prefers to visit the
daily locations during a single tour. On the last day, both users visit not
only four locations, but also share the same daily profile consisting of two
tours with one and two destinations, respectively.
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Figure 2. Daily human mobility patterns seem to follow a universal law. The
daily number of visited locations can be approximated with a log-normal dis-
tribution f ðNÞ ¼ expð�ðlnN � mÞ2=ð2s2ÞÞ=ð

ffiffiffiffiffiffi
2p
p

NsÞ with m ¼ 1
and s ¼ 0.5. The distributions extracted from activity and travel surveys as
well as from mobile phone billing data show similar behaviour. Moreover,
the distributions of our perturbation model (see §3 and figure 6 for details)
generated both analytically and numerically have the same shape. The broad
distribution shows that although most of the people visit less than five locations,
a small fraction behave significantly differently because people report visits up
to 17 different places within a day in our surveys. Note that due to the mobile
phone data limitations, the tail of the corresponding distribution is below the
other datasets.
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and preferential return model with the displacement distribut-

ion as an input [9] which can be used to model epidemic

spreading on the airline network [14].

However, the current model is designed to capture the

long-term mobility behaviour. For example, the number of

visited locations S(t) does not show a robust scaling exponent

m, for t , 24 h [9]. Additionally, the radius of gyration stabil-

izes only after a few months of observation [8]. These indicat-

ions suggest different underlying mechanisms for modelling

mobility at the intercity and the intracity scale.

Current studies at the daily, intracity scale focus on fore-

casting traffic demand and on predicting human decisions

based on optimizing a score function or a utility function.

Such modelling approaches assume that each individual

human tries to minimize his/her effort depending on socio-

economic characteristics [15]. Therefore, agent-based models

have been deployed, usually based on detailed data from

travel surveys [16–23].

In this study, we investigate the common underlying

mechanisms for daily human mobility patterns by combining

the advantages of different large-scale data sources. In each

dataset, we observe ubiquitous daily mobility patterns,

which we statistically reproduce with an analytical model.

Because the generated patterns of our model are only sensi-

tive to the presence or absence of periods of activity

followed by periods of inactivity, it implies that humans’

daily trips follow a universal law.
2. Human mobility patterns
Human mobility is characterized by a sequence of visited

locations and the trips among them. As an example, we

show in figure 1 the aggregated mobility profile of two
users and their corresponding daily profiles for a 10 day

observational period. The time-dependent trajectories for

different days are coloured from brown (first day) to red

(10th day) from bottom to top. The black circles and grey

lines in the xy-plane are the projection of the daily trajectories.

Both the daily and the aggregated profiles can be described as

directed networks, in which nodes represent the visited

locations and directed edges stand for trips between them.

To classify these networks on a daily basis, we further dis-

card any additional information about the purpose of the

activity, the travel time and the activity duration as well as

the distances and the number of trips between the visited

locations, consequently neither the nodes nor the edges are

weighted. Only the trip direction is incorporated by the direc-

tion of the edge as highlighted for the last day in figure 1.

We first investigate the distribution of the number of

different visited locations, which is the size distribution of

the daily networks. As shown in figure 2, the size distri-

butions f (N ) of the networks are similar for all datasets (see

§3 for more detail). The shape of the observed distributions

f (N ) can be approximated by a log-normal distribution

f ðNÞ � e�ðln N�mÞ2=ð2s2Þ

sx
ffiffiffiffiffiffi
2p
p ; ð2:1Þ

with the parameters m ¼ 1 + 0.1 and s ¼ 0.5 + 0.1. The aver-

age number of locations kNl � 3 is small; hence, most people

visit only a few locations. In fact, 90 per cent of the population

visit less than seven locations on a daily basis. All three data-

sets follow the same distribution despite the difference

between the cities and if the dataset is a travel survey or

phone data.

