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Abstract
How are the meanings of concepts represented and processed? We present a cognitive model of
conceptual representations and processing – the Conceptual Structure Account (CSA; Tyler &
Moss, 2001) – as an example of a distributed, feature-based approach. In a first section, we
describe the CSA and evaluate relevant neuropsychological and experimental behavioral data. We
discuss studies using linguistic and non-linguistic stimuli, which are both presumed to access the
same conceptual system. We then take the CSA as a framework for hypothesising how conceptual
knowledge is represented and processed in the brain. This neuro-cognitive approach attempts to
integrate the distributed feature-based characteristics of the CSA with a distributed and feature-
based model of sensory object processing. Based on a review of relevant functional imaging and
neuropsychological data, we argue that distributed accounts of feature-based representations have
considerable explanatory power, and that a cognitive model of conceptual representations is
needed to understand their neural bases.

Prelude
How do we represent and process the meaning of familiar concepts? This question has been
at the heart of decades of cognitive psychological research on semantics, or conceptual
representations, and has resulted in a variety of responses (e.g., Hart & Kraut, 2007; Smith
& Medin, 1981). Here, we will use the terms “semantics” and “conceptual” interchangeably
to reflect our view that the meaning system subserves both linguistic and non-linguistic
meaning. Thus, our assumption is similar to that of Jackendoff, who considers “semantic
structures” (i.e. verbally expressible meaning) to be a part of “conceptual structures” which
instantiate meaning (Jackendoff, 1983; Jackendoff, 2002). We will consider cognitive
models which assume that the meanings of familiar object concepts are componential in
nature; i.e., that concepts are represented by smaller units of meaning (referred to as
features, properties or attributes). Distributed models of conceptual representations typically
assume that the individual feature nodes are represented in a connectionist system, and the
processing of a concept corresponds to the co-activation of its feature nodes (e.g.,
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Caramazza, Hillis, Rapp, & Romani, 1990; Masson, 1995; McRae, de Sa, & Seidenberg,
1997; Moss, Tyler, & Taylor, 2007; Tyler, Durrant-Peatfield, Levy, Voice, & Moss, 1996;
Tyler & Moss, 2001; Tyler, Moss, Durrant-Peatfield, & Levy, 2000; Vigliocco, Vinson,
Lewis, & Garrett, 2004).

Here we will focus on the distributed model we have developed – the Conceptual Structure
Account (CSA; Greer et al., 2001; Moss, Tyler, & Devlin, 2002; Moss et al., 2007; Tyler &
Moss, 2001; Tyler et al., 2000) - which shares many assumptions with other distributed
models (Caramazza et al., 1990; Masson, 1995; McRae et al., 1997) but also has certain
salient distinguishing characteristics. The CSA assumes that conceptual space is structured
according to the statistical characteristics of concept features. These statistical characteristics
provide concepts with an internal structure and determine how the concept will be processed
in damaged and healthy systems. Thus, this type of approach claims that different categories
(i.e. individual semantic categories at the superordinate level, such as tool and mammal) or
domains (i.e. the broader grouping of living and nonliving things) of knowledge are not
explicitly represented. Instead, features associated with different categories or domains of
knowledge show consistent differences with respect to a number of critical statistical
characteristics. These statistical differences, in turn, result in different patterns of
preservation and loss in damaged conceptual systems and different patterns of activation in
the healthy conceptual system.

Two aspects of conceptual structure show prominent effects in cognitive behavioral studies:
feature distinctiveness (i.e. the extent to which a feature is shared by many concepts or is
distinctive to a few concepts) and feature co-occurrence (i.e., the extent to which two
features co-occur, commonly measured with correlational strength (see below)). While other
feature characteristics undoubtedly play a significant role in conceptual representation and
processing (see Cree & McRae, 2003, and Moss et al., 2007, for overviews), we adopt the
standard approach of attempting to identify the simplest possible model that explains the
maximum amount of behavioral data. We claim that feature co-occurrence and
distinctiveness interact to determine conceptual processing as a function task demands, i.e.
the information required to perform the task at hand (Moss et al., 2002; Moss et al., 2007;
Randall, Moss, Rodd, Greer, & Tyler, 2004; Taylor, Moss, & Tyler, 2007; Taylor,
Salamoura, Randall, Moss, & Tyler, 2008; Tyler & Moss, 2001).

Like Jackendoff, we take the view that conceptual structures lie at the interface between the
linguistic and sensory-motor systems, providing meaning to linguistic, sensory and motor
representations (Jackendoff, 1983). The consequence of this assumption is that conceptual
structure can be investigated in experiments with either verbal or non-verbal (e.g. visual
objects) stimuli. In our own research, we have adopted a two-pronged approach. In one
series of linguistically-based experiments, we have used spoken or written word stimuli to
determine whether the conceptual structure variables as specified by the CSA have
consequences for the activation of meaning from orthographic or phonological inputs. These
experiments were conducted with brain-damaged patients with category-specific semantic
impairments and with healthy individuals. A second series of studies investigated similar
issues about conceptual processing in the context of concepts as visual objects. These
studies allowed us to investigate how concepts are represented and processed in the brain, by
integrating the CSA with a well-developed model of visual object processing in the ventral
occipitotemporal stream (Murray & Bussey, 1999; Ungerleider & Mishkin, 1982). We
consider a cognitive model to be an essential starting point for understanding the neural
bases of conceptual representation and processing; it allows the detailed study of conceptual
processes, crystallisation of core operating principles and thereby provides a framework for
designing functional imaging experiments. Our ultimate goal, shared with many others, is to
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understand how multidimensional feature characteristics are instantiated in the neural
system to underpin meaning.

In the first section of this review, we describe the CSA (Moss, Tyler, & Taylor, 2007;
Taylor, Moss, & Tyler, 2007; Tyler & Moss, 2001) and examine normative data on feature
statistics. We then go on to review the neuropsychological and experimental behavioral
studies of the CSA using linguistic stimuli, followed by a description of studies using non-
linguistic input. In the second section of this review, we take the CSA as a framework for
hypothesising how conceptual knowledge is represented and processed in the brain. We
propose a neuro-cognitive approach which integrates the CSA with a sensory object
processing model. We first review non-human primate, then human, evidence for
distributed, hierarchically organised sensory object processing. We then describe how the
distributed feature-based characteristics of the CSA can be integrated with those of the
distributed and feature-based model of hierarchical object processing, and review relevant
imaging studies which have employed this approach. We end with a summary and directions
for future research.

The Conceptual Structure Account (CSA)
The model

Distributed models of conceptual representations assume that concepts are represented in a
connectionist system composed of units, or nodes, representing individual object features
(e.g., <has eyes>, <has a nose>) and where conceptual processing corresponds to the co-
activation of a concept’s features (Caramazza et al., 1990; Masson, 1995; McRae et al.,
1997; Moss et al., 2007; Tyler et al., 1996; Tyler & Moss, 2001; Tyler et al., 2000;
Vigliocco et al., 2004). Two statistical characteristics of features are assumed to structure
conceptual space and determine how concepts are processed: distinctiveness and feature co-
occurrence.

Features vary in the degree to which they are distinctive of a concept: while some features
are shared by many concepts (e.g., <has eyes>), others are distinctive to one or just a few
concepts (e.g. <has stripes>). While shared features are typically informative about object
category or domain (e.g., if an object <has eyes> it is likely to be an animal, a living thing),
they are not very useful for discriminating between category or domain members (e.g. it is
not possible to differentiate between a lion and a tiger on the basis of <has legs>, <has
eyes>). Thus, unique object identification additionally requires distinctive object features to
differentiate the object from conceptually similar objects (e.g. knowing that an object <has
eyes> and <has stripes> differentiates a tiger from a lion). Feature distinctiveness is related
to the concept of cue validity, i.e. the conditional probability that a feature specifies a
concept (Rosch & Mervis, 1975).

