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ABSTRACT

Motivation: Extensive DNA sequencing of tumor and matched normal

samples using exome and whole-genome sequencing technologies

has enabled the discovery of recurrent genetic alterations in cancer

cells, but variability in stromal contamination and subclonal heterogen-

eity still present a severe challenge to available detection algorithms.

Results: Here, we describe publicly available software, Shimmer,

which accurately detects somatic single-nucleotide variants using

statistical hypothesis testing with multiple testing correction. This

program produces somatic single-nucleotide variant predictions with

significantly higher sensitivity and accuracy than other available soft-

ware when run on highly contaminated or heterogeneous samples,

and it gives comparable sensitivity and accuracy when run on samples

of high purity.

Availability: http://www.github.com/nhansen/Shimmer

Contact: nhansen@mail.nih.gov

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The development of next-generation DNA sequencing methods

has led to a rapid increase in the availability of high-quality se-

quence data from large numbers of tumor samples, some with
matched samples from the same individuals’ blood or unaffected

tissue (Berger et al., 2011; Ding et al., 2012b; International Cancer
Genome Consortium, 2010; Pleasance et al., 2010; Shah et al.,

2009). These data have uncovered genes and pathways that are
mutated in various forms of cancer (Gui et al., 2011; Lee et al.,

2010; Stark et al., 2012), and the characterization of these alter-

ations has led to a greater understanding of oncogenesis, as well as
the potential for earlier diagnosis of cancers and more directed

treatments (Yang et al., 2011; Zhang et al., 2007).
However, sensitive and accurate detection of somatic single-

nucleotide variants (sSNVs) from next-generation sequencing
data is still a challenging informatic problem because of differing

levels of purity and numbers of subclonal populations repre-
sented in tumor samples. The depth of read coverage necessary

to detect a mutation accurately is dependent on the prevalence of
the mutation in that sample, which is in turn dependent on levels

of copy number variation, levels of stromal contamination and

prevalence of mutation among subclones within the sample

(Carter et al., 2012; Koboldt et al., 2012). Available software

for detecting differences between samples often provides little

guidance with regard to how deep coverage needs to be to

attain the user’s required sensitivity and accuracy.
A large number of algorithms have been developed to identify

small mutations in aligned sequencing reads from pairs of sam-

ples. For sSNVs, several studies (Pleasance et al., 2010; Stark

et al., 2012, Wei et al., 2011) have used a naı̈ve ‘subtraction’

method in which variants are first called separately from both

the tumor and normal samples’ reads, and then sites that have a

confident call of a variant in the tumor, as well as a confident call

of no variant in the normal, are assumed to be sSNVs. However,

analyzing samples separately can lead to false positives when a

germline variant is present in a low percentage of reads from the

normal sample, as well as false negatives when mutation levels in

the tumor are too low to allow an algorithm to confidently dis-

tinguish variant reads from sequencing error. Analyzing reads

from the two samples simultaneously enables better discrimin-

ation of germline alleles from sequencing error.
Other algorithms do this simultaneous analysis with hypoth-

esis testing. VarScan2 (Koboldt et al., 2012) is a comprehensive

sequence analysis tool that includes sSNV detection and analyzes

pairs of samples simultaneously. It predicts sSNVs using a com-

bination of heuristic filtering and a Fisher’s exact test, but the

tool reports P-values without any correction for multiple testing,

and fails to report the number of tests performed or the expected

underlying distribution of P-values, making it impossible to per-

form these corrections after running the program. Similarly,

deepSNV (Gerstung et al., 2012) performs a likelihood ratio

test on each site in a sequenced region, along with rigorous mul-

tiple testing correction, to report sites for which the frequency of

a variant allele is significantly higher than that of modeled

sequencing errors, but it gives the user only rough control over

which sites are tested.
JointSNVMix2 (Roth et al., 2012) uses Bayesian probability

models to infer the genotypes of both tumor and normal samples

simultaneously, allowing users to train the model on the data and

then classify mutations as somatic or germline with a given pos-

terior probability. The software also now includes the ability to

filter predictions using parameters learned from the data (Ding

et al, 2012a). However, as it is based on a diploid model, this

method is prone to errors in regions where the model does not*To whom correspondence should be addressed.
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reflect reality, for example, copy number altered regions and

misaligned repetitive sequences (Roth et al., 2012). Similarly,

SomaticSniper (Larson et al., 2012) uses a Bayesian model to

calculate posterior probabilities of somatic mutations, using a

prior that incorporates the dependence of tumor and normal

genotypes from a single individual and provides software for

filtering using other indicators for potential false positives.

