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ABSTRACT

Motivation: Approaches for testing sets of variants, such as a set of

rare or common variants within a gene or pathway, for association with

complex traits are important. In particular, set tests allow for aggre-

gation of weak signal within a set, can capture interplay among vari-

ants and reduce the burden of multiple hypothesis testing. Until now,

these approaches did not address confounding by family relatedness

and population structure, a problem that is becoming more important

as larger datasets are used to increase power.

Results: We introduce a new approach for set tests that handles

confounders. Our model is based on the linear mixed model and

uses two random effects—one to capture the set association signal

and one to capture confounders. We also introduce a computational

speedup for two random-effects models that makes this approach

feasible even for extremely large cohorts. Using this model with both

the likelihood ratio test and score test, we find that the former yields

more power while controlling type I error. Application of our approach

to richly structured Genetic Analysis Workshop 14 data demonstrates

that our method successfully corrects for population structure and

family relatedness, whereas application of our method to a 15 000

individual Crohn’s disease case–control cohort demonstrates that it

additionally recovers genes not recoverable by univariate analysis.

Availability: A Python-based library implementing our approach is

available at http://mscompbio.codeplex.com.
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1 INTRODUCTION

Traditional genome-wide association studies (GWAS) test one

single nucleotide polymorphism (SNP) at a time for association

with disease, overlooking interplay between SNPs within a gene

or pathway, missing weak signal that aggregates in sets of related

SNPs and incurring a severe penalty for multiple testing. More

recently, sets of SNPs have been tested jointly in a gene-set

enrichment style approach (Holden et al., 2008) and also in

seeking association between rare variants within a gene and

disease (Bansal et al., 2010; Wu et al., 2011). As next-generation

sequencing rapidly becomes the norm, these set-based tests, com-

plementary to single SNP tests, will become increasingly import-

ant. However, existing methods for testing sets of SNPs do not

handle confounding such as arises when related individuals or

those of diverse ethnic backgrounds are included in the study.

Such confounders, when not accounted for, result in loss of

power and spurious associations (Balding, 2006; Price et al.,

2010). Yet, it is precisely these richly structured cohorts that

yield the most power for discovery of the genetic underpinnings

of complex traits. Moreover, such structure typically presents

itself as data cohorts become larger and larger to enable the

discovery of weak signals.
In this article, we introduce a new, powerful and computation-

ally efficient likelihood ratio-based set test that accounts for rich

confounding structure. We demonstrate control of type I error as

well as improved power over the more traditionally used score

test. Finally, we demonstrate application of our approach to two

real GWAS datasets. Both datasets showed evidence of spurious

association owing to confounders in an uncorrected analysis,

whereas application of our set test corrected for confounders

and uncovered signal not recovered by univariate analysis.

Finally, our test is extremely computationally efficient owing to

development of a new linear mixed model (LMM) algorithm

also presented herein, which makes possible, for example, set

analysis of the 15000 individual Wellcome Trust Case Control

Consortium (WTCCC) data.

Several approaches have been used to jointly test sets of SNPs:

post hoc, gene-set enrichment in which univariate P-values are

aggregated (Holden et al., 2008), operator-based aggregation

such as ‘collapsing’ of SNP values (Braun and Buetow, 2011;

Li and Leal, 2008), multivariate regression, typically penalized

(Malo et al., 2008; Schwender et al., 2011) and variance compo-

nent (also called kernel) models such as a LMMs (Quon et al.,

2013; Wu et al., 2010, 2011).
Our approach is based on the LMM, which can equivalently

be viewed as a multivariate regression. In particular, use of a

LMM with a specific form of genetic similarity matrix is equiva-

lent to regressing those SNPs used to estimate genetic similarity

on the phenotype (Hayes et al., 2009; Listgarten et al., 2012). If

one uses only SNPs to be tested in the similarity matrix as in

Wu et al. (2010, 2011), then one is effectively performing a multi-

variate regression test. However, by also using SNPs that tag

confounders in a separate similarity matrix, our model can

additionally correct for confounders, as has been done in a
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single-SNP test GWAS setting (Kang et al., 2010; Lippert et al.,

2011; Listgarten et al., 2012; Yu et al., 2006). Finally, our ap-

proach allows one to condition on other causal SNPs, by way of

the similarity matrix, for increased power, again, as has been

done in single-SNP test setting (Atwell et al., 2010; Listgarten

et al., 2012; Segura et al., 2012).
The use of LMMs to correct for confounders in GWAS is now

widely accepted because this approach has been shown capable

of correcting for several forms of genetic relatedness such as

population structure and family relatedness (Astle and Balding,

2009; Kang et al., 2010; Price et al., 2010; Yu et al., 2006).