Feature distinctiveness is calculated based on data from property norm studies. In these
experiments, participants list all the features they can think of that belong to the target
concept word. Distinctiveness is typically quantified as the inverse of the number of
concepts in which a feature occurs, such that features vary along a continuum of
distinctiveness ranging from 1 (occurring in one concept, e.g. <meows>) to a very small
number when the feature occurs in many concepts (e.g. <has eyes>) (Cree & McRae, 2003;
Devlin, Gonnerman, Andersen, & Seidenberg, 1998; McRae & Cree, 2002; McRae, Cree,
Seidenberg, & McNorgan, 2005; Moss et al., 2007; Randall et al., 2004). The inverse
transformation renders the data more normally distributed and probabilistic in nature, akin to
the earlier concept of cue validity (for a discussion, see Mirman and Magnuson, 2009).
While distributed models concentrate on graded differences in feature distinctiveness along
the entire continuum from high to low distinctiveness, for factorial analyses features are
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sometimes classified as shared if they occur in three or more concepts, and as distinguishing
(e.g. <meows>) if they occur in one or two concepts (McRae et al. 2005, Randall et al
2004).

A second critical statistical property of features is the degree to which they co-occur, with
features at one end of the continuum co-occurring very frequently with other features (e.g.
<has eyes>, <has tail>) and features at the other end of the continuum co-occurring
infrequently (e.g., <has legs>, <has stripes>) (Keil, 1986; McRae et al., 1997; Rosch,
Mervis, Gray, Johnson, & Boyes-Braem, 1976; Tyler et al., 2000; Vinson, Vigliocco, Cappa,
& Siri, 2003). Feature co-occurrence is estimated with the Pearson’s product moment
correlation coefficient, which provides a measure of the correlational strength between
features. The correlation coefficient is calculated with concept-feature matrices, where
concepts are listed in rows and features in columns, and where each cell contains a
production frequency value representing the number of participants in the property norm
study who listed that feature for the given concept (very low production frequencies (e.g. ≤5
of 30 participants) are commonly discarded) (Cree, McRae, & McNorgan, 1999; McRae &
Cree, 2002; McRae, Cree, Seidenberg, & McNorgan, 2005; McRae, de Sa, & Seidenberg,
1997; Taylor, Moss, & Tyler, 2007; Taylor, Salamoura, Randall, Moss, & Tyler, 2008;
Vinson, Vigliocco, Cappa, & Siri, 2003). Thus, the feature columns <has eyes> and <has
tail> are relatively highly correlated (Pearson’s r = 0.23, n = 517, p < 0.001) since many
participants listed both features for many concepts in the norm set (McRae et al., 2005;
McRae et al., 1997). We define the correlational strength of a particular feature (e.g. <has
eyes>) as the mean of all significant Pearson’s product moment correlations between the
target feature and every other feature in the concept (Randall et al., 2004; Taylor et al.,
2008). We note that this measure of co-occurrence differs from feature “intercorrelational
strength”, which sums the significant feature correlations within a concept (McRae et al.,
1997). Since concepts with a larger number of features are more likely to have more
significantly correlated feature pairs, all else being equal (Taylor et al., 2008), and since the
semantic effects associated with the number of features (e.g. Pexman, Holyk, & Monfils,
2003) may be independent of the strength with which these features are associated, the
studies reported below use the mean correlational strength measure. Thus, the correlational
strength measure reflects the strength with which a particular feature is associated with all
other features in a concept. This has repercussions for processing in brain-damaged and
normal conceptual systems. In the damaged system, strongly correlated features are assumed
to benefit from their strong association, or link, and be more robust to the effects of brain
damage (Moss et al., 2002; Tyler et al., 2000). In the healthy system, the processing of
strongly correlated features is facilitated compared to weakly correlated features in on-line
comprehension tasks (McRae et al., 1997; Randall et al., 2004).

The statistical feature characteristics of distinctiveness and correlational strength play
different roles in different distributed models of conceptual representation. For example,
Caramazza and colleagues’ Organized Unitary Content Hypothesis (OUCH; Caramazza et
al., 1990) claims that category members share many features, and that a concept’s core
semantic features are strongly intercorrelated. These characteristics lead to a “lumpy”
semantic space where tightly clustered features correspond to members of a particular
category and are represented close together. Thus, category-specific semantic impairments
for a particular category arise when brain damage affects its lumpy region. Feature
correlation and distinctiveness also play central roles in the Connectionist Attractor Network
model of McRae and colleagues (Cree, McNorgan, & McRae, 2006; McRae & Cree, 2002;
McRae, Cree, Westmacott, & de Sa, 1999; McRae et al., 1997). This model was based on
findings from a series of behavioural and connectionist modelling experiments. In a first key
study, McRae et al. (1997) showed that strongly intercorrelated features are processed faster
than weakly intercorrelated features when participants perform on-line feature verification
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tasks. The behaviour of a computational model instantiating a Hebbian-type learning rule
suggested that highly intercorrelated features benefit from a faster rise time in activation
compared to weakly correlated features (McRae et al., 1997; see also McRae et al., 1999). A
subsequent study found facilitatory effects of distinctive features, suggesting that upon
presentation of a concept word, distinctive features have privileged access – that is, they are
activated first, followed by the activation of highly correlated features (Cree et al., 2006).
Thus, the Connectionist Attractor Network model predicts facilitatory (main) effects of
distinctiveness and correlational strength in on-line conceptual processing.

The unique claim of the CSA, and one which differentiates it from similar distributed
models of conceptual representations such as those described above, is that correlational
strength and distinctiveness interact to determine how concepts are internally structured and
processed, and form the basis for an emergent category organisation. For example, concepts
belonging to the living and nonliving domains of knowledge tend to have different internal
structures, i.e. differing patterns of feature correlational strength and distinctiveness. These
differences, as shown in property norm data, are claimed to be responsible for category-
specific semantic impairments for living things following brain damage, as well as affecting
how concepts in the two domains are processed in on-line comprehension tasks in healthy
individuals (Moss et al., 2002; Moss, Tyler, Durrant-Peatfield, & Bunn, 1998; Moss, Tyler,
& Jennings, 1997; Moss et al., 2007; Randall et al., 2004; Taylor, Moss, Randall, & Tyler,
2004; Taylor et al., 2007; Taylor et al., 2008; Tyler & Moss, 2001). Specifically, living
things are characterised by large clusters of mainly shared features which are also highly
correlated (e.g. <has legs>, <has eyes>, <has nose>). They also have relatively fewer
distinctive properties which are also less highly correlated with other object features (e.g.,
the distinctive feature <has stripes> does not commonly co-occur with other tiger features).
In contrast, nonliving things have smaller clusters of features with relatively more distinctive
features, and these distinctive features tend to be more highly correlated (in part due to
strong form-function relationships, e.g. <has a blade> and <cuts>) (Greer et al., 2001; Moss,
Tyler, & Jennings, 1997; Moss et al., 2007; Randall et al., 2004; Tyler & Moss, 1997;
Taylor et al., 2008). Strong correlations between features are thought to make them more
resistant to the effects of brain damage, while distinctive features are important for
discriminating between similar concepts and thus for uniquely identifying a given concept.
Since the distinctive properties of living things tend to be less strongly correlated than the
distinctive features of nonliving things (and shared feature of living and nonliving things),
and since weakly correlated features are more susceptible to damage, the CSA proposes that
brain damage affects the less correlated distinctive properties of living things to a greater
extent than the more correlated distinctive properties of nonliving things (and the highly
correlated shared properties of both living and nonliving things). Since distinctive properties
are required to distinguish between concepts in order to uniquely identify them, the loss of
distinctive living features leads to a category-specific semantic deficit for the identification
of living things. Indeed, patients with living things deficits tend to know what category or
domain a concept belongs to, indicating spared shared information, but they are unable to
differentiate one entity within the living domain from another, indicating a selective
impairment of distinctive living features (Moss et al., 2002; Moss et al., 2007; Tyler &
Moss, 2001; Tyler et al., 2000; see Figure 1).