Others have used Bayesian approaches as well (Cibulskis et al.,

2013; Li, 2011; Saunders et al., 2012).
In this study, we describe a new simpler approach based on

hypothesis testing with correction for multiple testing.

Implemented in a publicly available software tool, Shimmer,

the algorithm yields highly accurate and sensitive calls on

matched tumor and normal sequence, even in the presence of

large amounts of stromal contamination, heterogeneity and

copy number alteration, and even without any post-filtering of

sSNV calls.

2 METHODS

2.1 Single-nucleotide detection algorithm

Shimmer takes as input aligned sequence reads from a tumor and its

matched normal tissue in BAM format (Li et al., 2009). In a manner

similar to other sSNV discovery programs, Shimmer examines the base

counts for each possible allele at every genomic position covered by

sequence data in both the tumor and the normal sample. Shimmer’s

program options allow filtering of bases based on base quality score or

reads based on read mapping quality. If the total number of reads dis-

playing a non-reference allele in the two samples is greater than a min-

imum threshold nvar, a Fisher’s exact test is performed to test the null

hypothesis that variant alleles are distributed randomly between the two

samples (as they would be if the non-reference bases were sequencing

errors or evidence of a germline variant that would also be present in

the normal tissue). The optimal choice of nvar is the smallest value that

will yield a near-uniform P-value distribution (Supplementary Methods),

ensuring adequate power to reject the null hypothesis even when perform-

ing a large number of tests.

As thousands to millions of sites are tested for a single BAM file

comparison, Shimmer performs a multiple testing correction (Benjamini

and Hochberg, 1995; Noble, 2009) on the Fisher exact P-values to report

only a set of results with false discovery rate (FDR) below a desired

maximum q. This FDR provides a conservative estimate of the propor-

tion of predicted variants that are not true somatic variants, but are

instead the consequence of random variation in allele frequencies. In

addition, after testing, only the variants for which the normal sample

has a predicted genotype of homozygous reference (Teer et al., 2010)

are reported as somatic mutations in variant call format (VCF)

(Danacek et al., 2011) or VarSifter format (Teer et al., 2012). Shimmer

will also format variants for the annotation program ANNOVAR (Wang

et al., 2010) and annotate the variant file if ANNOVAR is installed sep-

arately and the annotate option has been specified. A more detailed de-

scription of the methods is given in the Supplementary Methods.

2.2 Performance on simulated datasets

To measure the sensitivity and accuracy of various sSNV calling algo-

rithms against a known truth dataset, we introduced single base changes

corresponding to known somatic mutations into next-generation sequen-

cing data from one of two whole-exome libraries from a single-HapMap

sample NA18506 (The International HapMap Consortium, 2003). The

simulated sSNVs were created using Pysam (http://code.google.com/p/

pysam/). For each simulated tumor/normal comparison, in the ‘tumor’

BAM file, at each position from the list of randomly selected mutations,

any read spanning that position was changed at the mutated position

with a probability equal to half of the desired tumor purity (e.g. for a

sample that is 20% tumor, �10% of the reads at the indicated position

are mutated, in an effort to simulate a heterozygous mutation in a diploid

region of a sample with the desired tumor purity). The base qualities of

the mutated bases were not altered, as they reflect real sequencing accur-

acy. As the two datasets originated from libraries created from the same

sample, a somatic caller comparing the original, unaltered BAM files

should find no sSNVs, and variants discovered that are not part of the

set of introduced mutations can be considered false positives. The muta-

tions were selected randomly from a set of 111521 mutations downloaded

from the Catalogue of Somatic Mutations in Cancer (COSMIC) (Forbes

et al., 2010), all of which lie within targeted regions of the capture kit used

to create the whole-exome libraries of NA1506, and simulations were

performed with numbers of mutations per exome corresponding to a

high (10 mutations per megabase) or low (two mutations per megabase)

rate of mutation.

These simulations were repeated for high and low mutation rate, and

at three levels corresponding to a heterozygous mutation with three dif-

ferent levels of tumor purity: 100% tumor, in which reads were mutated

with probability 50%, 60% tumor, in which reads were mutated with

probability 30%, and 20% tumor, in which reads were mutated with

probability 10%. Multiple replicates of these simulated BAM files were

compared with the corresponding normal NA18506 BAM file from the

separate run using Shimmer, JointSNVMix2 (using the train and classify

commands), SomaticSniper (with recommended post-filtering), VarScan2

with the ‘somaticFilter’ option and deepSNV. All predicted sSNVs pre-

sent in dbSNP build 134 were filtered before evaluation of sensitivity and

accuracy. Further details regarding alteration of the BAM files and ver-

sions, options and post-filtering of the programs are available in the

Supplementary Methods.

