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Addressing safety concerns such as drug-induced kidney injury (DIKI) early in the drug pharmaceutical development process
ensures both patient safety and efficient clinical development. We describe a unique adjunct to standard safety assessment wherein
the metabolite profile of treated animals is compared with the MetaMap Tox metabolomics database in order to predict the potential
for a wide variety of adverse events, including DIKI. To examine this approach, a study of five compounds (phenytoin, cyclosporin
A, doxorubicin, captopril, and lisinopril) was initiated by the Technology Evaluation Consortium under the auspices of the Drug
Safety Executive Council (DSEC). The metabolite profiles for rats treated with these compounds matched established reference
patterns in the MetaMap Tox metabolomics database indicative of each compound’s well-described clinical toxicities. For example,
the DIKI associated with cyclosporine A and doxorubicin was correctly predicted by metabolite profiling, while no evidence for
DIKI was found for phenytoin, consistent with its clinical picture. In some cases the clinical toxicity (hepatotoxicity), not generally
seen in animal studies, was detected with MetaMap Tox. Thus metabolite profiling coupled with the MetaMap Tox metabolomics
database offers a unique and powerful approach for augmenting safety assessment and avoiding clinical adverse events such as
DIKI.

1. Introduction

The quality of life and human health has been dramati-
cally improved in the past 100 years due to innovations
in the fields of medicine and public health. A significant
component of these innovations has been the advances
in pharmaceutical treatment and prevention of disease, an

early example being the dramatic treatment of streptococcal
infections with the drug sulfanilamide [1]. Yet a tragic series
of deaths due to kidney failure caused by a preparation
of this very drug underscored the critical need to evaluate
the safety of medicines prior to widespread human usage
and ushered in the age of governmental oversight of phar-
maceutical development [2]. Safety assessment remains a
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critical component in the development of new medicines
today and involves various types of studies conducted at
several points in the drug discovery and development process
[3]. Unfortunately, this process is inefficient and suffers
from significant late-stage attrition, wherein a compound
once thought promising is found to be either inefficacious
or have concomitant unacceptable adverse effects, that is,
toxicities [4]. Even more damaging to both the business
and perception of drug safety is the withdrawal from the
marketplace of drugs that showed serious adverse effects after
approval [5]. All in all, for the continued improvement of
human health the drug development process, and in par-
ticular the safety assessment component must be improved
to detect unsafe compounds at an earlier stage of their
development.

Of particular importance in drug development is the
assessment of a new medicine’s potential for causing drug-
induced kidney injury (DIKI) (or drug-induced nephrotox-
icity, DIN) [6]. Not only is the kidney a vital organ, but
due to its elimination of the majority of drugs and their
metabolites, and its concentration of these in the process
of filtration, it is particularly sensitive to chemical insults.
While measurements of serum creatinine (sCr) and blood
urea nitrogen (BUN) are the most widely used monitors of
kidney function, they are notoriously variable and sensitive
only to late stages of kidney injury [6]. It is well established
that in animal models histopathological changes are observed
in response to nephrotoxic compounds at doses and time
points much lower than those required to produce changes
in sCr and BUN [7]. Accordingly, more sensitive measures
of kidney injury have been sought to improve the safety
monitoring of clinical trials [7-10].

The introduction of “omics” technologies in general,
where data on large numbers of distinct molecular endpoints
is generated simultaneously, has provided a number of new
tools promising to improve the quality of the safety assess-
ment process [11]. By examining the effects of candidate drugs
on the full tissue complement of mRNA (toxicogenomics),
proteins (proteomics), or metabolites (metabolomics) subtle
changes presaging overt toxicity can be detected. The latter
technique has seen unique application in analyzing biofluids
such as urine and blood, and as such has the capability
of querying systemic perturbations in the entire organism
after treatment [12]. Metabolomics has been used to identify
biomarkers for disease state, drug effect and toxicity [13-
16] and such biomarkers can be detected in multiple species
(17, 18].

Metabolite profiling, like transcript profiling, is also
amenable to pattern recognition approaches wherein the
responses of a number of signals are collectively used to
characterize a particular state or response [19]. Such pattern
recognition approaches are most accurate when the reference
patterns are based upon a large database of profiles collected
under controlled conditions [13, 20]. Such reference databases
can also serve to control for variables such as animal strain
and gender used in studies [20] and assess the impact of study
design [21]. Reference databases of transcript profiles have
been algorithmically mined to identify transcript patterns in
treated animal tissue that predict pathology seen only with

BioMed Research International

more extensive treatment [22, 23], and a large collaborative
effort has confirmed the validity of this approach [24].