A second central aspect of the CSA which differentiates it from similar accounts is the claim
that task requirements interact with conceptual structure to influence conceptual processing.
For example, when we need to uniquely identify an object (e.g. naming an object or
differentiating it from highly similar objects) we require distinctive feature information,
while when we merely need to make broad distinctions, such as differentiating between
categories of objects, we only require access to shared features. As we will show below, task
context indeed influences the patterns of patients’ and healthy participants’ performance,
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even when identical stimuli are used. We preface a discussion of these experimental findings
with a description of how the statistical characteristics of features are determined, data
which provide the foundation for experimental studies.

Normative feature data
What evidence exists to support the CSA’s claims about the conceptual structures of
concrete concepts such as living and nonliving things? Recent research is exploring the
ability of automatic computational linguistic techniques to extract features from large text
corpora (Almuhareb & Poesio, 2005; Baroni, Murphy, Barbu, & Poesio, 2009; Devereux,
Pilkington, Poibeau, & Korhonen, in press). However, currently available statistical
information about concepts’ features has been derived from property generation data
(McRae et al., 2005; Randall et al., 2004; Rogers et al., 2004; Vinson & Vigliocco, 2008). In
these normative studies, participants are presented with a concept word, and asked to
generate features that belong to the concept. The verbal feature labels are not treated as
actual cognitive (or neural) feature representations, but instead are taken to reflect groups of
semantic primitives that have become bundled together with repeated exposure.

One of the largest feature production studies to date (n = 541) was conducted by McRae and
colleagues in North America (McRae et al., 2005). We recently anglicised these data for use
with native British-speaking populations, and calculated corresponding conceptual structure
statistics (Taylor, Devereux, Acres, Randall, & Tyler, submitted). Table 1 summarises the
key statistical variables for prototypical living and nonliving concept categories. These data
support the key claims of the CSA: compared with nonliving things, living things are
characterised by larger clusters of features with relatively more shared and fewer
distinguishing features (i.e., a greater proportion of shared features). While the correlational
strengths of the shared features of living and nonliving things are comparable, the
distinguishing features of nonliving things are significantly more highly correlated than the
distinguishing features of living things. Since correlational strength is thought to protect
features from the effects of brain damage, and since distinguishing features are required to
uniquely identify concepts, these differences account for the disproportionate prevalence of
category-specific semantic impairments for living over nonliving things (Tyler & Moss,
2001; Moss et al, 2005).

We have developed an additional measure of conceptual structure which relates
distinctiveness and correlational strength (‘distinctiveness × correlational strength’). The
development of this measure was motivated by several factors. The first is the belief that the
processing of a concept entails the activation of clusters of features which interact with one
another, and that these interactions are driven by the conceptual structure statistics of the
feature clusters; thus, a single, concept-specific measure is required that relates the
correlational statuses of a concept’s more shared features with its more distinctive features.
A second factor is the distributed nature of the phenomena under investigation. For
simplicity, the variables listed in Table 1 are based on broad categorisations of features as
either shared or distinguishing; however, distributed, feature-based models view both
distinctiveness and correlational strength along continua, where relative differences in these
variables are thought to generate graded processing effects in the conceptual system. Finally,
it has been argued that the correlational strengths of distinguishing features may be spurious
(Cree, McNorgan, & McRae, 2006; Taylor et al., 2008). Although this remains to be
experimentally confirmed, we have adopted a conservative approach by excluding the most
distinguishing features (i.e., those occurring in only one or two concepts) from the new
measure.

Our “distinctiveness × correlational strength” measure was obtained by producing a single
scatterplot for every concept, where feature distinctiveness values are on the x-axis and
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correlational strengths are on the y-axis. We then performed linear regression analyses to
determine the slope of the regression line fitting the scatterplot of distinctiveness ×
correlational strength values. The ‘distinctiveness × correlational strength’ measure is
illustrated in Figure 2. Figure 2a illustrates a concept with a negative ‘distinctiveness ×
correlational strength’ value, where the concept’s more distinctive features are less highly
correlated than the concept’s more shared features. In contrast, Figure 2b illustrates a
concept with a positive ‘distinctiveness × correlational strength’ value, where the concept’s
more distinctive features are more highly correlated than its shared features. The key aspect
of conceptual structure that the ‘distinctiveness × correlational strength’ measure attempts to
capture is the relative correlational strengths of a concept’s more distinctive properties
compared to its more shared properties. As shown in Table 1, ‘distinctiveness × correlational
strength’ values for living things are indeed less than for nonliving things, indicating that the
correlational strengths of living things’ distinctive relative to shared features is lower than
the correlational strengths of nonliving things’ distinctive relative to shared features. This
finding is consistent with the CSA’s claim that the distinctive features of living things are
disadvantaged relative to all other feature types. In the sections that follow, we provide
experimental evidence of the “distinctiveness × correlational strength’s ability to predict
healthy participants’ and brain-damaged patient’s conceptual processing performance.

Testing the CSA in studies with linguistic input
Patient studies

Brain-damaged patients with disproportionate impairments in one category or domain of
conceptual knowledge provide essential clues about how the conceptual system is organised.
In 1984, Warrington and Shallice described four patients recovering from Herpes Simplex
Encephalitis (HSE) who all showed disproportionate impairments at processing (e.g.,
naming, describing) living compared to nonliving things (Warrington & Shallice, 1984).
These findings marked the beginning of the investigation into the neural bases of conceptual
information. Many other instances of category-specific semantic impairments for living
things have since been reported (see Forde & Humphreys, 1999, and Humphreys & Forde,
2001, for overviews), as well as the rarer pattern of a greater deficit for nonliving things
(e.g. Hillis & Caramazza, 1991; Warrington & McCarthy, 1987).

In-depth testing of patients with category-specific semantic deficits revealed that the
impairments did not always respect the domain boundary. For example, a patient classified
with a category-specific semantic impairment for living things also had difficulty defining
several categories of nonliving things, including cloths and precious stones. In an attempt to
reconcile these findings, Warrington and Shallice (1984) proposed that the semantic system
was organised by neuroanatomically distinct conceptual stores of functional and visual
semantic information rather than by semantic category. Visual knowledge was claimed to be
more relevant for defining living things as well as certain categories of nonliving things (e.g.
musical instruments and precious metals), whereas functional information provided more
information about nonliving things. Thus, damage to the visual semantic system should
disproportionately impair knowledge of living things as well as knowledge of visual
properties in general, while damage to the functional semantic system should result in
greater impairments for nonliving things and in a general deficit with functional conceptual
knowledge. Warrington and McCarthy proposed a further fractionation of the semantic
system with separate neuroanatomical stores for different sensory modalities (e.g. visual,
auditory systems) as well as their submodalities (e.g. shape, color and size systems within
the visual modality; Warrington & McCarthy, 1983; Warrington & McCarthy, 1987).

