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Abstract
Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the
complexity from encoder to decoder, whereas no compression performance degrades, at least in
theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored
at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI)
frame generated from other frames available only at decoder. However, the ultimate decoding
performances of DVC are based on the assumption that the perfect knowledge of correlation
statistic between WZ and SI frames should be available at decoder. Therefore, the ability of
obtaining a good statistical correlation estimate is becoming increasingly important in practical
DVC implementations. Generally, the existing correlation estimation methods in DVC can be
classified into two main types: pre-estimation where estimation starts before decoding and on-the-
fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential
changes between frames might be unpredictable or dynamical, OTF estimation methods usually
outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g.,
sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using
expectation propagation (EP), where correlation estimation is performed OTF as it is carried out
jointly with decoding of the factor graph-based DVC code. Among different approximate
inference methods, EP generally offers better tradeoff between accuracy and complexity.
Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art
DISCOVER codec and other cases without correlation tracking, and achieves comparable
decoding performance but with significantly low complexity comparing with sampling method.
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1. INTRODUCTION
Nowadays, many-to-one digital video applications are becoming more and more popular,
such as video surveillance with multiple tiny cameras, where each tiny camera has only
limited communication bandwidth, computational power and battery life. Therefore, it is
extremely crucial to restrict the encoding complexity to reduce the power consumption, as
well as guarantee the encoding performance to save the communication bandwidth. Driven
by these emerging applications, the industry is anxious for an entirely new coding paradigm,
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which could significantly reduce the encoding complexity, even though the expense is to
increase decoding complexity at the server side. Although the traditional video coding
standard (e.g., H.264) is very promising in a centralized setup, it could not be easily tailored
to fit such a new coding paradigm, as the encoder of H.264 standard has large computational
complexity due to the existence of motion estimation. Fortunately, distributed video coding
(DVC)1, 2 provides a workaround for these difficulties, where the complexity could be
efficiently shifted from the encoder side to the decoder side. The DVC technique is based on
the distributed source coding (DSC) principle brought a paradigm shift from the
conventional centralized video coding architecture to a totally distributed manner, where the
computationally-expensive motion compensation and correlation extraction procedures will
be taken at the decoder side.

From the information-theoretic perspective, DSC refers to separate compression and joint
decompression of multiple correlated sources. DSC started as an information-theoretic
problem in the renowned 1973 paper of Slepian and Wolf.3 Slepian and Wolf considered the
lossless compression of two physically separated sources, and demonstrated that, roughly
speaking, there is no performance loss compared to joint compression as long as joint
decompression is performed. In 1976, Wyner and Ziv4 considered a lossy version (i.e., with
a distortion constraint) of the asymmetric Slepian-Wolf (SW) problem known as Wyner-Ziv
(WZ) coding, where one source is available at the decoder as side information (SI) (e.g,
through entropy coding). Wyner and Ziv showed that for some particular correlation models
(e.g. Gaussian, Laplace, etc.), there is no performance loss due to the absence of SI at the
encoder.

DVC exploits WZ coding principles by performing computationally-expensive motion
compensation at the decoder instead of at the encoder. The beauty of WZ coding (DSC in
general) is that there is no need for the encoder to be aware of the SI, which makes it
possible to accomplish predictive coding without encoder motion compensation. In a
nutshell, a block of pixels/coefficients in a certain video frame (a.k.a., WZ frame) could be
efficiently WZ encoded into a stream (i.e., syndromes) without any reference to any other
video frames. To recover a WZ frame at the decoder side, a SI frame will be first generated
based on the received key frames through motion compensation, where key frames can be
decoded independent of other frames. Then the WZ decoder could decompress the WZ
frame based on the received syndromes and the generated SI through DSC principle. The
state-of-the-art WZ coding designs based on turbo, LDPC, and other graph-based codes
have been widely used in DVC studies (see5–7 and references therein).