Independently, the use of LMMs to jointly test rare variants

has become prevalent (Wu et al., 2010, 2011). In our new ap-

proach, we marry the aforementioned uses of LMMs to perform

set tests in the presence of confounders within a single, robust

and well-defined statistical model.
Because of the aforementioned equivalence, our approach can

also be viewed as a form of linear regression with two distinct

sets of covariates. The first set of covariates consists of SNPs that

correct for confounders (and other causal SNPs), i.e. those that

predict race and relatedness, for example. Inclusion of these SNP

covariates makes the data for individuals independently and

identically distributed (i.e. knowing the value of these SNPs in-

duces a common distribution from which the individuals are

drawn). The second set of covariates consists of SNPs for a

given set of interest, such as those SNPs belonging to a gene.

We call our approach FaST-LMM-Set.
Computing the likelihood for our model—an LMM with two

random effects—is, naively, extremely expensive, as it scales cu-

bically with the number of individuals (e.g. Listgarten et al.,

2010). For example, on the 15 000 individual WTCCC dataset

we analyse, currently available algorithms would need to com-

pute and store in memory genetic similarity matrices of dimen-

sion 15 000� 15 000 and repeatedly perform cubic operations on

them to test just a single set of SNPs—a practically infeasible

approach. However, extending our previous work that made

LMMs with a single random effect linear in the number of indi-

viduals (Lippert et al., 2011) to the two-variance component

model needed here, we bypass this computational bottleneck,

yielding a new two-random-effects algorithm, which is linear in

the number of individuals. This advance enables us to analyse

datasets, which could not otherwise be practically analysed, such

as the 15 000 individual WTCCC cohort (The Wellcome Trust

Case Control, 2007). As a case in point, using the naı̈ve cubic

approach to test the gene set IL23R (containing 14 SNPs) took

13 h as compared with 1 min for our new approach (all on a

single processor), demonstrating a speedup factor of 780 (and

significantly less memory usage because the genetic similarity

matrix need never be computed with our approach).

2 METHODS

Let Nðvju;RÞ denote a multivariate Normal distribution in v with mean u

and covariance matrix D. The log likelihood of a one-variance-compo-

nent LMM in the linear regression view is given by

LL � log

Z
N yjXbþ

1
p
s
Vw; �2e I

� �
�N wj0; �2gI
� �

dw,

where y is a 1�N vector of phenotype values for N individuals; b is the

set of the fixed effects of the covariates stored in the design matrix X; I is

an N�N identity matrix; �2e is the residual variance in the regression; w

are the 1�N random effects for the SNPs stored in the design matrix

V (dimension N� s), and N wj0; �2gI
� �

is the distribution for the

weight parameters. That is, the random regression weights, w are margin-

alized over independent Normal distributions with equal variance �2g .

Equivalently, and more typically, the log likelihood is written with

random effects marginalized out,

LL ¼ logN yjXb; �2e Iþ �
2
gK

� �
,

where the genetic similarity (called the kernel in some contexts), K, is

given by K¼1
s VV

T, as is the case, for example, when K is the realized

relationship matrix (Hayes et al., 2009; Lippert et al., 2011). Given this

equivalence, the SNPs used to estimate genetic similarity (those in V) can

be interpreted as a set of covariates in the regression.

In our model, we partition the random effects into two sets: one set of

random effects, wC (with design matrix VC), is used to correct for con-

founders (and condition on causal SNPs) using sc SNPs, whereas the

other set, wS, is used to test the ss SNPs of interest in the corresponding

design matrix, VS. The log likelihood (in the linear regression view) is

then written

LL ¼ log

ZZ
N yjXbþ

VC
p
sc
wC þ

VS
p
ss
wS; �2e I

� �

�N wCj0; �2CI
� �

N wSj0; �2SI
� �

dwCdwS,

where each set of random effects has a separate variance (�2C and �2S).

Again, we can equivalently write this in the marginalized form,

LL ¼ logN yjXb; �2e Iþ
�2C
sc

VCV
T
C þ

�2S
ss

VSV
T
S

� �
:

For convenience, we re-parameterize this as

LL ¼ logN yjXb; �2e Iþ �
2
g ½ 1� �ð ÞKC þ �KS�

� �
, ð1Þ

where now the covariance matrix, K, has been partitioned into two vari-

ance components:

K � ð1� �ÞKC þ �KS,

using KC �
1
sc
VCV

T
C (VC is of dimension N� sc) to account for con-

founders and KS �
1
ss
VSV

T
S (VS is of dimension N� sS) to model

signal from a pre-defined set of SNPs of interest, such as those within

a gene. The scalar parameter � 2 ½0, 1� is estimated from the data by, for

example, restricted maximum likelihood. The null model for our set test is

given by � ¼ 0, whereas the alternative model allows 1� �� 0.