The Sensory-Functional model of semantic memory stimulated a great deal of
neuroscientific research on the organisation of conceptual knowledge in the brain. The
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fundamental distinctions drawn by the model, however, have been questioned. For example,
many living things such as animals also have important functional features – biological
functions (e.g. breathing) which can be spared even when artefact knowledge is impaired
(which, on the sensory-functional account, is due to the loss of functional features) in
patients with category-specific semantic impairments (Tyler & Moss, 1997). Other authors
have suggested that domain-specific deficits disappear when other stimulus factors (i.e.
frequency, familiarity and visual complexity) are jointly controlled for (Stewart, Parkin, &
Hunkin, 1992). Most importantly, the central predictions of the sensory-functional model
have not withstood further empirical scrutiny: visual semantics are not always more
impaired than functional knowledge in patients with living things deficits (e.g. Hart &
Gordon, 1992; Laiacona, Barbarotto, & Capitani, 1993; Moss et al., 1997) and even greater
visual than functional semantic deficits have been reported in a patient with a nonliving
deficit (Lambon Ralph, Howard, Nightingale, & Ellis, 1998).

Caramazza and colleagues (Caramazza & Shelton, 1998; Shelton & Caramazza, 1999)
proposed an alternative account of the neural bases of category-specific semantic
impairments, i.e. the Domain-Specific Hypothesis, more recently named the Distributed
Domain-Specific Hypothesis (Mahon & Caramazza, 2009). These authors argued that the
proposed domain specificity in modality-specific systems as proposed by the Sensory-
Functional hypothesis represents but one level of representation supporting conceptual
representations. Based largely on patient findings demonstrating a dissociation between
(impaired) modality-specific concept knowledge and (spared) conceptual knowledge,
Caramazza and Mahon (2006) suggested that a level of conceptual knowledge must exist
independent of the modality-specific input (and output) systems. Both levels are assumed to
be organised according to innately determined, evolutionary relevant semantic categories
corresponding to living animate, living inanimate, conspecifics, and perhaps tools
(Caramazza & Mahon, 2006; Mahon, Anzelotti, Schwarzbach, Zampini, & Caramazza,
2009). Thus, according to the Domain Specific Hypothesis, category-specific semantic
impairments result from damage to the neural space representing the corresponding object
category.

Two aspects of the performance of patients with category-specific semantic impairments for
living things provided the impetus for distributed accounts of conceptual representations
such as the CSA (Moss & Tyler, 1997; Moss et al., 1998; Moss et al., 1997; Tyler et al.,
1996; Tyler & Moss, 1997; Tyler & Moss, 2001; Tyler et al., 2000). First, performance on
the “spared” nonliving category is rarely within the normal range (Taylor et al., 2007).
Secondly, patients lose specific kinds of feature information, i.e. distinctive (but not shared)
feature information regarding living things. The graded nature of these impairments is
difficult to reconcile with models postulating neuroanatomically distinct stores of category-
specific information, but is a central characteristic of the performance of lesioned
connectionist models (see e.g. Plaut & Shallice, 1993).

The CSA makes a number of specific predictions; one is that patients with category-specific
impairments for living things will be disproportionately impaired at processing the
distinctive features of living things compared to all other feature types (i.e. shared features
of living and nonliving things and the distinctive features of nonliving things). We directly
tested this prediction with a property verification task in which participants were asked
whether living and nonliving things had specific shared features (e.g. “butterfly – does it
have legs?”, “ambulance – does it have wheels?”) and distinctive features (e.g. “zebra – does
it have black and white stripes?”, “drum – is it round and hollow?”). Using this task, Moss
and colleagues demonstrated that HSE patient RC was disproportionately impaired at
verifying the distinctive features of living things compared to all other features types (Moss
et al., 1998). Since an appreciation of distinctive features is critical to unique identify
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concepts, the selective loss of distinctive living feature information presumably underlies the
inability of patients with category-specific semantic impairments for living things to
uniquely identify domain members, as assessed in the verbal modality with naming to verbal
description, verbal definitions to spoken concept names, and category fluency (Moss, Rodd,
Stamatakis, Bright, & Tyler, 2005; Moss et al., 1998; Moss et al., 1997).

As we have seen, the statistical characteristics of features belonging to living and nonliving
things differ: property norm data reveals that living things are typified by many strongly
correlated shared features and relatively few weakly correlated distinctive features,
compared to nonliving things which have more and more strongly correlated distinctive
features. We assume that weakly correlated features – in the case of living things, this is the
distinctive features - are more susceptible to the effects of brain damage,. Since the unique
identification of concepts requires access to their distinctive features, the selective loss of
the distinctive features of living things patterns as a category-specific semantic impairment
for living things. In this way, category-specific semantic impairments can arise from a
simple, distributed feature-based system with no explicit category or domain boundaries.
The findings outlined above are consistent with such a distributed, feature-based
representation of conceptual information, i.e. the graded nature of living and nonliving
impairments in neuropsychological patients, disproportionately poor performance on unique
identification vs. categorisation tasks, and the pattern of loss and preservation of specific
features within a concept.

Conceptual processing in the undamaged system
We have also carried out experiments to test the CSA’s predictions with healthy individuals.
Key to these studies is the assumption that correlational strength facilitates conceptual
processing by speeding the rise time in activation of highly correlated features (McRae et
al., 1999; McRae et al., 1997). Based on this premise, the CSA predicts that distinctive
living features (which are less highly correlated) are processed more slowly than shared
living and nonliving features and distinctive nonliving features, which are all more highly
correlated. This prediction was confirmed in a speeded feature verification experiment
(Randall et al., 2004).

In more recent studies, we have attempted to investigate the role of conceptual structure in
more naturalistic experiments using single concept stimuli. These studies used large-scale
regression designs to account for a large variety of relevant variables (including the
confounding variables of e.g. wordform and lemma frequency, number of phonemes, and
phonological neighbourhood density of concepts) without generating unusual stimulus sets.
Principal components analyses (PCA) were used to produce a smaller number of orthogonal
covariates for the behavioural analyses. One experiment presented single spoken words for
lexical decisions, a task which does not require unique identification of the concept. We
hypothesised that since shared features tend to be significantly correlated with many other
features while distinctive features tend to be correlated with relatively few other features
across the norms, shared features should contribute more than distinctive features to early
activation in the network. Furthermore, activation of distinctive features will not be
necessary for the task, as semantic activation through correlated shared features should
provide sufficient evidence that the stimulus is a meaningful word. This former prediction
contrasts with that of Cree and colleagues (Cree et al., 2006), who claim that distinctive
features have privileged status within the system and are activated earlier and more strongly
than shared features. As predicted by the CSA, lexical decision latencies were significantly
facilitated by shared features (Devereux, Taylor, Randall, Ford & Tyler, 2010).
Interestingly, the effect of correlational strength was modulated by the speed of a subject’s
response. Those participants who responded more slowly were sensitive to correlational
strength, suggesting that they may have adopted a more conservative threshold for
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responding, requiring that the set of interconnected shared features within the concept reach
a stable state of co-activation before making a response. Subjects who responded rapidly
showed no effect of correlational strength, suggesting that they were content to make their
response before the set of interconnected features had become mutually co-activated, basing
their response instead on initial feature activation which would have sufficed for “word/
nonword” decisions (Devereux, Taylor, Randall, Ford, & Tyler, 2010). This experiment is
significant because it shows that the number of shared features and their correlational status
within a concept influences the activation of word meanings even in tasks where feature
terms are not explicitly presented.