2.3 Performance on sequence data from COLO-829

To assess Shimmer’s sensitivity and accuracy on a real dataset, we

obtained the whole-genome sequence data of the COLO-829 melanoma

cell line previously sequenced (Pleasance et al., 2010), from the European

GenomePhenome Archive (EGAS00000000052) and ran Shimmer,

VarScan2 and SomaticSniper with recommended parameters and filtering

(Supplementary Methods). We then calculated the sensitivity as the per-

centage of the 497 sites previously validated (Pleasance et al., 2010) that

was called by each program. Furthermore, to determine calling accuracy,

we validated all protein-altering mutations predicted by the three pro-

grams by amplifying the affected region in both the melanoma and the

matching normal cell line (COLO-829/COLO-829BL) using polymerase

chain reaction (PCR), and then performing Sanger sequencing to classify

each predicted site as confirmed somatic, germ line or wild-type.

2.4 Implementation and availability

Shimmer is distributed as a Perl script, with computationally intensive

portions of the algorithms implemented in C and R. The source code is

available on github at http://github.com/nhansen/Shimmer.

3 RESULTS

We compared the variants predicted by Shimmer with those

predicted by VarScan2, SomaticSniper, deepSNV and

JointSNVMix2 on the simulated datasets described in the previ-

ous section. In addition, we ran Shimmer, VarScan2 and

SomaticSniper on the whole-genome COLO-829 data. For

each dataset, we defined sensitivity as the percentage of known

true variants that are predicted correctly by each program, and
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assessed accuracy by tallying the number of false positive vari-

ants a program predicted.

3.1 Results from simulated datasets

The six sets of simulated BAM files with 619 or 124 introduced

sSNVs each (corresponding to mutation rates of 10 and 2 per

megabase of targeted sequence), and at each of three simulated

levels of purity, 20, 60 and 100%, were compared with an un-

altered set of reads from a different library of NA18506 using

Shimmer, JointSNVMix2 (Roth et al., 2012), SomaticSniper

(Larson et al., 2012), VarScan2 (Koboldt et al., 2012) and

deepSNV (Gerstung et al., 2012). The results are shown in

Figure 1. JointSNVMix2 results are not shown in these plots

because their mean false positive count (which is4500 for all

six simulation types at the program’s highest stringency cut-off)

is not easily displayed, but the mean values and errors for all five

programs are available in Supplementary Table S1

(Supplementary Data). For high-purity tumors (100 and 60%

purity), all five programs easily achieved sensitivities of470%,

but none achieved sensitivities beyond �76%. This is because the

sensitivity was limited by the sequencing depth of coverage

across the targeted regions of the capture, and �20% of the

targeted regions have little or no sequencing coverage. Note

that for highly pure tumors, Shimmer provides comparable sen-

sitivity and accuracy with the other programs. In addition, at

very low purity (20%), other programs either miss large numbers

of variants (SomaticSniper, VarScan2 and deepSNV) or predict

large numbers of false positives (JointSNVMix2), whereas

Shimmer maintains high accuracy with optimal sensitivity.

When run on the two unmutated BAM files derived from

NA18506, Shimmer and deepSNV, both report zero mutations,

as one would expect, as there are no true mutations in the data,

and any false positive prediction would lead to a FDR of 1.0,

above the level of control provided by the Benjamini–Hochberg

procedure. On the other hand, SomaticSniper, VarScan2 and

JointSNVMix2 all predict similar numbers of false positives

when run on the unmutated BAM files, as they do on the files

with simulated mutations used to generate the results in Figure 1.

3.2 Results from COLO-829 dataset

When run on EGA sequence data from the melanoma-matched

tumor and normal cell lines COLO-829, Shimmer,

SomaticSniper and VarScan2 with �¼ 0.05 all detected

96–97% of 497 previously confirmed variant sites. When

VarScan2 was run with �¼ 0.001, however, its sensitivity

dropped to 92.4%. Variants predicted by Shimmer and

SomaticSniper show a markedly increased percentage of ultra-

violet (UV)-induced C!T/G!A mutations (70.2% for

Shimmer with max_q¼ 0.05, and 70.8% for SomaticSniper

with recommended filtering) when compared with filtered

VarScan2 predictions (67.5% with �¼ 0.001). Details regarding

the mutation spectrum are provided in Supplementary Figure S1

(Supplementary Data).