Note that a key difference between conventional WZ coding and DVC is that the correlation
statistics among sources in the former case is usually assumed to be known as a constant at
both the encoder and decoder. In DVC, however, such assumption is normally far-fetched,
as correlation statistics between WZ and SI frames would be unknown and dynamically
change over time and the location of pixels/coefficients, no matter how well SI frame is
generated. Indeed, due to the non-stationarity of real scenes, WZ coding in DVC has to deal
with varying correlation noise statistics. Therefore, estimating correlation statistics has been
identified as one of key challenges in DVC.

Most DVC designs so far (with few exceptions) usually tackle the problem by modeling
correlation noise, i.e., the difference between the WZ and SI frames, as a Laplace
distribution parametrized by the correlation parameter λ. The non-stationarity of between
scenes can be dealt mainly by estimating correlation parameter λ (e.g., on the block or
frame level) based on previously decoded frames,8–12 which usually refers to the pre-
estimation mode as the estimation starts before decoding. However, in reality, pre-
estimation mode itself could not guarantee the precise estimate of correlation parameter, as
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potential changes between frames (especially for high motion sequences) might be
unpredictable. Therefore, a more practical approach (i.e., on-the-fly (OTF) correlation
estimation mode) is to refine the pre-estimated correlation iteratively with decoding, where
the currently decoded information can be used to improve the estimate and vice versa.

In this paper, we propose an efficient way for handling OTF correlation estimation between
frames by augmenting the factor graph model of belief propagation (BP) based decoder to
include correlation variable nodes and incorporating deterministic approximation (i.e.,
expectation propagation (EP)) algorithm to tackle the intractability in calculating the exact
posterior probability (i.e., belief) of each correlation variable node. The proposed adaptive
DVC framework with EP based OTF correlation estimator is carried out in pixel-domain
with a feedback channel for rate-adaptive decoding using joint bit-plane LDPCA code.13

This paper’s contributions can thus be summarized as:

1. We carefully constructed a single factor graph that connects BP based joint bit-
plane SW decoder and EP based correlation estimators together for enabling the
OTF correlation estimation between SI and WZ frame.

2. We modeled the correlation parameter λ in the context of Gamma distribution and
tackled the intractability in calculating the exact posterior distribution of λ through
EP based deterministic approximation method.

3. As one of deterministic approximation method, the proposed EP based OTF
correlation estimation significantly reduced the computational complexity
compared with sampling based methods.14, 15

The paper is organized as follows. In Sections 2, we outline the previous work of correlation
estimation and discusses the correlation model used in DVC. The proposed adaptive DVC
framework including factor graph construction and message passing rules is explained in
Section 3. Moreover, in Section 4, we derived the EP based correlation estimation scheme.
In Section 5, we verified the proposed framework through experimental results built on a
pixel-based DVC setup. The paper concludes with Section 6.

2. RELATED WORK OF CORRELATION ESTIMATION
Since the capability of correlation parameter estimation has strong impact on the WZ video
coding efficiency, many research work has been done for improving correlation estimation
in the literature. At the beginning, most WZ video coding schemes assume that the
correlation noise statistics are stationary along both in time and space,5, 16, 17 where the
correlation noise statistics could be obtained through training video sequences. However, the
aforementioned assumption and estimation methods have many limitations, as the
correlation statistics strongly depends on the video contents and may vary with both time
and space. To bridge this gap, non-stationary correlation models (e.g., on the block or frame
level) are studied in papers.9–12, 18, 19

In paper,9 the correlation is modeled as Laplace distribution, but to capture the non-
stationary nature of the scene, the correlation parameter was varied from pixel to pixel. The
noise power increases if the pixel difference between motion compensated blocks in the two
key frames used to generate side information is high; otherwise, it decreases. The reason
behind this method is that if the difference between the two key frames is high then we have
less confidence in their average and the noise variance is higher. Thus, incorporating this
model within SW decoding ensures that the channel code (employed for SW decoding)
assigns higher reliability to pixels that have been predicted with higher accuracy, that is, the
difference between the key frames is smaller. Similarly, in paper,10 the Laplace distribution
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is also used with the parameter pre-estimated at the sequence, frame, block, and pixel level
from decoded frames at the decoder. Improved pre-estimated channel estimators11, 12 are
proposed that attempt to address the difficulty in adaptive correlation in smaller spatial
regions due to the difficulty in acquiring sufficient statistics. The above correlation models
determine their parameters based on the noise realization in a given temporal or spatio-
temporal neighborhood. In paper,19 a side information dependent correlation noise model is
proposed where the standard deviation of the Laplacian model is a function of a particular
realization of the side information at each pixel position.