Taken together, the linguistic experiments with healthy individuals suggest that conceptual
processing is determined, at least in part, by the interaction of correlational strength and
distinctiveness with task requirements. As described above, previous formulations of feature
co-occurrence summed the (squared) correlational coefficients of significantly associated
feature pairs (e.g. McRae et al., 1997), a measure which confounded number of features with
their respective correlational status. When we avoid this confound in our own studies by
using an alternative measure – the mean of the correlation coefficient of all significantly
associated feature pairs – we find weaker effects of correlational strength, suggesting that
the effects of feature co-occurrence may be partly due to the number of features associated
with a concept, at least for linguistic material.

In the series of experiments presented below, we approached conceptual processing from
another perspective – that of visual objects – to test our hypothesis that the conceptual
structure variables determine conceptual processing, irrespective of the input modality.

Testing the CSA in studies with visual objects
Patient studies

The patterns of behavioural impairments in patients with category-specific semantic
impairments for living things have also been investigated with visual objects. One of the
most striking sources of evidence for a selective loss of distinctive feature knowledge of
living things is the drawing performance of patients with category-specific semantic
impairments. For example, patient SE’s drawings of nonliving things from memory (e.g.
helicopter, anchor) were detailed enough for the identification of each concept, while his
depictions of living things contained shared information (e.g. a body, eyes, ears, legs) but
were devoid of distinctive feature information rendering the drawings unidentifiable (Moss
et al., 1997). Lacking distinctive feature information, patients are unable to uniquely identify
object pictures, resulting in a disproportionate picture naming impairment for living over
nonliving things. Concurrently, the sparing of shared information allows patients to
successfully sort object pictures into their respective superordinate category (Moss et al.,
1998).

Studies with healthy participants
Studies with healthy participants allow much more elaborate experiments with better control
over potentially confounding or correlated variables. In a recent experiment, we investigated
the interaction of distinctiveness, correlational strength and task demands in a large-scale
regression study with pictures of concepts (n = 412). Based on the CSA, we predicted that
unique concept identification would be facilitated for concepts with many distinctive
features, and with highly correlated distinctive features. In contrast, we predicted that
categorisation decisions should be facilitated by many shared and highly correlated shared
features. To test these predictions, one group of participants named pictured objects
(Experiment 1), while another group made domain (living vs. nonliving) button-press
responses to the same pictures (Experiment 2). To reduce the number of stimulus variables
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and render them orthogonal to each other in the statistical analyses, we performed a
Principal Components Analysis (PCA) with varimax rotation on 26 variables known to
affect object naming – e.g. phonological, visual and lexico-semantic – as well as conceptual
structure stimulus variables. This PCA generated three conceptual structure components
which we labelled (1) ‘relative distinctiveness’ (loading primarily on mean distinctiveness,
the correlational strength of distinguishing features, and negatively on the proportion of
shared features); (2) ‘correlational strength of shared features’; and (3) a component loading
primarily on a ‘distinctiveness × correlational strength’ measure. The component loadings
were entered together with participant and session variables as predictors in mixed-effects
models of overt naming and domain decision RTs (Baayen, 2008; Baayen et al., 2008). As
predicted by the CSA, uniquely naming an object was facilitated by a larger number and
greater correlational strength of distinctive features (as indexed by the ‘relative
distinctiveness’ and ‘Distinctiveness × correlational strength’ components). The greater
correlational strength of shared features was associated with slower naming responses,
suggesting that concepts with many highly correlated shared features activate a large
semantic cohort of concepts sharing the same features, thereby interfering with unique
concept identification (see also Humphreys, Price, & Riddoch, 1999). In contrast, domain
decisions were facilitated by more highly correlated shared features, as well as more shared
relative to distinctive features, consistent with the CSA’s predictions (Taylor et al.,
submitted).

These findings are generally consistent with the CSA’s key claim that feature correlation,
distinctiveness and task demands interact to determine how visual concepts are processed in
brain-damaged and healthy systems. An important advance in our recent experiments has
been the inclusion of relational measures of conceptual structure (e.g. distinctiveness ×
correlational strength), which reflect our understanding of conceptual processing as the
flexible and concerted activation of clusters of interacting features.

We now turn to research which aims to understand how concepts are represented in the
brain. Below, we outline a neuro-cognitive approach which integrates the fundamental
principles of the CSA with the neural architecture of the hierarchical object processing
model in the ventral stream.

Integrating cognitive and neural models
Historically, research on how objects are processed and represented in the brain has
focussed on attempts to localise neuroanatomical regions which code for objects or object
features particular to a certain category. This research has typically ignored the meaning
aspects of objects and has focussed on their sensory properties, which has lead to attention
being primarily directed towards posterior sites in the ventral stream. How object meaning is
neurally represented has largely been a separate research topic, and one that has focussed on
more anterior temporal regions. Attempts to relate these two approaches, to understand how
sensory inputs give rise to meaningful representations – how perception becomes conception
- is rare.

Our research has been aimed at integrating these two approaches in order to understand how
the perceptual properties of objects generate meaning representations. Here, we first
describe a model of feature-based, hierarchical sensory processing in the ventral stream
which provides a detailed account of the neural bases of object processing in non-human
primates. We discuss the extent to which it can be applied to the human system, and then
describe a neuro-cognitive approach which instantiates the cognitive model in the neural
system within the neurobiological constraints offered by the hierarchical model of object
processing. We suggest that this neuro-cognitive approach can account for various
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seemingly disparate functional imaging and neuropsychological findings and provides a
promising framework for studying how the brain represents and processes the meanings of
familiar objects.

Hierarchical object processing in non-human primates
The hierarchical model of visual object processing claims that increasingly more complex
visual features are coded from posterior to anterior sites in ventral occipitotemporal cortex.
Neurons in posterior occipital sites code for simple object features such as line orientation,
length and width, whereas neurons in more anterior sites code for increasingly more
complex combinations of these visual object features (Goebel, Muckli, & Kim, 2004; Hubel
& Wiesel, 1977; Hubel & Wiesel, 1962; Mishkin, Ungerleider, & Macko, 1983;
Riesenhuber & Poggio, 1999; Riesenhuber & Poggio, 2002; Tootell, Nelissen, Vanduffel, &
Orban, 2004; Ungerleider & Mishkin, 1982; Van Essen, 2004). Area TE in the macaque
brain (corresponding to human anterior inferotemporal cortex, or IT) has traditionally been
considered the end-stage of the visual processing hierarchy, as it is the most anterior region
in ventral temporal cortex to receive purely visual inputs. TE neurons coding for similar
combinations of features cluster together in columns perpendicular to the cortical surface,
while topographical similarity is not strictly preserved parallel to the cortical surface, where
adjacent columns may code for dissimilar features (Tamura, Kaneko, & Fujita, 2005;
Tanaka, 1993; Tanaka, 1996; Tanaka, 1997; Tanaka, 2003).