Until lately, estimating the parameters and computing the likelihood of

a LMM was cubic in the number of individuals. However, we have re-

cently shown that when the number of SNPs used to estimate genetic

similarity, s, is less than the cohort size, N, and when genetic similarity

matrix, K, factors as VVT (V of dimension N� s), then the computations

(and memory requirement) become linear in N (Lippert et al., 2011). So

far this result has been applied in the context of correcting for confoun-

ders in a univariate GWAS with just a single variance component.

Originally the s SNPs for inclusion in V were obtained by sampling

SNPs genome-wide and relying on linkage disequilibrium (Lippert

et al., 2011). However, in light of the equivalence with linear regression,

it became clear that one should choose the SNPs with feature selection as

one would do in any statistical modelling problem (Lippert et al., 2013b;

Listgarten et al., 2012, 2013). For example, one can do an uncorrected

univariate scan of the SNPs to select those which should be used to

correct for confounders (and causal SNPs to condition on), and this is

precisely the approach we take here, just as in (Lippert et al., 2013b;

Listgarten et al., 2012).
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Thus, in our approach, we select sc SNPs for KC by first sorting all

available SNPs according to their univariate linear-regression P-values (in

increasing order) and then evaluate the use of more and more SNPs in

order until we find an optimal number of SNPs (Listgarten et al., 2012).

This resulted in 650 and 310 SNPs for the Genetic Analysis Workshop 14

(GAW14) and Crohn’s analyses, respectively. Additionally, any SNPs

that were being tested (i.e. those in VS), and those within 2 centimorgans,

were removed from VC so as not to contaminate the null model

(Listgarten et al., 2012). This type of approach for correction of confoun-

ders in univariate tests has previously been demonstrated to work well on

a broad range of datasets (Listgarten et al., 2012). The same conclusions

apply for a variant of this approach using out-of-sample prediction

(Lippert et al., 2013b).

For estimation of variance parameters and computation of the likeli-

hood ratio test (LRT) statistic, we use restricted maximum likelihood,

which is itself a valid likelihood for the LRT and can be computed in the

same time and memory complexity as the (unrestricted) likelihood.

Details on efficient parameter estimation are provided in (Lippert et al.,

2011).

When testing sets in an uncorrected manner, that is, without account-

ing for confounders (which we did for comparison purposes), we omitted

the portion of the variance that corrected for confounders, KC. In par-

ticular, we set � ¼ 1 and tested the significance of �2g with the same LRT

described next.

2.1 P-value computation

We have now fully specified our model for doing set tests when confoun-

ders are present. To obtain a P-value on the set of SNPs of interest, such

as those belonging to a gene (i.e. those in VS), we use an LRT. In par-

ticular, to test the significance of the set of SNPs of interest, we compare

the maximum restricted likelihood of the data with and without the set of

SNPs of interest, that is, the maximum restricted likelihood of the alter-

native and null models. More formally, our null hypothesis is given by

H0 :� ¼ 0, whereas our alternative hypothesis is given by Ha : 1 � � � 0.

To obtain calibrated P-values, we require an accurate estimate of the

distribution of statistics under the null hypothesis. However, obtaining a

sufficiently accurate estimate of this distribution is not straight-forward.

Standard software uses a parametric form for this distribution of

0:5�2o : 0:5�21—a 50–50 mixture of two �2 distributions, the first with

zero degrees of freedom and the other with one degree of freedom. The

former accounts for the fact that the tested parameter is on the boundary

of the allowed space in the null model (Dominicus et al., 2006; Self and

Liang, 1987)—that is, to account for the fact that � ¼ 0 in the null model

and 1 � � � 0 in the alternative. The necessary regularity conditions for

this null distribution to hold, include that the outcome variable can be

partitioned into a large number of identically and independently distrib-

uted sub-vectors (Greven et al., 2008)—conditions that are not generally

met in our setting because individuals may be arbitrarily related to one

another. It has been shown that when the regularity conditions are not

met, the 0:5�2o : 0:5�21 distribution yields conservative P-values (Greven

et al., 2008) because the mixing weight on the �2o component is too low at

50%. We have also found this to be the case in our setting (Table 1).

Although one might consider use of a parametric bootstrap to estimate

the null distribution, (e.g. Greven et al., 2008), such an approach dramat-

ically increases the running time over computation of the test statistics

themselves because of the extremely large number of bootstrap test stat-

istics needed. Yet, another alternative is to use an empirical distribution

based on permutations, which faces a similar problem. However, one can

use many fewer permutations by instead assuming a parametric form of

the null distribution and then fitting the few required parameters to the

test statistics generated from the permutations (Lee et al., 2012b). It is

such an approach that we take here. This approach assumes that the null

distribution of test statistics is the same across all tests, an assumption

that has also been made in the small sample correction in SKAT-O and

elsewhere (Greven, 2007; Greven et al., 2008; Lee et al., 2012b).