To further study the observed daily mobility patterns, the

number of different daily networks is investigated. These

networks reveal whether people prefer to visit different locat-

ions in a single round tour before returning to the starting
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Figure 3. Possible daily mobility patterns are limited, because up to 90% of the identified daily mobility networks can be described with only 17 different motifs.
The probability p(ID) to find one of these 17 motifs in the surveys (cyan, Paris; blue, Chicago), the phone data (orange, Paris), and the model (light green, Paris; dark
green, Chicago) is presented. The motifs are grouped according to their size separated by dashed lines. For each group, the fraction of observed over feasible motifs
No/Nf is shown and the central nodes are highlighted. Most motifs can be classified by four rules: (I) motifs of size N consist of a tour with only one stop and
another tour with N – 2 stops. (II) Motifs of size N consist of only a single tour with N stops. (III) Motifs of size N consist of two tours with one stop and another
tour with N – 3 stops. (IV) Motifs of size N consist of a tour with two stops and another tour with N – 3 stops. Despite the fact that the number of workers is
significantly different in both cities, the rank and the probability to find a specific motif exhibit similar behaviour.
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location, or if they prefer to return to their starting location

before visiting another location. In fact, for a given network

size N, Np edge combinations exist:

NpðNÞ ¼ 2N2�N : ð2:2Þ

Because we are interested in networks that picture human

daily trips, the number of reasonable networks can be signifi-

cantly reduced mainly due to two constraints: the need for

sleep, and the consistency of trips. The need for sleep imposes

that the trips start and finish at the same location, most likely

at home. The consistency ensures that each of the N locations is

visited at least once. These two conditions imply that for N . 1

all nodes have at least one ingoing and one outgoing edge. By

counting the number of feasible daily networks that fulfil these

two constraints, we obtain a large number Nf increasing

rapidly with the number of locations (Nf(1)¼ 1, Nf(2)¼ 1,

Nf(3)¼ 5, Nf(4) ¼ 83, Nf(5) ¼ 5048, Nf(6) ¼ 1 047 008). Never-

theless, up to 90 per cent of the measured trips can be

described with only 17 different daily networks for the surveys

and the mobile phone data.

We call these 17 daily networks motifs in analogy to

motifs in complex networks [24]. Many systems represented

as networks consist of various subnetworks, either topologi-

cal or temporal [25]. If these subnetworks occur more often

than in randomized versions of the entire network, these sub-

networks are called motifs. Because randomized versions of

the mobility networks are not feasible, we call motifs the

daily networks which are found on average more often

than 0.5 per cent in the datasets (see the electronic sup-

plementary material for further networks). Consequently,

nearly the entire aggregated mobility network of a

population can be constructed with these motifs.

In figure 3, the motifs obtained from Chicago and Paris

surveys, mobile phone data from Paris, and our proposed

model are compared. They are ordered by their size and

their frequency of occurrence. Although the data sources

cover different cities from different countries, the frequencies

to observe a specific motif behave similarly. We can suppose
that the extracted motifs are general daily mobility character-

istics that can be further used to model and simulate urban

activity. The most common motif (ID 2) consists of two vis-

ited locations and two trips among them, followed by a

motif with only a single location (ID 1). The next likely

motifs are three locations with four trips, all starting and

ending at the same location (ID 3), or with one round trip

(ID 4). Interestingly, in none of the datasets is a motif with

size N and more than N þ 2 trips observed.

All motifs have at most one ‘central’ location, defined as a

node with more than two directed edges, except the motifs

with ID 5 and ID 9. This central node is the origin for a

tour T(x), a trip visiting x other locations before returning

to the origin with x , N. The presence of a unique central

node ensures that the edges of the motifs belong to exactly

one tour. Hence, multiple trips along the same directed

edge are suppressed, and the entire motifs are composed of

a single Eulerian cycle: it is possible to visit all edges exactly

once and this path ends at the starting node.

The motifs can be classified by four rules:

(I) T(1) and T(N 2 2)

(II) T(N 2 1)

(III) T(1), T(1) and T(N 2 3)

(IV) T(2) and T(N 2 3)

The rule that describes each motif is written on the top of

figure 3. If a rule leads to a motif with a tour T(x) visiting a

negative number of nodes x , 0, then the motif is forbidden.

By contrast, if a rule leads to a tour visiting no nodes, then

only this tour T(0) is ignored. For a given number of locations

N, the likelihood of observing a motif is related to the rule

number; thus the most likely motif can be described with the

first rule. For N � 6, the upper limit of daily tours is three;