It has been suggested that perirhinal cortex in the anteromedial temporal lobe, rather than
TE, represents the culmination of the visual object processing hierarchy of complexity
(Bussey & Saksida, 2002; Murray & Richmond, 2001; Murray, Bussey, & Saksida, 2007).
This hypothesis is based on the complex visual stimulus response characteristics of
perirhinal cortex neurons and the fact that the majority of inputs to the perirhinal cortex are
from TE (Suzuki & Amaral, 1994). Thus, perirhinal cortex may code for the most complex
conjunctions of features, information which will be especially important when
discriminating between objects with many ambiguous visual features, i.e. features which do
not readily discriminate between objects because those features are shared by many objects
(see Murray, Bussey, & Saksida, 2007, for an overview). Perirhinal cortex appears to code
for complex visual feature combinations by binding together information stored at posterior
sites (Higuchi & Miyashita, 1996).

Familiar objects are not only coded by their visual object features, but also by other sensory
features, such as tactile and auditory features. How are these multimodal object
characteristics represented and processed? The starting point appears to be unisensory
feature processing in each respective sensory cortex. Similar distributed, feature-based
hierarchical streams of feature processing may exist not only in the visual, but also in other
sensory modalities, most notably the auditory (Rauschecker & Tian, 2000; Tian, Reser,
Durham, Kustov, & Rauschecker, 2001) and somatosensory (Iwamura, 1998) systems. The
different sensory streams do not appear to operate in isolation, but receive reciprocal
connections from other sensory modalities at potentially every stage of processing (Falchier,
Clavagnier, Barone, & Kennedy, 2002; Rockland & Ojima, 2003). These multisensory
interactions appear to play a modulatory role (Lakatos, Chen, O’Connell, Mills, &
Schroeder, 2007), for example by enhancing the sensory perception of multimodal objects in
noisy environments (Macaluso, 2006).

Another approach to multimodal object processing has been to identify sites where different
sensory streams converge. Since perirhinal cortex receives input from all other sensory
modalities via uni- and polymodal association areas (Suzuki & Amaral, 1994), it has been
suggested that this structure is critical for the formation of multimodal object representations
(Murray, Malkova, & Goulet, 1998; Simmons & Barsalou, 2003). Indeed, single perirhinal
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cortex neurons show multimodal response properties, responding both to visual and auditory
stimuli (Desimone & Gross, 1979). Moreover, monkeys with bilaterally aspirated perirhinal
and entorhinal cortices are severely impaired in relearning a crossmodal tactile-visual
delayed non-matching to sample task compared to intact and bilaterally amygdalectomised
control animals (Murray et al., 1998; see also Parker & Gaffan, 1998). Thus, perirhinal
cortex may bind together not only visual information (Higuchi & Miyashita, 1996), but also
polymodal information stored at posterior sites to form multimodal object representations.

In summary, non-human primate research has provided us with a detailed model of object
processing which provides a strong foundation for understanding human object processing.
Visual objects are represented and processed in a feature-based, hierarchically-organised
system extending from posterior occipital to anteromedial temporal cortex, with most
complex feature conjunctions processed in perirhinal cortex. Similar feature-based
hierarchies may be present in every sensory stream, and the recipient of their outputs, most
notably perirhinal cortex, may play a critical role in binding unimodal information into
multimodal object representations. However, this hierarchical model has generally ignored
the meaning of object stimuli. This central aspect of visual object processing – how sensory
inputs are processed as meaningful entities – determines how an organism interacts with
objects it encounters in the world; e.g. ‘do we eat it or run from it?’ Towards this end, it is
critical to integrate cognitive models of conceptual knowledge and neural models of visual
object processing in order to understand how the meanings of objects are represented and
processed in the brain.

Hierarchical object processing in humans?
Feature-based, hierarchical models of object processing similar to the non-human primate
model have been proposed for the human system (Damasio, 1989; Simmons & Barsalou,
2003). For example, the Conceptual Topography Theory (CTT; Simmons & Barsalou,
2003), a distributed, feature-based model based on Damasio’s convergence zone theory
(Damasio, 1989), claims that increasingly more complex sensory and motor object features
are processed in their respective cortices in hierarchically organised processing streams, and
that convergence zones at different stages of the hierarchy bind features coded in anterior
sites (Barsalou, Simmons, Barbey, & Wilson, 2003; Barsalou, Solomon, & Wu, 1999;
Damasio, 1989; Kreiman, Koch, & Fried, 2000; Simmons & Barsalou, 2003).

However, the bulk of human functional imaging findings on object processing have not
focussed on the hierarchical aspect of object processing derived from non-human primate
models. Some investigators have suggested instead that IT is organised according to the kind
of visual features that differentiate between different categories of objects, such as animals
and tools. On this account, objects in different categories will be processed in regionally
distinct portions of ventral temporal cortex to the extent that the features coded there are
relevant to the objects (Chao, Haxby, & Martin, 1999; Martin & Chao, 2001; Martin,
Ungerleider, & Haxby, 2000; Mummery, Patterson, Hodges, & Wise, 1996). For example,
Chao and colleagues (1999) found that animal stimuli activated lateral fusiform gyrus more
than tools, while tools activated the medial fusiform more than animals. Since these regions
were activated across all of their tasks, Chao and colleagues suggested that these regions
code for amodal semantic object form features important for the respective object category
(Chao et al., 1999).

As several investigators have pointed out (e.g. Haxby et al., 2001; Kanwisher, 2003),
findings of category-specific functional activations in ventral temporal cortex are consistent
with a distributed, feature-based model of object representations. That is, columns of
neurons coding for stimulus features found more commonly in animals may cluster together
in lateral fusiform gyrus, while columns coding for features more commonly found, for
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example in vehicles may be located in medial fusiform gyrus (cf. Tanaka, 2003). Indeed,
Haxby and colleagues (2001) demonstrated that objects in different categories produced
distributed and overlapping patterns of activation in ventral temporal cortex. Notably, the
distributed patterns of responses discriminated between object categories even when the
maximally responsive voxels were removed from the analyses. These results suggest that
object form features are topographically coded throughout ventral temporal cortex such that
whole objects can be represented by distinct patterns of distributed, high and low amplitude
responses (Object Form Topography model; see also Haxby, Gobbini, Furey, Ishai, Schuten,
& Pietrini, 2001; Haxby, Ishai, Chao, Ungerleider, & Martin, 2000; Ishai, Ungerleider,
Martin, Schouten, & Haxby, 1999; O’Toole, Jiang, Abdi, & Haxby, 2005).

If the human ventral occipitotemporal processing stream is hierarchically organised by
visual feature complexity, as has been claimed for non-human primates, then it is plausible
to assume that different regions of the stream should be differentially engaged depending on
the complexity of visual analyses needed to perform the task at hand. This hypothesis was
tested in fMRI studies which asked participants to perform different tasks, requiring access
to different kinds of featural information, on the same visual objects. In one task participants
named the domain – living vs. man-made – to which an object belonged (domain-level
naming), while in a second task they named the identity of the same objects (basic-level
naming; e.g., tiger). While the domain-level naming task could be performed on the basis of
simple visual features (e.g., curvature), the basic-level naming required much more detailed
visual analyses in order to discriminate between visually similar objects (e.g., a tiger from a
lion). fMRI activity during domain-level naming was associated with posterior occipital and
ventral temporal activation, while activity during basic-level naming extended into the
anteromedial temporal lobe including the perirhinal cortex (Tyler et al., 2004; see also Moss
et al., 2005). If the ventral stream is organised according to amodal semantic category
features, then BOLD activations to the same picture stimuli should have been identical in
each task condition. These findings therefore support a hierarchical organisation of visual
stimulus processing in the ventral occipitotemporal lobe which extends into the anteromedial
temporal lobe, in which increasingly complex feature conjunctions are coded from posterior
to anterior regions and are engaged as a function of the complexity of visual analyses
required to solve the task. Data from studies of patients with lesions in the anteromedial
temporal lobe including the perirhinal cortex further support the hypothesised role of the
perirhinal cortex in complex visual discriminations. These patients have greater difficulties
discriminating complex visual objects (Lee et al., 2005; Moss et al., 2005; Moss et al.,
1998), especially those with many ambiguous features (Barense, Henson, Lee, & Graham,
2010; Barense et al., 2005).