The parametric form of the null distribution that we assume, and to

which we fit null distribution test statistics to, is inspired by (Greven,

2007; Greven et al., 2008), who reported that a mixture of �2o and a�21,

where a is the scaling parameter for the scaled chi-square distribution,

yielded good type I control when testing a variance component in a

single-component LMM. We use the same parametric form of the null

distribution, except, to gain additional flexibility for the two-component

LMM, we allow the degrees of freedom on the second component, d, to

be different from 1 (finding this to be useful in the sense that we estimate

d 6¼ 1). That is, we use the null distribution, ��2o : ð1� �Þa�2d with free

parameters �, a and d. Using this distributional form, we found that a fit

of the free parameters to the (full collection of test) statistics yielded P-

values that were too liberal in the tail (Table 1). Thus, we instead fit our

parametric parameters using only the most significant tail of the null

distribution of test statistics—in particular, the top 10% of null test stat-

istics (In our experiments with just a single variance component, P-values

were also liberal in the tail—those for which P5 0.05. This regime was

not examined by Greven et al.).

We now describe the details of our approach for estimating the free

parameters, �, a and d, of this null distribution. To generate a single null

test statistic for a set, we permuted the individuals for only the SNPs in

that set. Because we do not permute the SNPs (rather, the individuals),

the pattern of linkage disequilibrium between the SNPs within a single

test remains intact. Although we permute the individuals, who are not

(generally) identically and independently distributed, we do so only for

the SNPs in the test set, leaving any confounding signal among the cov-

ariates, the confounding SNPs and the phenotype intact. We found that

null distribution parameter estimates stabilized with the use of 10 permu-

tations per test (for both WTCCC and GAW14). Thus, our procedure

has a runtime roughly a factor of 10 larger than if we had not needed

permutations. Within a gene, we use the same permutation for all SNPs,

and we used the same 10 permutations across all sets.

Given this permutation-generated sample of test statistics from the null

distribution, we fit the parameters �, a and d as follows. The �2o distri-

bution is a Dirac delta function at 0—that is, this component of the null

distribution yields only test statistics of 0, and correspondingly P ¼ 1.

Furthermore, the �2d40 yields a test statistic of 0 with measure zero.

Consequently, one can obtain good estimates of the parameters simply

by assuming that precisely those tests with variance parameter estimate

� ¼ 0 belong to the �2o component, and then estimating � as the propor-

tion of tests belonging to this component. We then estimate a and d

directly from the non-zero test statistics (those likely to belong to the

a�2d component) using a regression in which these parameters are adjusted

such that resulting LRT P-values have the least squared error with the

theoretical P-values (derived conditionally on an estimate of �).

Specifically, we use the log P-value squared error and only use the smal-

lest 10% of P-values in the regression. This truncated regression ap-

proach consistently yielded calibrated quantile–quantile plots (Fig. 1)

Table 1. Type I error estimates for FaST-LMM-Set using one million

tests across various levels of significance, �

Significance level � ¼ 10�5 � ¼ 10�4 � ¼ 10�3

Fast-LMM-set 1� 10�5 1:21� 10�4 1:01� 10�3

Non-truncated ML 2� 10�5 * 1:83� 10�4 * 1:26� 10�3 *

0:5�2o : 0:5�21 5� 10�6 4� 10�5 * 4:55� 10�4 *

The first row shows results for our LRT-based method; the second row (‘non-

truncated ML’) shows results when fitting the null distribution parameters using

maximum likelihood with all test statistics; the third row shows results using a

0:5�2o : 0:5�21 null distribution. Results significantly different from expected accord-

ing to the binomial test (P5 0.05) are denoted with an asterisk.
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and also controlled type I error (Table 1). Furthermore, it yielded better

power than the score test (Table 2).

In summary, our overall approach is as follows: (i) for each set to be

tested, permute the individuals of the SNPs belonging to this set, all in the

same manner; (ii) compute the restricted LRT statistic for this permuted

data to obtain a test statistic from the null distribution; (iii) repeat step 1

ten times; (iv) estimate the proportion of test statistics drawn from the �2o
component, �̂, as the proportion of tests in which the parameter � ¼ 0; (v)

use the largest 10% of test statistics to perform a regression to fit the a�21
component—that is, find â and d̂, which minimize the squared error of

the log10 P-values with their theoretical values [uniform distribution on

(�̂, 1)]; and (vi) compute the test statistic for all sets (non-permuted data)

and then compute the corresponding P-values for these using the null

distribution �̂�2o : ð1� �̂Þâ�2
d̂
.

In application to real data (described next), our procedure yielded

� ¼ 0:641, a ¼ 2:29, d ¼0.961, on the GAW14 data, and � ¼ 0:643,

a¼ 1.41, d ¼ 0:85 on the WTCCC data.