Note that, non-stationarity of a scene8–12, 19 is addressed by changing correlation model in
advance of decoding and supplying the SW decoder with different initial reliability
estimates. However, once SW decoding starts (e.g., via BP), the correlation is fixed.

Since the SW decoding process refines starting beliefs, our prior works14, 15 demonstrated
that unifying the process of correlation estimation using sampling method and joint bit-plane
decoding into a single joint process (i.e., OTF estimation mode) can provide better statistics
estimate and consequently improved performance for both pixel- and transform-domain
DVCs. Additionally, this unification of correlation estimation and SW decoding will also
enable the correlation estimator to take into account side information statistics and any of
the methods of8–12 can be used as an initial point that will be refined during SW decoding.
While OTF estimation is also discussed in our prior works,14, 15 our prior schemes were
based on the sampling method for dynamically tracking the correlation statistics, which
result a large computational complexity at the decoder side. Instead of incorporating particle
filtering method into BP algorithm for correlation tracking,14, 15 an ultra-low complexity
alternative (i.e. EP algorithm) is studied and proposed in this paper. Before introducing the
proposed EP based framework, the Laplacian correlation model will be first described in the
next subsection.

2.1 Laplacian Correlation Model
The correlation between the source and side information (SI) frames is modeled as a virtual
communication channel which can be expressed in the form X = Y +N, where X is the
source frame to be recovered, Y is the SI frame and N is the virtual channel noise. Based on
experimental observations, most DVC designs so far10, 20, 21 (with few exceptions) model
the correlation noise as Laplace distribution as follows:

(1)

where WZ(x, y) and SI(x, y) are the pixel values at the location (x, y) in WZ and SI frames,
respectively, p(·) denotes the probability density function. Here, λ is the Laplace distribution
parameter defined as

(2)

where, σ2 is the variance of residuals between WZ and SI frames. Moreover, the correlation
parameter λ can vary along both time and space, since the residual errors are usually large,
when there are high motions between frames or illumination changes within a frame.

3. SYSTEM ARCHITECTURE
To precisely catch the correlation between frames while recovering source frames, we
proposed an adaptive DVC framework. In Bayesian perspective, capturing correlation
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corresponds to estimating the posterior distribution of correlation parameter. Since a factor
graph, as a particular type of graphical model, enables efficient computation of marginal
distributions through message passing algorithm, our proposed framework is carried out on
the factor graph as shown in Fig. 1. The key steps of the proposed adaptive DVC framework
can be outlined as follows: 1) factor graph construction: design a factor graph with
appropriately defined factor functions to capture and connect SW coding and correlation
tracking (see Section 3.1); 2) message passing algorithm implementation: perform message
passing algorithm on the constructed factor graph to calculate the posterior distribution of
interested variables (see Section 3.2).

3.1 Factor graph construction
DVC, a video compression technology based on DSC principle, is usually implemented on a
factor graph utilizing WZ coding scheme. Compared with standard DVC, the factor graph
(see Fig. 1) of the proposed adaptive DVC with correlation tracking consists of two regions,
where Region I refers to the correlation parameter tracking and Region II corresponds the
traditional WZ coding. In Fig. 1, variable nodes (usually depicted by a circle) denote
unknown variables such as coded bits, correlation parameter, and factor nodes (depicted by
small squares) represent the relationship among the connected variable nodes.

3.1.1 Joint bit-plane SW coding (Region II)—WZ coding, a.k.a. the lossy version of
SW coding, is usually realized by quantization followed by SW coding of the quantized
indices based on channel coding.22 Here, for WZ coding, we carry out LDPC based joint bit-
plane SW coding after performing quantization, the factor graph of which is described as
Region II in Fig. 1.