To assess the accuracy of predicted mutations from these three

programs, we examined the set of all non-synonymous, splice-

Fig. 1. Sensitivity and number of false positives for somatic variant detection at two different simulated mutation rates and three different simulated

levels of tumor purity. (A–C) The mean sensitivity and number of false positives for whole exomes with a mutation rate of 10 mutations per megabase of

targeted genomic regions for tumor purity levels of 100, 60 and 20%, respectively. Likewise, (D–F) Same results are observed when there are two

mutations per megabase of targeted sequence. Estimated error of the mean for each point’s sensitivity is50.005, indicating that the differences between

the three programs may not be statistically significant for tumor purity levels of 60 and 100%. Cut-offs used to generate the points for each program were

as follows: Shimmer: max_q¼ 0.01, 0.05, 0.1, 0.2, 0.3 and 0.5. VarScan2: �¼ 0.01, 0.005, 0.002, 0.0005, 0.0002, 0.00005 and 0.00002. SomaticSniper:

somatic_score¼ 40, 45, 50, 60, 70, 90, 110 and 130. DeepSNV: max_fdr¼ 0.1, 0.2 and 0.9999
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site, stop-gain and stop-loss mutations predicted by Shimmer,

SomaticSniper and/or VarScan2. Sixty-four of these mutations

(Supplementary Data and Supplementary Table S2) had been

validated previously (Pleasance et al., 2010). Of the remaining

predicted mutations, we were able to design PCR primers and

amplify regions surrounding 218, and the combined results of the

previous and new validation experiments are shown in Table 1.

When all protein-altering predictions are considered, 98.5% of

mutations called by Shimmer with FDR of 0.05 were validated

as true, compared with 92.7% of SomaticSniper calls and 92.6%

of VarScan2 calls with �¼ 0.001. When we include all VarScan2

calls obtained with �¼ 0.05, a level that gives comparable sensi-

tivity with the other two programs, only 56.7% of predicted

somatic variants are confirmed by Sanger sequencing.

Supplementary Table S2 in the Supplementary Data gives the

details regarding each sSNV prediction we attempted to validate.

Shimmer, VarScan2 and SomaticSniper each predict variants

not present in the others’ sets of predictions. Figure 2 shows the

concordance of predicted variants from the three programs, both

for protein-altering variants and for total sets of variants across

the genome. Figure 2A also shows the number of the protein-

altering variants that were confirmed by Sanger sequencing. In

all, 99.3% (142 of 143) of variants predicted by at least two of the

programs were shown to be true somatic variants.

3.3 Analysis of errors

The generation of Sanger sequence data allows us to classify false

positives in somatic variant calls as to whether they represent

germ line variants that were not sequenced thoroughly in the

normal sample, or wild-type sequence for which sequencing

errors were mistaken for variant alleles in the tumor. All three

programs made prediction errors of both of these types. For the

false positives discovered in the COLO-829 validation sequen-

cing, the breakdown was as follows: SomaticSniper incorrectly

predicted that five germ line variants and seven wild-type sites

were somatic, VarScan2 predicted that eight germ line variants

and three wild-type sites were somatic, and Shimmer predicted

that one germ line variant and one wild-type site were somatic.

Hypothesis testing methods like Shimmer are also prone to

making errors in regions with very high-sequencing depth,

where small differences in variant allele frequency can become

statistically significant because of the large counts being tested.

These regions, which are often repetitive and prone to alignment

errors, can also suffer from inaccurate removal of PCR

duplicates. When this happens, the assumption of independent

sampling on which hypothesis testing is based is flawed, and

results can be inaccurate. Shimmer’s filtering of sites for which

the normal sample has a genotype that is not homozygous rep-

resents a first effort to remove these artifacts from its somatic

variant predictions.