The proposal from non-human primate studies that the human perirhinal cortex is critically
involved in processing multimodal object representations has also been supported by recent
MRI studies (Taylor, Stamatakis, & Tyler, 2009; Taylor, Moss, Stamatakis, & Tyler,
2006a). In an fMRI study, healthy subjects were presented with a combination of unimodal
stimuli and audiovisual stimuli. Unimodal stimuli consisted of two parts of a sound or two
parts of a picture, and the crossmodal conditions consisted of a picture and a sound. Subjects
had to decide whether the stimuli went together or not. Compared to the unimodal
integration conditions, crossmodal integration resulted in more functional activity in the
perirhinal cortex (Taylor, Moss, & Tyler, 2006b) and in a region in posterior superior
temporal sulcus/middle temporal gyrus (pSTS/MTG; Beauchamp, Argall, Bodurka, Duyn, &
Martin, 2004a; Beauchamp, Lee, Argall, & Martin, 2004b). However, only perirhinal cortex
activity was sensitive to the meaning of the crossmodal stimuli, suggesting that pSTS/MTG
has a heteromodal, but not semantic, function. These findings were confirmed in a voxel-
based correlation analysis of patients with various locations of brain damage who performed
the unimodal and crossmodal integration tasks: decreased neural integrity of the
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anteromedial temporal cortex (but not pSTS/MTG) was associated with increasingly poorer
crossmodal compared to unimodal integration performance (Taylor et al., 2009).

Taken together, these findings provide support for a distributed, feature-based, hierarchically
organised object processing system in the human ventral temporal lobe, similar to the non-
human primate system, which codes for increasingly more complex combinations of
features from posterior to anterior and anteromedial regions. However, as noted above, this
model stops short of explaining the goal of object processing – to determine an object’s
meaning. To understand how the meanings of visual objects are achieved additionally
requires a cognitive model of conceptual representations.

Towards a neuro-cognitive account
The neural and cognitive models share the basic architectural assumptions that object
representations are feature-based, i.e. each object can be represented by the totality of their
individual features, and that these features are interconnected in a distributed system. A
further shared assumption is functional in nature, namely that both models assume that
objects are represented by the co-activation of the object’s constituent features. We do not
believe that the verbal labels generated in property generation studies or from computational
feature extraction methods represent sensory features as defined by the hierarchical models.
Instead, the verbal feature labels most likely reflect groups of neural responses bundled
together by virtue of their having been encountered and processed. Starting from these basic
principles, we suggest that neuro-cognitive predictions of the neural bases of meaningful
object processing can be generated by integrating what is known about the informational
requirements of the task, the internal feature-based structure of concepts, and the
hierarchical nature of neural object processing.

Unique object identification requires shared and distinctive features to be integrated
together. For example, knowing that an object <has stripes> does not allow us to identify
what the object is (the object could be a candy cane or a tiger). Instead, the distinctive
feature information must be conjoined to the shared properties that provide broad category
information: <has eyes>, <has four legs> etc. and <has stripes>. However, the more shared
(non-distinctive) properties an object concept has, the more similar it is to other concepts,
and the more confusable the object. As described by the CSA and other similar models,
living things are characterised by large clusters of mainly shared features, and have
relatively fewer distinctive features. Nonliving things, on the other hand, are composed of
smaller clusters of features, with relatively fewer shared features and more distinctive
features. An integrated neuro-cognitive approach therefore predicts that more confusable
objects – those with relatively few distinctive compared to shared features (e.g. living
things) – will require more complex combinations of visual features for their identification
than less confusable objects – those with a greater proportion of distinctive to shared
features (e.g. nonliving things). Since the complexity of visual feature combinations
increases from posterior to anterior neural sites, this predicts greater anteromedial temporal
lobe involvement for the identification of confusable compared to less confusable objects.

These predictions were tested in an event-related fMRI study (Moss et al., 2005) in which
healthy participants performed both a basic-level naming task (e.g., “tiger”) and a domain-
level naming task. In contrast to the fMRI study design reported previously (Tyler et al.,
2004), Moss and colleagues presented participants with matched sets of living and nonliving
things which were carefully equated on a variety of relevant variables. As predicted, basic-
level naming of living things activated the anteromedial temporal lobes more than the basic-
level naming of nonliving things in both sets of matched stimuli. No such differences were
observed for domain-level naming.
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Based on these findings, Moss and colleagues predicted that only patients with damage to
anteromedial temporal regions would have a marked semantic deficit for living things, while
patients without extensive left anteromedial temporal damage may have semantic
impairments, but not specific to living things. These predictions were tested in a behavioural
study of two groups of neuropsychological patients matched on the severity of their
semantic impairment: HSE and semantic dementia patients who both typically suffer from
semantic deficits. A conjunction analysis was performed to determine the spatial the extent
of these patients’ lesions. This anatomic analysis revealed that the semantic dementia
patients suffered from more lateral, and the HSE patients more anteromedial temporal lobe
damage. Consistent with our predictions, the HSE, but not semantic dementia, patients
performed more poorly with living compared to nonliving concepts across a variety of tasks
(i.e. picture naming, property verification, category fluency; Moss et al., 2005, see also
Moss et al., 2002, and Moss et al., 1998). Recently, we analysed the performance of 8 HSE
patients on a picture naming task with 126 realistic object pictures, which consisted of a
mixture of living and nonliving things. Generalised mixed effects models were performed
with the predictors lemma frequency of the object name, rated familiarity, rated visual
complexity, the number of features in the concept, mean distinctiveness, mean correlational
strength, and distinctiveness × correlational strength. With respect to the conceptual
structure variables of interest, patients performed more poorly with concepts which had a
lower correlational strength of shared features (z = 2.83, p < .01), and, critically, a relatively
lower correlational strength of more distinctive features (the distinctiveness × correlational
strength variable; z = 2.58, p = .01), characteristics which are typical of living things. In this
way, the integrated neuro-cognitive framework provides a distributed cognitive explanation
of a hitherto unexplained neuropsychological syndrome: category-specific semantic
impairments for living things which are typically associated with anteromedial temporal
lobe damage (Forde & Humphreys, 1999; Gainotti, Silveri, Daniele, & Giustolisi, 1995).

This model of the processing of meaningful visual objects in humans can be extended to
meaningful, multimodal objects. In the crossmodal integration studies described earlier, sets
of both living and nonliving things were included in the unimodal and crossmodal
conditions. As explained above, we hypothesised that perirhinal cortex would be critically
involved in the crossmodal integration of living compared to nonliving things. This
prediction was confirmed both in the fMRI study, where perirhinal cortex BOLD activity
was significantly greater during the crossmodal integration of living compared to nonliving
things (Taylor et al., 2006b), and in the voxel-based correlation study, where decreased
neural integrity of anteromedial temporal lobe regions was associated with significantly
poorer crossmodal integration performance with living compared to nonliving things (Taylor
et al., 2009). In contrast, neither BOLD activity nor signal intensities in the pSTS/MTG
region were associated with semantic domain, suggesting that this region performs a
heteromodal, but pre-semantic analysis of the multimodal stimulus inputs.