Note that we suppose a N-length source sample xi, i = 1, ⋯ , N is quantized into Q[xi] using
2q levels quantization, where q = 3 is taken as an example in Region II of Fig.1. We denote

 as the binary format of the quantization index Q[xi], and denote

 as the block which combines all the bit variables together.
The block B is then encoded using LDPC-based SW codes and generates an M-length
syndrome bits S = s1, s2, ⋯ , sM, which results in a qN : M SW compression ratio.

Similar to the standard LDPC decoding, the factor nodes f1, f2, ⋯ , fM in Region II take into
account the constraints imposed by the received syndrome bits. Thus, the factor function of
factor node fa, a = 1,…, M is defined as

(3)

where x̃a denotes the set of neighbors of factor node fa, and ⨁ x̃a denotes the binary sum of
all elements of the set x̃a.

Let a N-length sample yi, i = 1, ⋯ , N, the realizations of variable nodes Yi, be the side
information available at the decoder. The factor nodes gi are introduced in the factor graph
to capture the correlation constraints as shown in (1) between source xi and side information
yi for SW decoding. Since source samples are first passed through a quantization process,
the correlation constraints (i.e., the factor function of gi) between the quantized indices Q[xi]
and the side information yi can be expressed as:

(4)
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where λ is the correlation parameter of the Laplace distribution, P(•) denotes the lower
boundary of quantization partition at index “•”, e.g. if a coefficient xi satisfies P(•) ≤ xi < P(•
+ 1), the quantization index Q[xi] of coefficient xi is equal to “•”. Actually, given a
parameter λ, the factor node gi plays a role of providing a predetermined likelihood p(yi|

Q[xi], λ) to variable node , j = 1, ⋯ , q for LDPC based SW decoding.

3.1.2 Correlation parameter tracking (Region I)—As described in Section 2.1, the

correlation parameter, denoted by , can vary along both time and space, where the
superscript t indicates the time dependence (i.e., frame) and the subscript l corresponds to
the location of a single pixel or a group of pixels (i.e., block). In this paper, for the simplicity
of notation, we drop the superscript t and denote λl as the correlation of the l-th pixel block
in a given frame, where each pixel block possesses C number of pixels. Then, the correlation
parameter λ in (4) can be replaced by λl for different pixel block.

Let us denote by N′ the number of pixel blocks within a frame. Then, we introduce
additional variable nodes Al, l = 1, 2,…, N′ to represent the correlation parameters λl in
factor graph (see, Region I of Fig. 1). Since a block of C source samples (i.e., pixels) share
the same correlation parameter, every C number of factor nodes gi in Region II will be
connected to the same variable node Al, where we call C * as the connection ratio.
Moreover, to initialize a prior distribution for correlation parameter λl, additional factor
nodes hl, l = 1, ⋯ ,N′ are introduced, where Gamma distribution is assigned to each factor
function hl(λl) for the mathematical convenience. Then, by implementing message passing
rules introduced in the next subsection on the proposed factor graph, each factor node gi will
periodically update the likelihood p(yi|Q[xi], λl) for the corresponding bit variable nodes

 when a new estimate of correlation parameter λl is available, instead of using
a predetermined likelihood p(yi|Q[xi], λ).

Consequently, by introducing correlation parameter estimation in Region I, likelihood factor
function in (4) will be updated as

(5)

3.2 Message passing on the constructed factor graph
In Bayesian inference, message passing algorithm (e.g., BP) on a factor graph offers an very
efficient way to calculate the marginal distributions (i.e. beliefs) of the unknown variables
represented by their corresponding variable nodes. In the proposed adaptive DVC factor
graph (see Fig. 1), we are interested in two unknown variables, which are represented by

source variable nodes  in Region II and correlation parameter variable nodes Al in Region
I, respectively.

In Region II, without considering the connection to the Region I, the factor graph is identical

to that of standard LDPC codes with discrete variables . Hence, the posterior distribution

of  can be calculated through standard BP algorithm. However, in region I, BP algorithm
cannot be applied directly, as the correlation parameter λl represented by the variable node

*To estimate a stationary correlation parameter, we can set the connection ratio equal to the code length. Moreover, connection ratio
provides a trade-off between complexity and spatial variation.
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Al is generally non-Gaussian continuous variable and BP algorithm only handles discrete
variable with small alphabets size or continuous variable with linear Gaussian distribution.