thus the larger the size of the motif the more trips within a

tour. Furthermore, we have found that the most common

daily networks with more than six locations also follow

these rules (see the electronic supplementary material).
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Figure 4. Daily human mobility patterns are stable over several months. The
values, calculated by equation (2.3), show how more or less likely a motif is
found during the observation period of six months under the condition that
the individual has a given motif on another day. Positive values (yellow to
red colours) indicate that these motifs are more likely than expected and
negative values (cyan to blue colours) that these motifs are suppressed.
The probability to find the same daily motif during another day is signifi-
cantly larger compared with the randomized dataset. Additionally, active
users, which visit more than four locations per day, seem to be active
over time, whereas inactive users remain inactive. The emerging patterns
of transitions between active motifs could be explained by the similarity
of motifs. While transitions between motifs of group II are preferred, tran-
sitions between groups II and III are suppressed, because the number of
tours is most different. As a guide to the eye, motifs with the same
number of locations are marked with boxes.
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Previous results on human predictability [13], as shown in

the trajectories in figure 1, suggest that each individual has a

typical daily motif; thus, the observed motifs are similar over

several days. To verify this stability, the correlations between

motifs of individual users are studied based on phone data,

because our surveys provide only information for up to

2 days. The observed sequence is compared with the

sequence of an average user based on the distribution from

figure 3. In figure 4, the correlations are shown:

Cij ¼

NðiÞNð jÞ
NrðiÞNrð jÞ

� 1; for
NðiÞNð jÞ

NrðiÞNrð jÞ
. 1

1�NrðiÞNrð jÞ
NðiÞNð jÞ ; for

NðiÞNð jÞ
NrðiÞNrð jÞ

� 1;

8>><
>>: ð2:3Þ

with the observed N(i) and average Nr(i) number of motifs

with ID i. First, the highest correlation of each motif is the

self-correlation Cii which is usually 10–30 times more likely

than expected by selecting individual motifs according to

the observed distribution. Second, the likelihood to find a

motif with similar number of visited places with small vari-

ations (+2 locations) behaves like the average, but for

higher differences, the probability is significantly suppressed.

Additionally, active users N . 4 seem to be active during the

entire observational period, because they have significantly

higher probability to visit any motif with N . 4. Interestingly,

within the blocks of motifs with size four, five and six some

correlations are suppressed or enhanced. We observe that the

correlations are enhanced if both motifs follow the same rule

with different number of visited locations N, for example vis-

iting all locations within one tour. By contrast, the correlations
are suppressed if the motifs are less similar, i.e. if the number

of tours differs by more than one. In fact, this is observed for

motifs created according to rules (II) and (III).

In general, motifs may not be unique, because a person

may repeat a tour several times within a day. However, the

repetition of tours is uncommon; thus, an edge corresponds

to exactly one trip. In the survey data, the observed motifs

without multiple trips are sufficient to reproduce over

95 per cent of the travel behaviour correctly and we observe

that tours T(x) with x . 1 are performed only once during

a day (for details see the electronic supplementary material).

These observations imply that each person has a charac-

teristic daily motif although the visited locations can

change. Thus, a user has a personal number of preferred

places on a daily basis, which are most likely visited in a

specific sequence given by its characteristic motif.
3. Perturbation-based model
It is surprising that nearly the entire population can be

described with a few unique daily motifs. To understand

this observation, we study the time spent at certain locations

as well as the time between the starting time of an activity

and the next activity of the same kind.

From both surveys, the frequency of staying at a place for

a particular time period is extracted for three groups of activi-

ties, home, work and other, as shown in figure 5a. The time

spent for working and staying at home is relatively flat dis-

tributed with some characteristic durations of 3.5 and 8.6 at

work and 14 h at home. By contrast, the probability of an

activity at another place decreases with its duration. This

staying-time distribution has no characteristic duration,

suggesting that the location changes are not distributed

evenly over time, but in groups interspersed with periods

of inactivity. To support this observation, we study the time

between two similar activities, shown in figure 5b. While

the time based on home and work is governed by the daily

routines, the time between other locations follows a broad

distribution. Such short inter-event time dynamics has been

reported in specific human activities such as Web browsing,

printing patterns, e-mail and phone communication

[26–37], but it has not been incorporated in models of

human mobility. Inspired by these observations, we developed

a perturbation-based model, to reproduce not only the

observed daily motifs, but also their frequency of occurrence.

In the following, the model for a non-working (NW)

agent is explained and additional, minor features for working

(W) agents are described in the electronic supplementary

material. Accounting for the difference of home and other

locations, the model assumes a fixed activity at home and

any number of flexible activities elsewhere (shopping, recrea-

tion, etc.). Agents prefer staying at home and perform other

activities as a kind of perturbation only; thus they return

home after finishing a flexible activity, if they have no other

flexible activity scheduled. On the other hand, when people

are already perturbed, it is more likely that they perform

another flexible activity afterwards (e.g. after having dinner

in the city, visiting a nearby bar).