We have developed the neurocognitive model further by taking into account the massively
reciprocal connectivity in the ventral occipitotemporal object processing system (Felleman
& Van Essen, 1991). This basic principle of neural organisation suggests that object
processing may not be a strictly feedforward process, but may also be driven by recurrent,
feedback connections. Spatiotemporally sensitive imaging techniques have indeed shown
that the initial feedforward sweep through the ventral stream hierarchy is followed by
recurrent interactions between frontal cortex and ventral temporal regions (Bar et al., 2006;
Lamme & Roelfsema, 2000). Although it remains unclear what drives these recurrent
interactions, we recently tested the hypothesis that one factor modulating recurrent activity
is the degree of semantic integration required either by the task or the conceptual structure of
the stimuli. We recorded magnetoencephalographic (MEG) signals while participants
performed a low and high semantic integration demand task (i.e., domain decision and
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picture naming requiring unique object identification) with visual objects representing more
or less confusable concepts (i.e., living and nonliving things). As predicted, source
reconstructed time-courses and phase synchronisation measures showed increased recurrent
interactions between posterior and anterior regions as a function of both semantic integration
manipulations (Clarke, Taylor, & Tyler, in press; see Figure 3). Moreover, a related
electroencephalography study using crossmodal stimuli showed that higher integration
demands on the perirhinal cortex, in the form of multimodal integration, was associated with
earlier top-down feedback from anterior sites (around 50-100ms post-stimulus onset), and
that this feedback was modulated by the meaningfulness of the crossmodal stimuli (i.e.
semantic congruency) (Naci et al., 2006). Thus, these results support the hypothesis that
semantic integration demands – as driven by task or conceptual structure – interact with the
hierarchical object processing system to determine the spatiotemporal dynamics of
meaningful object processing.

Summary and directions for future research
The CSA is a distributed, feature-based account of conceptual representation and processing
of concrete concepts. The model claims that semantic feature space is not amorphous, but is
internally structured primarily according to feature distinctiveness and feature correlation.
The statistical properties of features impart an internal conceptual structure to concepts, and
interact with each other and task demands to determine how concepts are processed in
healthy and damaged systems. We view this as a multidimensional process: bundles of
features become activated during conceptual processing, and their multidimensional feature
characteristics determine how quickly which features become activated.

Many important issues on the nature of conceptual representations and processing await
empirical investigation. Like Jackendoff (1983), we view the conceptual space as lying at
the interface between linguistic and sensory-motor systems. Therefore, one key question
concerns the nature of the interface and possible interactions between conceptual
information and the linguistic system. This general issue has been addressed by Vigliocco
and colleagues in their Featural and Unitary Semantic Space hypothesis (FUSS; Vigliocco,
Vinson, Lewis, & Garrett, 2004; Vinson, Vigliocco, Cappa, & Siri, 2003), a distributed,
feature-based account of noun and action concepts. The FUSS hypothesis assumes two
levels of meaning representation. The first is a ‘conceptual level’, where features are
organised according to the perceptual-motor modality in which they are experienced (see
also Barsalou, 1999; Martin, 2007; Warrington & McCarthy, 1983; Warrington & Shallice,
1984). The second level is ‘lexico-semantic’, where statistical properties of features are
represented (including feature saliency, sharedness/distinctiveness, and feature correlation)
and which binds with features at the conceptual level. A two-tiered architecture was
postulated in order to allow for different mappings between conceptual and lexico-semantic
features, consistent with cross-cultural variability in lexicalisation. Vigliocco and colleagues
claim that features at the lexico-semantic level interface with the linguistic system, thereby
generating conceptual structure effects in linguistic tasks. This general principle of a
conceptual structure-linguistic interface is consistent with our own view, and provides a
framework for the challenging task of specifying the mapping between linguistic forms and
meaning as a function of conceptual structure and task demands.

Another key and open issue is the relationship between conceptual information and the
perceptual and motor systems. Some researchers have suggested that conceptual information
is embodied by the sensory and motor systems which process the respective information
(Allport, 1985; Barsalou, 1999; Barsalou et al., 2003; Martin, 2007). However, an embodied
account of conceptual knowledge has difficultly explaining several different conceptual
phenomena, such as the existence of abstract concepts, and dissociations of sensory-based

Taylor et al. Page 17

Lang Cogn Process. Author manuscript; available in PMC 2013 June 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



and modality-independent conceptual knowledge in brain-damaged patients (e.g. associative
visual agnosia). These and other findings (see e.g. Mahon & Caramazza, 2008) suggest that
an additional level of conceptual representation must exist beyond conceptual information
grounded in modality-specific input and output fields. Following Damasio (1989), Simmons
and Barsalou (2003) and Murray and colleagues (Murray et al., 2007; Murray & Richmond,
2001), we suggest that modality-independent conceptual information may be instantiated by
the binding functions of crossmodal convergence zones. As described above, one region
fulfilling the requirements of such a conceptual binding site is the perirhinal cortex. The
conceptual binding sites may in turn provide the modality-independent format required to
interface with the linguistic system (Jackendoff, 1983; Jackendoff, 2002).

Conceptual processing appears to rely on the hierarchically organised sensory streams.
However, modality-independence may be achieved by downstream sites of integration such
as (i.e. not necessarily limited to) the perirhinal cortex. The neurocognitive account outlines
a method for combining the cognitive principles of distributed conceptual processing with
the neurobiological constraints of hierarchical sensory system and crossmodal integration
binding sites. We believe these kinds of neurocognitive approaches which combine data
from distinct research traditions provide a rich framework based upon which we may
significantly further our understanding of the neural bases of conceptual knowledge. It will
be important for future studies to address the outstanding questions outlined above with
multimodal behavioural and imaging methods in healthy and brain-damaged individuals.
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Figure 1.
Hypothetical conceptual structures for tiger and knife, where line thickness correlates with
correlational strength, and ellipse thickness with distinctiveness. Following brain damage,
the weakly correlated features are lost. Since living things’ distinctive features tend to be
less strongly correlated than nonliving things’ distinctive features, brain damage is more
likely to result in the inability to uniquely identify living things (i.e. a category-specific
semantic impairment for living things).
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Figure 2.
Examples of the ‘distinctiveness × correlational strength’ variable designed to capture the
relationship between correlational strengths of features with different distinctiveness values
within an individual concept, using concepts from the prototypical living and nonliving
categories (i.e., animal and tool, respectively): (a) the more distinctive features in the
concept “pig” have a weaker correlational strength than the shared features of “pig”, which
are more strongly correlated, resulting in a negative slope value for ‘Distinctiveness ×
correlational strength; (b) the distinctive features of “screwdriver” are more highly
correlated than their shared features, resulting in a positive value for ‘Distinctiveness ×
correlational strength’.
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Figure 3.
A magnetoencephalographic (MEG) study study showed significant differences in phase-
locking (p < .05 corrected) between (a) regions of interest in the left fusiform gyrus and
anterior temporal cortex during experimental conditions with high semantic integration
demands, i.e. (b) basic compared to domain-level picture naming and (c) basic-level naming
of living compared to nonliving things. These findings indicate that the degree of semantic
integration required either by the task or the conceptual structure of the stimuli modulates
recurrent activity in the object processing system during meaningful object processing
(adapted from Clarke, Taylor, & Tyler, in press, Figures 4 and 5).
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