2.2 Datasets and other methods

The first dataset was obtained from the GAW14 (Edenberg et al., 2005).

It consisted of autosomal SNP data from an Affymetrix SNP panel and a

phenotype indicating whether an individual smoked a pack of cigarettes a

day or more for 6 months or more. The cohort included over eight

ethnicities and numerous close family members—1034 individuals in

the dataset had parents, children or siblings also in the dataset. In add-

ition to the curation provided by GAW, we excluded a SNP when either

(i) its minor allele frequency was50.05, (ii) its values were missing in

410% of the population or (iii) its allele frequencies were not in Hardy–

Weinberg equilibrium (P50.001). In addition, we excluded an individual

when410% of SNP values were missing. After filtering, there were 7579

SNPs across 1261 individuals.

The second dataset comprised the WTCCC 1 data and consisted of

SNP and phenotype data for seven common diseases: bipolar disorder,

coronary artery disease, hypertension, Crohn’s disease, rheumatoid

arthritis, type-I diabetes and type-II diabetes (The Wellcome Trust

Case Control, 2007). Each phenotype set contained �1900 individuals.

In addition, the data included a set of �1500 controls from the UK

Blood Service Control Group (NBS). The data did not include a

second control group from the 1958 British Birth Cohort (58C), as

restrictions on it precluded use by a commercial organization. Our

analysis for the Crohn’s phenotype used data from the NBS group

and the remaining six phenotypes as controls (Lippert et al., 2013a).

We filtered SNPs as described by the WTCCC (Laaksovirta et al.,

2010) and additionally excluded an SNP if either its minor-allele fre-

quency was51%, it was missing in 41% of individuals or its genetic

distance was unknown. After filtering, 356 441SNPs remained. Unlike

the approach used by the WTCCC, we included non-white individuals

and close family members to increase the potential for confounding

and thereby better exercise the LMM. In total, there were 14925 in-

dividuals across the seven phenotypes and control, as in our previous

work (Lippert et al., 2011; Lippert et al., 2013a; Listgarten et al.,

2012). We concentrated our evaluations on Crohn’s disease, as infla-

tion for this phenotype was greatest with an uncorrected univariate

analysis.

For the WTCCC data, we grouped SNPs into gene sets using gene

positions provided on the USCSC Genome Browser (http://genome.ucsc.

edu/) (Dreszer et al., 2012; Kent et al., 2002) using build hg19 (we also

converted the original WTCCC annotations to this build), which yielded

13 850gene sets. Because the GAW14 SNPs mapped to only 251 non-

singleton gene sets with this strategy, we instead formed sets for this

dataset by using overlapping 1 centimorgan windows, yielding 2157

sets. For WTCCC, the set sizes ranged from 1 to 748, with a mean

value of 11 and a standard deviation of 24. For the GAW14 data, the

set sizes ranged from 2 to 38, with a mean value of 5 and a standard

deviation of 4. More generally, this approach of forming sets from win-

dows of nearby SNPs along the genome could be used to map an entire

genome into sets, even when the SNPs do not lie in genes. However, it is

not our goal here to evaluate different ways in which one might group

SNPs, but instead to demonstrate that we can test sets of SNPs in the

presence of confounders.

All analyses assumed additive effects of a SNP on phenotype, using a

0/1/2 encoding for each SNP (indicating the number of minor alleles for

an individual). Missing SNP data were mean imputed. Multiple testing

was accounted for with a Bonferroni correction.

In counting hits for Crohn’s disease (Table 4), we omitted any

genes found in the major histocompatibility complex (MHC) region

because this region is complicated by long-range linkage disequilibrium.

We used positions 29–34Mb on chromosome 6 as the boundaries of the

MHC, as suggested by the MHC-sequencing consortium (Pereyra et al.,

2010).

2.3 Experimental setup to assess control of type I error

and power

We used synthetic data based on the real WTCCC data to assess the

quality of our new method, as well as to compare it against a score
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O
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Fig. 1. Quantile–quantile plot of observed and expected log10 P-values on

the null-only WTCCC datasets (same data as used for Table 1) for FaST-

LMM-Set. Dashed red error bars denote the 99% confidence interval

around the solid red diagonal. Points shown are for null-only data (gen-

erated by permuting individuals in the SNPs to be tested—see Section 2)

and only for the non-unity P-values (those assumed to belong to the non-

zero degree of freedom component of the null distribution). The portion

of the expected distribution of P-values shown is uniform on the interval

[�̂,1], where �̂ is the estimated mixing weight in the null distribution

Table 2. Power experiments

� LRT score P-value

3:6� 10�6 44 26 0.03

10�5 60 39 0.03

10�4 172 138 0.05

10�3 556 509 0.14

10�2 2419 2195 0.0009

Number of tests with P-values less than �. The last column shows the results of a

binomial test comparing the number of tests found by LRT as compared with the

score test. The first row denotes the Bonferroni threshold for the WTCCC dataset.
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test. In particular, to assess type I error, we used all SNPs from the

WTCCC dataset, and then permuted the individuals for SNPs in each

set tested so as to create null-only test statistics. We permuted the data in

this way a total of 72 times, yielding 997200null test statistics (because

13 850 sets were tested for each dataset). We additionally permuted an-

other 10 datasets to estimate the parameters of the null distribution

(�, a, d) as prescribed by our approach.