To seek a workaround for this difficulty, let us start with the derivation of posterior
distribution of the correlation parameter λl. According to Bayes’ rule and the message
passing rule, the posterior distribution of correlation parameter λl can be expressed as:

(6)

where Zl is a normalization constant,  denotes a sum over all the bit variables in , the

value of message  is updated iteratively by variable node  in Region II
according to BP update rule, message mhl→Al (λl) = h(λl) comes from prior factor node in

Region I, and message  comes from
likelihood factor node in Region II according to the BP update rule.

So far, we have shown that the posterior distribution of correlation variable λl can be
expressed as the product of all the incoming messages. In the rest of this subsections, we
investigate how to efficiently compute the posterior distribution using BP and EP based
approximation algorithms.

3.2.1 Belief propagation—The BP algorithm23 is an efficient and exact inference
algorithm for computing local marginals over variables on tree-structured graphs. For graphs
with loops, a lot of applications (e.g. LDPC deocoding24) show that BP algorithm (or loopy
BP algorithm) still provides a good performance. While this technique is extremely powerful
in handling variables of small alphabet sizes, they cannot handle a continuous variable with
arbitrary distribution or even a variable of a medium alphabet size as the computational
complexities of these algorithms increase exponentially with the alphabet size.

For our problem in (6), since all the bit variables , j = 1, ⋯ , q, in  are discrete and taking

values 0 or 1, the message  has 2q terms
and the product of all the messages ∏i∈ \hl (Al) mgi→Al (λl) is a mixture of 2qC number of
Laplace distributions, where C = | \hl (Al)| is the connection ratio, q is the number of bit-
planes, and qC can be a large number. Thus, the direct evaluation of the posterior
distribution using BP would be infeasible.

3.2.2 Expectation propagation—An approximate inference for solving the problem in
(6) is to parametrize the variables through variational inference. Deterministic
approximation schemes (e.g. EP25) provide some low complexity alternatives based on the
analytical approximations to the posterior distribution. For example, suppose that posterior
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distribution p(θ) of parameter θ is infeasible to be calculated directly. If the posterior can be
factorized as p(θ) = ∏k gk(θ), where each factor function gk(θ) only depends a small subset
of observations, EP solves this difficulty by replacing the true posterior distribution p(θ)
with an approximate distribution q(θ) = ∏k g̃k(θ) by sequentially computing each
approximate term g̃k(θ) for gk(θ). The general workflow of the EP algorithm has been listed
in Table 1. In particular, for our problem in (6), EP is used to sequentially compute
approximate messages m̃hl→Al (λl) and m̃gi→Al (λl) in replace of true messages mhl→Al
(λl) and mgi→Al (λl) in (6), then get an approximate posterior on λl by combining these
approximations together. The details of correlation parameter estimation through EP for our
problem will be discussed in the next section.

4. POSTERIOR APPROXIMATION OF CORRELATION PARAMETER USING
EXPECTATION PROPAGATION

In this section, we will derive the proposed EP based correlation estimator, which can
provide a fast and accurate way to approximate the posterior distribution on the factor graph
as shown in Fig. 1. The procedures of the proposed EP algorithm has been detailed as
follows:

1. Initialize the prior term

(7)

with , where λ0 is the initial correlation parameter, and

 and  are scale and shape parameters for Gamma distribution, respectively. The
selection of the initial values for the above parameters guarantees the mode of prior
distribution equals to the initial correlation λ0.

2. Initialize the approximation term (uniform distribution)

(8)

with βil = 0, αil = 1, zil = 1.

3. Initialize  and  for approximate posterior ,

where , and .

4. For each variable node λl

For each factor node gi, where gi ∈ λl)

a. Remove m̃gi→Al (λl) from the posterior q(λl), we get 

(9)

b. Update qnew(λl) by minimizing the Kullback Leibler (KL) divergence D(q\gi

(λl)mgi→Al (λl)‖qnew(λl)) (i.e., performing moment matching (Proj)) (see Section
4.1 for detail).