In the model, the day is divided into K ¼ 48 30-min inter-

vals. The actual number of discrete time slots is insignificant

as long as it is larger than the maximal number of visited

locations K . 20. For each of these time slots, the agent
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receives a task with the corresponding time-dependent prob-

ability pNW(t), and assigns it to the next free time slot.

Initially, all time slots are free, besides a 9 h sleeping period

during night. Because most tasks occur and are executed

during daytime, we use the simple assumption that the prob-

ability to receive a task is related to the circadian daily

rhythm. This rhythm is approximated by the normalized

phone activity p(t) of the entire population as shown in

figure 6b:
Ð 24 h

0 h pðtÞdt ¼ gNW with the parameter gNW (see

the electronic supplementary material). The most important

ingredient for modelling the observed motifs from surveys

and phone data is the assumption that after receiving
a task pNW(t) ¼ p(t), the probability to get another task

pNW(t þ 1) ¼ ap(t þ 1) for the next time slot is significantly

higher, a . 1, as shown in figure 6c. For the sake of simplicity,

we increase the probability by one order of magnitude a ¼ 10.

This ensures that the inter-event time distribution of flexible

activities is dominated by short times as observed in figure

5b and generates the daily tours. In figure 6a–d, an example

of modelling a NW agent is shown. The peaks in pNW(t) in

figure 6c correspond to activities outside home.

Note that the model has no assumptions about the

locations of the individual tasks, their number or the

number of trips. Only the average number of different visited
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locations is controlled by the parameter gNW, and the fraction

of working and NW agents is preset. However, this is suffi-

cient to reproduce the overall behaviour of the data as

shown in figures 2, 3 and 5. Additionally, the model also

reproduces the fraction of trips between home, work and

other locations with an absolute error of at most 2 per cent

(see the electronic supplementary material).

The model can be treated analytically by mapping it on a

coin flipping or independent non-identical Bernoulli trials

problem, with the reasonable assumption of only two differ-

ent probabilities p1 ¼ kpðtÞl and p2¼ 10p1 instead of a

time-dependent variable (figure 6c). A person, having K
free time slots, flips a coin to change the location in the

next slot. A success H leads to stay at home or return

home, whereas failures T lead to the exploration of new

locations. The coin flipping occurs with different probabilities

dependent on the current state:

H�!
p1

T;

H �!
1�p1

H;

T�!
p2

T

and T �!
1�p2

H:

By applying the modified finite Markov chain embedding

technique [38] for independent non-identical Bernoulli trials,

the probability for the number N of locations visited during a

day or equivalently the number of successes P(N ) after K
Bernoulli trials can be written as

P(N) ¼ j0

YK
t¼1

Lt

 !
U
0 ðCNÞ; ð3:1Þ

with j0 being an initial condition vector in the state space of

the corresponding Markov chain, Lt the transition probability

matrix, and U
0 ðCNÞ a transposed vector corresponding to the

subspace with N successes (for details see the electronic

supplementary material). As one can see in figure 2, this

simple coin flipping model can reproduce the empirical

findings very well.

To confirm that the assumption a�1 is the key to get the

broad distribution of the number of daily visited locations,

we show in figure 6e the analytical results for three different

models: one with two kinds of agents, one with only non-

workers and one with only one probability a ¼ 1. While the

presence of two kinds of agents has a minor impact on the

overall motifs and their size distribution, the removal of the

perturbation ( p2¼ p1) changes the results from an approxi-

mately log-normal size distribution, to a binomial size

distribution. Moreover, not only the motif distribution

changes, but different motifs which are not present in the

surveys, mostly star-like ones, emerge. Therefore, the ‘per-

turbed’ behaviour p2¼ 10p1 is the crucial ingredient to

reproduce daily mobility.
4. Final remarks
Advances in transforming large data into meaningful infor-

mation are essential to improve our understanding of socio-

technical systems. In our study, we contribute to this end by

analysing networks of daily trips obtained from individuals’

surveys and anonymized mobile phone data. We found that

both travel surveys and phone traces from two different
cities reveal the same set of ubiquitous networks that we

called motifs. We can suppose that these motifs are general

human mobility characteristics that can be further used to

model and simulate urban activity. Besides, we found that per-

turbed states with periods of high activity followed by periods

of low activity is the indispensable ingredient to correctly

reproduce those motifs. We remark that owing to the limited

observation period of at most 2 days in our survey, the ques-

tion whether a heavy tail occurs in the inter-event time

distribution in figure 5b remains open.