3.4 Analysis of power to detect mutations

Although most somatic variant detection methods provide little

guidance about the depth of sequence coverage needed to detect

all somatic mutations, the use of hypothesis testing enables us to

confidently estimate the number of independent reads that will

yield a given power to confidently reject the null hypothesis of

equal distribution of alternate alleles between the two samples.
Figure 3 shows the coverage required to achieve any desired

sensitivity to detect somatic mutations at different tumor variant

allele frequencies. The ability to calculate expected power to

detect mutations is critical to planning experiments, especially

for larger projects. From the plot, which assumes 10000 tests,

a typical number of tests performed on a whole-exome sequence

dataset from a tumor/normal pair, it is estimated that �50�

coverage is needed to obtain 90% sensitivity when 40% of

reads can be expected to display the alternate allele in the

tumor, whereas well over 100� coverage is required to obtain

Table 1. Sanger confirmation results for predicted COLO-829 somatic variants

Program(s) Number of 497

previously validated

variants detected

Program

sensitivity (%)

Total predicted variants

assessed by Sanger

sequencing

Number of variants

confirmed by

Sanger sequencing

Program

accuracy (%)

Shimmer 476 95.8 134 132 98.5

SomaticSniper 480 96.6 164 152 92.7

VarScan2 459 92.4 148 137 92.6

All three programs 442 88.9 125 124 99.2

Note: ‘Total variants’ is the number of predicted somatic variants in each set that were successfully amplified and sequenced to test for validity. Shimmer was run with a

maximum FDR of 0.05, and VarScan2 was run with �¼ 0.001.

Fig. 2. Concordance among predictions of Shimmer, SomaticSniper and

VarScan2. These Venn diagrams show the distribution of predicted vari-

ants among the three different programs for (A) protein altering variants

and (B) across the genome. In (A), the counts are reported as ‘#TP/

#Pred’, where ‘#TP’ is the number of coding variants verified by

Sanger sequencing, and ‘#Pred’ is the total number of protein-altering

variants predicted by the program that were amplified and subjected to

Sanger sequencing. In (B), only the total number of variants predicted is

shown
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the same sensitivity when only 20% of reads are expected to

show the alternate allele.

3.5 Program performance

Analysis of next-generation sequence data often requires impres-

sive amounts of computational infrastructure; therefore, the

performance of software for the analysis of somatic variants
can be of great importance. To assess CPU usage and memory

requirements of the programs we tested, we noted their running

time and memory usage when they were run on our high-per-

formance computing cluster, which consists of 64 bit Linux

nodes. Shimmer, SomaticSniper, VarScan2 and deepSNV all

make use of the samtools software package (Li et al., 2009),

and for indexed BAM files, can be run in parallel by dividing

the genome into smaller regions (e.g. chromosomes). Total CPU

usage, including extraction of read counts from the BAM files,
was comparable for these four programs, all on the order of 10 h

for analysis of a single tumor/normal pair’s whole-exome data.

In addition, all four of these programs could be run on whole

exomes with significantly54Gb of physical memory. It should

be noted that deepSNV has physical memory requirements

which grow prohibitively with the sizes of the regions analyzed.

For this reason, it was necessary to analyze only targeted capture

regions for whole exome, instead of all regions covered by

sequencing reads. For this reason, deepSNV did not scale well
enough to be run on whole genome datasets.

JointSNVMix2 analysis of a whole-exome dataset required

considerably more CPU time, on the order of 12–24 h for the

training step and up to several days for the classify step. In add-
ition, the training step, when run on a pair of whole exomes,

required �6.5Gb of memory. This program, as well as

deepSNV, could not be run on the COLO-829 whole-genome

data in a realistic period; therefore, they were omitted from the

second part of our analysis.

4 DISCUSSION

Here, we present results from both real and simulated datasets

supporting the use of simple statistical methods, without

heuristics or filtering, for the determination of genetic differences

between tumors and matched normal samples. It should be no

surprise that the use of hypothesis testing with correction for

multiple testing provides highly accurate determination of true

positive variants while effectively controlling the FDR, as these

statistical methods have already been successfully applied in so

many fields of scientific research.
We also show that these statistical methods, as implemented in

the program Shimmer, perform comparably with other currently

available software, such as SomaticSniper, at typical depths of

sequencing for whole exome and whole-genome sequencing

experiments. Although there does not seem to be a significant

advantage to using Shimmer when analyzing samples with high

purity, it can be expected to give far superior results on samples

that are highly contaminated or contain subclonal heterogeneity.
Furthermore, although Shimmer’s algorithm can be less sen-

sitive at lower depths of sequencing, well-established statistical

results allow the user to estimate the depth of coverage necessary

to confidently detect somatic mutations present in any level in a

tumor. These estimates can then guide decision-making regard-

ing how much sequencing is cost effective in large tumor/normal

sequencing studies. Barring difficulties in obtaining independent

sampling of molecules because of sparse samples or low library

complexity, obtaining more reads is a viable strategy for increas-

ing power to detect mutations present in small quantities in a

sample. Regardless of the depth of sequencing performed, the

Shimmer algorithm allows the user to decide what their

maximum acceptable level of false discoveries will be.
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