(10)
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where Zl = ∫λl q
\gi (λl)mgi→Al (λl).

c. Set approximated message

(11)

4.1 Moment matching
Through moment matching, q(λl) is obtained by matching the mean and variance of q(λl) to
those of q\gi (λl)mgi→Al (λl). Then, we get the updated  and , the parameters of
q(λl) as follows,

(12)

where m1 and m2 are the first and second moments of the approximate distribution as shown
below.

(13)

Here, Z is the normalization term and these unknown functions in (13) can be evaluated
according to (14).

(14)

5. RESULTS
In this section, we employ a pixel-based DVC setup to demonstrate the benefit of the
proposed OTF correlation tracking. As in references,1, 10, 21 group of pictures (GOP) is
equal to 2 in our study, where all even frames are treated as WZ frames and all odd frames
are considered as key frames. The key frames are conventionally intra-coded, for example,
using H.264 Advanced Video Coding (AVC)26 intra coding mode. WZ frames are first
quantized pixel-by-pixel and then all bit-plane of the resulting quantization indices are
combined together and compressed using an LDPCA codes. At the decoder, side
information frame Y is generated using motion-compensated interpolation of the forward
and backward key frames.1, 21 Spatial smoothing,21 via vector-median filtering, is used to
improve the result together with half-pixel motion search. Each WZ frame is decoded by the
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proposed EP based OTF WZ decoder described in Section 3. Moreover, we incorporate
LDPCA codes with a feedback channel for rate adaptive decoding.

To verify the effectiveness of correlation tracking across WZ-encoded frames in a video
sequence, we tested the above set-up with three standard QCIF (i.e., 176 × 144) video
sequences, carphone, foreman and soccer, with different scene dynamics of low, medium
and high motions, respectively. All the results are based on the average of 50 WZ frames.
The quantization parameters Q of H.264/AVC encoder for different video sequences with
different WZ quantization bits q have been listed in Table 2. The selections of quantization
parameters Q for different WZ quantization bits q make sure that both the decoded key and
WZ frames have similar visual qualities in terms of PSNR. Moreover, we split each 176 ×
144 WZ frame into 16 sub-frames with size 44 × 36 (i.e. N = 1584) for efficient coding
purpose. Within each sub-frame, the block size for correlation estimation is equal to 4 × 6
(i.e., C = 24) for total N′ = 66 number of blocks.

Results comparing the relative performance of pre-estimation in frame level DVC,10 pre-
estimation in block level DVC,10 and the proposed EP based OTF DVC for the carphone,
foreman, and soccer video sequences, respectively, are shown in Figs. 2, 3, 4, where the
implementation of standard DVC codec is based on the DISCOVER framework10 with joint
bit-plane setup.

The pre-estimation methods,10 either in frame or block levels, model the correlation as
Laplace distribution, whose correlation parameter is estimated using the difference between
backward and forward motion compensated frames/blocks at the decoder. Our proposed
OTF estimator unifies the process of correlation estimation using EP and joint bit-plane
decoding into a single joint process, where the updated decoding information can be used to
improve the correlation estimation and vice versa. As expected, pre-estimation in block level
has better performance than that of frame level in terms of bit rate saving, since block level
correlation offers a finer granularity than the frame level correlation. More importantly, our
proposed EP based OTF codec always achieves the best performance for all sequences
(slow, medium and fast motions), since the proposed EP based OTF estimator can iteratively
refine the correlation statistics in each block.

In particular, for the carphone sequence (slow motion), to obtain the same visual qualities
(i.e., PNSRs), our proposed EP based OTF codec achieves about 10 kbps and 30 kbps saving
compared to pre-estimation in block and frame levels, respectively. For foreman sequence
(medium motion), the average rate decrease of EP based OTF codec is 20 kbps for pre-
estimation in block level and 30 kbps for pre-estimation in frame level. Moreover, for soccer
sequence with fast motion, we again observe the superiority of our proposed EP based OTF
codec over the pre-estimation codecs, where the proposed EP based OTF codec offers about
38.25 kbps and 56.5 kbps saving compared to pre-estimation in block and frame levels,
respectively. These results demonstrated that our proposed EP based OTF codec are more
powerful for video sequences with fast motions.