For assessment of power, we again used all SNPs from the WTCCC

dataset and then generated synthetic phenotypes using an LMM. To

do so, we first we fit the null model to the real data to obtain

estimates of the parameters �2e and �2g . Then we used the model

pðyÞ ¼ N yj0; �2cKC þ �
2
sKS�

� �
, with confounding variance �2c equal to

estimated environmental noise, �2e ¼ 0:094, and genetic variance, �2s ,

equal to the estimated genetic variance �2g ¼ 0:0125. Furthermore, we

used the same 310 confounding SNPs for KC as used on the real data

while using all 321 839 SNPs further than 2 centimorgans away from

those in KC as the causal SNPs for KS (those contained in the true posi-

tive sets in our power experiments). We generated five phenotypes in this

way. The resulting phenotypes behaved much like the real data in that, on

average, we found 10 Bonferroni-corrected sets on each of five datasets,

as compared with the 23 found on the real data (note that Table 4 does

not include SNPs from the MHC region and therefore shows only 16).

For both type I error and power experiments, we tested the same gene sets

as on the real data, except for power, we did not include any gene sets

containing SNPs in the VC (those SNPs used to correct for confounding)

or within 2 centimorgans of these SNPs, to be sure that the sets were

unambiguously true positives.

When comparing our LRT approach against a score-based test,

we used the same score test as the Sequence Kernel Association

Test (SKAT) (Wu et al., 2011), which uses the Davies method to

compute P-values from the null distribution (but here with our

FaST-LMM-Set model). This score test has previously been shown

to control type I error (Lee et al., 2012b), consistent with our own

findings (not shown).

2.4 Linear-time computations

What remains left to explain is how to achieve the linear-time speedup in

the present setting—the case of two random effects. The crux of the cubic

to linear-time speedup in the single random effect model was to bypass

construction of K and the required spectral decomposition of K by recog-

nizing that one can instead use V and the spectral decomposition of V

(Lippert et al., 2011). We can view the two random-effects model as

a single random effect with covariance K � 1� �ð ÞKC þ �KS. To use

the algebraic speed-up just mentioned, we observed that K ¼ VVT,

where now

V �
1ffiffiffiffi
sc
p VC 1� �ð Þ

1
2;

1
p
ss
VS�

1
2

	 

,

using U;W½ � to denote the side-by-side concatenation of matrices U

and W. So long as s ¼ ss þ sc5N, which was true for all of the

datasets examined here (and almost all others we have analyzed), we

obtained the linear-time computations and memory footprint just as in

Lippert et al. (2011). [One might also consider using low rank update

equations of the type used in Listgarten et al. (2012) to perform ex-

clusion, although we have not yet implemented this.] Finally, to per-

form parameter estimation in this two random-effects model, we used

an approach similar to that reported in Lippert et al. (2011). That is,

we used a 1D Brent search optimization routine to find the value of �,

which maximized the restricted likelihood. For each call to the re-

stricted likelihood for a particular value of �, efficient computations

were performed as in (Lippert et al., 2011), except using the two

random effects.

3 RESULTS

3.1 Type I error and power on synthetic data

First, we examined whether our LRT approach controlled type I

error. As described in Section 2, we generated null-only test stat-

istics by way of permutations on the WTCCC data, obtaining a

total of roughly 1 million test statistics. The type I error was

controlled (Table 1). Neither (1) fitting the null distribution par-

ameters (to all test statistics) by way of maximum likelihood nor

(2) use of a 0:5�2o : 0:5�21 null distribution, yielded calibrated

P-values. The first was liberal, whereas the latter was conserva-

tive (Table 1). Finally, quantile–quantile plots in Figure 1 add-

itionally demonstrates good calibration over the entire range of

P-values from our method, for the same points as in Table 1.

Because the score test we used has already been shown to control

type I error (Lee et al., 2012b), we do not report on it here, but

we did find the same in our own experiments (not shown).
Next, we compared the power of our LRT approach to a score

test approach (both using the same two random effects model)

on synthetic data (see Section 2). Over five synthetic datasets and

a range of significance levels, LRT found significantly more sets

than the score test (Table 2). Furthermore, on the real WTCCC

data, LRT again found significantly more sets (Table 4).