Our model successfully reproduces the frequency of visit-

ing different locations and the occurrence rate of the motifs,

but it is designed for a single day and therefore it does not

incorporate the correlations of motifs between different

days. The model captures main characteristics of the duration

spent at home by assuming fixed duration for the other activi-

ties. The model’s inter-event time distributions share some

common features with the data, but owing to the duration

differences as well as the restriction to a single day it

cannot accurately reproduce the observed distributions (see

the electronic supplementary material).

The future avenues for related research are diverse.

Understanding daily routines promises a better assessment

of planning and control, which is the core interest of urban

and epidemiological applications. Our findings reduce the

dimensionality of choices in agent-based modelling helping

to enhance current urban simulators (http://www.matsim.

org/, http://code.google.com/p/transims/). In epidemic

spreading, usually only up to three locations, daily visited

by a host, are considered in modelling contagious dynamics

[39–42]. Thus, our presented insights can straightforwardly

extend mobility in current epidemiological models.
5. Material and methods
To identify motifs, we use three different datasets: a survey and

mobile phone billing data from Paris and a survey from Chicago

(http://www.cmap.illinois.gov/travel-tracker-survey). In the

surveys, 23 764 and 23 429 weekdays of people were selected in

such a way that the data are representative for the entire popula-

tion of Chicago and Paris, respectively. In the Chicago survey,

each participant answered a questionnaire with his/her activity

information for one or two entire days, containing the following

information: weekday, duration, location, reason for and mode of

trip. With this information, it is possible to reproduce the entire

daily activity patterns of the anonymous individuals. The Paris

survey has the same information, but instead of geographical

locations only the trip lengths are provided. Because weekday

and weekend behaviour can be rather different, we focus in

this study only on weekdays.

From phone billing data of millions of mobile phone users, the

extraction of relevant information needs preprocessing. The phone

company provides information about the incoming and outgoing

calls and short-message services. Thus, we have locations of the

operating towers, time of the events and user identification num-

bers. With this information, we reconstruct daily mobility

networks of the users during a six month period. The main chal-

lenge is converting call information into the corresponding

mobility profile of a user. Therefore, only the 39 820 most active

users are investigated according the following scheme (the rules

are visualized in the electronic supplementary material, figures

S1 and S2):

— the day, starting at 03.00, is divided into 48, 30-min slots for

each of the 154 days;

http://www.matsim.org/
http://www.matsim.org/
http://www.matsim.org/
http://code.google.com/p/transims/
http://code.google.com/p/transims/
http://www.cmap.illinois.gov/travel-tracker-survey
http://www.cmap.illinois.gov/travel-tracker-survey
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— to remove towers which are only used during travel, all

towers which are less frequently visited than a certain

threshold are ignored; in this study, less than 0.5 per cent

during the entire observational period;

— to eliminate signal transitions between neighbouring towers,

these towers are merged for one day, if more than three back

and forward transitions between them are recorded during a

single day;

— to remove towers used during travel on daily basis, records

are taken into account only if the next records have the

same tower location;

— to identify an activity location, only the most frequently

observed location during each time slot is assigned as an

activity location for this time slot;

— a day is discarded, if less than a certain number (in this case

eight) of time slots exhibit location information. Too small a

number would favour smaller motifs, whereas too large a

threshold would exclude too many individuals. The results

are stable for different threshold values;
— to overcome the small number of night calls, the location

which is visited most frequently during all nights between

24.00 and 06.00 of a single user is assigned as the user’s

home location; in our survey this assumption correctly ident-

ifies over 98 per cent of the home locations for a single day.

User starts and finishes its day at home, if the user has no

other information in the corresponding night-time slots at

03.00 and 03.30; and

— based on the activity locations for each time slot, the motifs

shown in figure 3 are constructed for weekdays only.

We have published Cþþ code of our proposed model, the algor-

ithms how to identify motifs and simulated data to test all

algorithms on our website at http://humnetlab.mit.edu/

downloads.

V.B. gratefully acknowledges the financial support by the Volkswa-
gen Foundation. This work was funded by New England UTC
Year 23 grant, awards from NEC Corporation Fund, the Solomon
Buchsbaum Research Fund.
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