A sub-frame-by-sub-frame (i.e., the first sub-frame of each WZ frame) rate variation for the
soccer sequence with quantization bits equal to 3 is shown in Fig. 5. We found that the rate
variation across frames is about 36.01 kbits for the proposed EP based OTF DVC codec and
40.01 kbits for DVC codec with pre-estimation in block level. Moreover, the result shows
that the rate fluctuations of EP based OTF and pre-estimation in block level DVC codecs
have similar trend and the proposed EP based OTF codec always has equal or lower code
rate than that of the pre-estimation in block level DVC codec. The maximum difference of
code rate between EP based OTF and pre-estimation block level codecs is about −5.32 kbits.
Similar results are obtained for other sub-frames in all three testing sequences.
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The estimation accuracy of correlation parameter is studied in Fig. 6 for the soccer
sequence. Here, we use the offline estimated correlation parameter as benchmark, where the
benchmark Laplacian parameter is calculated offline at the block level for each frame using
the residual between the WZ frame and the side information frame. We can see that the
proposed OTF correlation estimation scheme improves the estimates obtained through pre-
estimation method,

10
 which also explains why the proposed EP based OTF DVC

outperforms the pre-estimation based DVC codec.

Finally, the proposed EP based OTF estimator offers a very low complexity overhead
compared with the standard BP algorithm. The complexity of the proposed estimator lies in
the evaluation of equations (12), (13) and (14) as shown in Section 4.1. Roughly speaking,
the EP based OTF estimator introduces less than 10% computational overhead compared
with the standard BP algorithm.

6. CONCLUSION
This paper proposes an on-the-fly (OTF) correlation estimation scheme for distributed video
coding using expectation propagation (EP). Unlike previous work performing pre-estimation
where estimation starts before decoding, our proposed correlation estimation technique is
embedded within the WZ decoder itself, thus ensuring dynamic estimation of correlation
changes in block level. This is achieved by augmenting the SW code factor graph to connect
correlation parameter variable nodes together with additional factor nodes. Inference on the
factor graph for continuous correlation parameter variable is achieved through EP based
deterministic approximation methods, which offers better tradeoff between accuracy and
complexity compared with other methods. The proposed scheme boosts coding performance
together with the ease of integration with existing DVC codecs. We demonstrate the benefits
of using the proposed scheme via a pixel-based DVC setup. Simulation results show
significant performance improvement due to correlation tracking for multiple video
sequences with the Laplacian correlation model.
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Figure 1.
Factor graph of joint bit-plane SW decoding with correlation estimation.
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Figure 2.
PSNR comparison of the proposed EP based OTF and pre-estimation DVC for the QCIF
carphone sequence, compressed at 15 fps.
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Figure 3.
PSNR comparison of the proposed EP based OTF and pre-estimation DVC for the QCIF
foreman sequence, compressed at 15 fps.
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Figure 4.
PSNR comparison of the proposed EP based OTF and pre-estimation DVC for the QCIF
soccer sequence, compressed at 15 fps.
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Figure 5.
Subframe-by-subframe rate variance for soccer sequence with quantization bits equal to 3.
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Figure 6.
Estimation accuracy of the proposed EP based OTF DVC for the correlation parameter of
the soccer sequence
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Table 1

Expectation Propagation

Initialize the term approximation g̃k(θ) and , where 

repeat

  for k = 1, …, C do

    Compute q\k(θ) ∝ q(θ)/g̃k(θ)

    Minimize Kullback Leibler (KL) divergence between q(θ) and gi(θ)q\k(θ) by performing moment matching

    Set approximate term g̃k(θ) ∝ q(θ)/q\k(θ)

  end for

until parameters converged
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Table 2

H.264/AVC quantization parameter Q for different video sequences

Quantization
bits

Carphone Foreman Soccer

Q Q Q

2 46 46 44

3 36 36 34

4 28 28 26

5 22 21 19
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