3.2 Application to real data

We investigated our new approach on two datasets. The first was

the GAW14, which included data from over eight ethnicities and

numerous close family members for a total of 1261 individuals.

After filtering, there were 7579 SNPs available for analysis. The

second dataset was from the WTCCC from which we used 14 925

individuals and 356 441 SNPs in our analysis. We used the

Crohn’s phenotypes because this was the one showing the most

confounding in an uncorrected analysis. Unlike the WTCCC

(The Wellcome Trust Case Control, 2007), we included non-

white data for individuals and close family members to increase

power and because the LMM can treat them properly (Astle and

Balding, 2009; Kang et al., 2010; Price et al., 2010).
To judge the degree of confounding due to genetic relatedness,

and to ensure that our LMM approach could sufficiently correct

for confounding, we ran both an uncorrected and corrected uni-

variate analysis on each dataset because this is a well-understood

test that has been reported on before. Here, the extent of test

statistic inflation owing to unmodelled confounders was assessed

using the � statistic, also known as the inflation factor from

genomic control (Devlin and Roeder, 1999). The value � is

defined as the ratio of the median observed to median theoretical

test statistic. Values of � substantially greater than (less than) 1.0

are indicative of inflation (deflation). As can be seen in Table 3,

without correction, the test statistics appear to be inflated.

Although one might consider �GC ¼ 1:08 (seen on the corrected

analysis of WTCCC) as still moderately inflated, it has been

shown that complex, highly polygenic traits lead to increases in

�GC (Yang et al., 2011) in the absence of spurious signal.

Moreover, the WTCCC themselves reported �GC in the range

of 1.08–1.11 on removal of individuals from different races and

related individuals (neither of which we removed), and also on

adjustment with two principal components, suggesting that a �GC
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of 1.08 is the result of polygenic influence (The Wellcome Trust

Case Control, 2007).

Having established that both of our datasets required correc-

tion for confounders and that the LMM with our chosen back-

ground genetic similarity matrix, KS, sufficiently corrected for

confounders, we next applied FaST-LMM-Set, using the same

LMM-correcting component as in the univariate test. The full set

of results is available for all analyses in Supplementary Table S1.

On GAW14, the uncorrected set analysis yielded 241 significant

sets, whereas FaST-LMM-Set, which corrects for confounding,

yielded none. It is thought that this dataset contains little, if any

signal (e.g. based on the univariate analysis). On WTCCC

Crohn’s disease, an uncorrected set analysis yielded 26 significant

sets, whereas FaST-LMM-Set yielded 16 (Table 4). Next, we

investigate these sets in detail.
To validate the significant sets recovered on the WTCCC

Crohn’s phenotype, we used a meta-analysis (Franke et al.,

2010; Listgarten et al., 2012). If a set we found as significant

was within 50 kilobases of a validated SNP/region, we counted

it as a true positive. Additionally, for the genes not validated by

the meta-analysis, we conducted a literature search. Detailed val-

idation results are provided in Supplementary Table S1. Using

our newly developed method, FaST-LMM-Set, we found 16 sig-

nificant gene sets, of which all but one were validated by the

meta-analysis. The remaining gene, SLC24A4, performs a similar

function to the validated gene SLC22A4—both are cation trans-

porters [www.genecards.org (Rebhan et al., 1997)]—suggesting a

promising candidate for follow-up.

3.3 Advantages of set tests over univariate tests

In the course of our analyses, we noticed that some sets with

small P-values had almost no univariate signal in any of the

SNPs. In particular, among the 16 sets in the WTCCC data
supported by either meta-analysis or literature search, six

(C1orf141, SAG, SLC24A4, SLC22A4, TCTA and PTPN2)
were missed by the univariate analysis (i.e. an SNP lying

within 50 kilobases of any of the regions reported by Frank

et al. was not found to be significant). One of the motivations
for doing set analysis is to uncover signals for such regions. The

intuition here is the same as in a univariate conditional GWAS

analysis. That is, conditioning on variables can lead to an in-
crease in power, revealing signal that would be hidden without

the conditioning (Atwell et al., 2010; Segura et al., 2012). Thus,
the set test acts not only to aggregate weak signal but also to

unmask signal hidden by covariates included by virtue of doing a

set test. We investigated one such case in detail. In particular, we
computed the univariate P-values for each of the 15 SNPs asso-

ciated with the gene SLC22A4, marginally, as well as conditioned

on all the other SNPs in this gene, using an LMM to correct for
confounding. This gene was found to be associated with Crohn’s

disease using FaST-LMM-Set with P¼ 7.6 � 10�8. The smallest
marginal univariate P-value was 1:2� 10�5, but when we condi-

tioned on the other SNPs in the set, the smallest conditional

univariate P-value obtained was 7:0� 10�8. This result demon-
strates the increased power afforded by the set test owing to the

interplay of SNPs within the gene that is missed by a univariate

approach.

3.4 Significance of sets is independent of set size

On data with phenotypic association, we expected that there
could be correlation between set size and P-value because with

a larger set, there could be more predictive SNPs and more

power. Furthermore, we expected that when confounders were
not properly accounted for in the set analysis, that the more

SNPs in a set, the more power the set would have to detect

these confounders, and therefore the stronger the correlation be-
tween set size and P-value would appear. The correlations on our

real data were consistent with these expectations. In particular,
we saw no significant correlation for FaST-LMM-Set (which

corrects for confounders) but significant correlation when we

did not correct for confounders (Table 5).
We also expected that on null-only data, when confounders

were properly accounted for, the set P-value and set size would
be independent. Consistent with this expectation, when we per-

muted the Crohn’s phenotype to remove signal, the FaST-
LMM-Set correlation was reduced to � ¼ 0:019 (P¼ 0.18).

4 DISCUSSION

We have developed a novel efficient approach for testing sets of
genetic markers in the presence of confounding structure such as

arises from ethnic diversity and family relatedness within a

cohort. Application of this algorithm demonstrated that our
method corrects for confounders and uncovers signal not recov-

erable by univariate analysis.
Although we did not analyse rare variant data, we have shown

elsewhere that the underlying LMM methodology works well to

Table 4. Validation of methods on WTCCC Crohn’s disease

Method In meta-

analysis

Supported

by literature

No support

found

FaST-LMM-Set 15 1 0

FaST-LMM-Set-Score 7 0 0

FaST-LMM-Set (uncorrected) 17 3 6

FaST-LMM-Set denotes our newly developed method, which corrects for con-

founding and uses our LRT approach; FaST-LMM-Set (uncorrected) is the same

but does not correct for confounding with a second variance component; FaST-

LMM-Set-Score is the same as FaST-LMM-Set but uses a score test (as described in

Section 2) instead of an LRT. Columns: ‘in meta-analysis’ shows the number of

significant sets validated by a meta-analysis (Franke et al., 2010); ‘supported by

literature’ denotes the number of significant sets found by a literature search; ‘no

support found’ denotes the number of sets supported neither by the meta-analysis

nor a literature search.

Table 3. �GC of univariate tests for confounding-corrected and naı̈ve

methods

Method GAW14 WTCCC

Uncorrected 3.80 1.30

FaST-LMM 1.01 1.08

FaST-LMM denotes a one-component (to correct for confounding) LMM, testing

one SNP fixed effect (Listgarten et al., 2012); Uncorrected refers to no correction for

confounding (linear regression).
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correct for confounding due to rare variants in a univariate set-

ting (Listgarten et al., 2013). Furthermore, others have already
shown that LMM-based set tests work well for detection of sets

of associated rare variants (Wu et al., 2011). It follows that the
hybrid approach that we presented here is likely to prove effect-

ive in the setting of testing sets of rare variants in the presence of
confounders, although this remains to be investigated fully. For

example, we have found the use of a linear model on a case–

control phenotype to yield inflated tests statistics when testing
rare variants.
We have demonstrated that our LRT outperforms a score test

for our model and setting. This is perhaps unsurprising, given that
the score test can be viewed as an approximation to the LRT by a

second-order Taylor series expansion (Buse, 2007) in the neigh-

bourhood of the null model. Furthermore, given its robust prop-
erties, the LRT is considered the benchmark for statistical testing

(Crainiceanu, 2008). We note, however, that in some recent work
(Lin and Tang, 2011), when testing for rare variants using a

logistic fixed effects model, a score test was found to perform
better than LRT, which was found to be liberal. Although the

best test may depend on context, we note that Lin et al. used
a different model than we did and, in particular, did not use

a variance component approach. Also, they used closed-form
asymptotic-based LRT P-values rather than making use of em-

pirically derived null distributions as we have done here.
For many cases of hidden structure in genetic data, the use of

principal component-based covariates is sufficient for correction
(Price et al., 2006), and thus these covariates could immediately

be added to existing models such as SKAT (Wu et al., 2011) to
achieve a set test that corrects for confounding. However, it is

now widely accepted that there are various forms of confoun-
ders, which cannot be corrected for by principal components, but

for which an LMM adequately corrects (Kang et al., 2010; Price
et al., 2010; Yu et al., 2006), and it is for these problems that we

have developed our approach.
We here focused on testing SNPs in a manner similar to SKAT

(Wu et al., 2011). However, it would be straightforward to also
adapt FaST-LMM-Set to the approach of SKAT-O, in which

the original SKAT model is in effect combined with a collapsing-
type approach (Lee et al., 2012a, 2012b).
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