The current investigation was proposed by the Technol-
ogy Evaluation Consortium (a program under the auspices of
the Drug Safety Executive Council) and undertaken to eval-
uate the predictive power of the MetaMap Tox metabolomics
database using specific reference patterns developed based
on metabolic profiles determined for data-rich reference
compounds. Five archetypal pharmaceutical compounds,
phenytoin, cyclosporin A, doxorubicin, captopril, and lisino-
pril, were selected for their diversity of chemical structure,
preclinical and clinical toxicities. In particular, cyclosporin A,
doxorubicin, captopril, and lisinopril all have been reported
to cause kidney injury in clinical settings. Phenytoin, on the
other hand, is known to cause liver, but not kidney, injury.
To examine the plasma metabolome, blood was sampled at 7,
14, and 28 days from treated rats; standard clinical pathology
was conducted after sacrifice at 28 days. Metabolic profiles
were compared with signature profiles developed to identify
or predict various toxicological modes of action (MoA).
The results indicate that the preclinical and clinical adverse
effects noted for these five compounds can be predicted from
the matches between the metabolite profiles of the treated
animals and the MoA profiles in the MetaMap Tox reference
database, suggesting a unique role for metabolite profiling in
safety assessment.

2. Materials and Methods

2.1. Animals and Maintenance Conditions. Wistar (Crl:
WI(Han)) rats were supplied by Charles River Laboratories,
Sulzfeld, Germany. The animals were housed in individual
cages (floor area 800 cm?), supplied by Becker & Co., Castrop
Rauxel, Germany. The animals were maintained in an air-
conditioned room at a temperature of 20-24°C, a relative
humidity of 30-70%, and a 12-hour light/12-hour dark cycle.
Before the arrival of the animals, the room was completely
disinfected (“AUTEX,” fully automatic, formalin-ammonia-
based terminal disinfector, supplied by Dr. Gruf} KG, Neuss,
Germany). During the study, the floor and walls were cleaned
weekly with a solution of 0.1% Incidin (supplied by Henkel,
Diisseldorf, Germany) in water. Ground Kliba mouse/rat
standard maintenance diet (cat. No. 3433) was supplied by
Provimi Kliba SA, Kaiseraugst, Switzerland. The diet was
assayed for chemical as well as microbiological contaminants.
Drinking water was available ad libitum and regularly assayed
for chemical contaminants and the presence of microorgan-
isms. After the delivery of the rats they were accustomed to
the environment and the diet for at least five days. At the
beginning of the study the animals were about 10 weeks old.

2.2. Dosing and Experimental Design. The studies were per-
formed according to the German Animal Welfare legislation
and with the permission of the local authority (permission
number 23 177-07/G08-3-001). The laboratory is AAALAC
(Association for Assessment and Accreditation of Laboratory
Animal Care International) certified. All compounds were
administered over a period of 4 weeks to groups of 5 male
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and 5 female Crl:Wi(Han) rats per dose group. For each
compound a group of 10 untreated males and 10 untreated
females served as controls. The animals had access to water
and feed ad libitum during the studies. For each compound
the high dose was selected to represent the maximum toler-
ated dose for a 28-day study, while the low dose was selected
to represent the upper limit of a human therapeutic dose.
Phenytoin was administered daily via the food at dose levels of
600 and 2400 ppm [26]. Doxorubicin was administered once
weekly subcutaneously at dose levels of 0.5 and 2 mg/kg bw
[27]. Cyclosporin A was administered daily via gavage at dose
levels of 20 and 45 mg/kgbw in corn oil [28-30]. Lisinopril
was administered daily via gavage at dose levels of 40
and 400 mg/kgbw in aqueous 0.5% Carboxmethylcellulose
suspension; Captopril was administered daily in drinking
water at dose levels of 20 and 200 mg/kg bw [31, 32].

2.3. Blood Sampling. Between 7:30 and 10:30 h, blood samples
were withdrawn from the retro-orbital sinus in all rats under
isoflurane anesthesia (1.0 mL K-EDTA blood on study days
7,14, and 28, and an additional 1.0 mL K-EDTA blood and
0.5mL blood without anticoagulants on study day 28) after
a fasting period of 16-20 h. The hematology parameters were
measured in the plasma. The other blood samples were cen-
trifuged (10°C, 2000 xg, 10 min) and the serum as well as the
EDTA plasma was separated. Clinical chemistry parameters
were measured from serum. The plasma samples were frozen
at —80°C until metabolite profiling was performed. In total,
120 plasma samples were used for analysis and evaluation for
each compound.

2.4. Clinical Examinations. All animals were checked daily
for any clinically abnormal signs and mortalities. Food
consumption was determined on study days 7, 14, 21, and
28. Body weight was determined before the start of the
administration period in order to randomize the animals and
on study days 0, 4, 7, 14, 21, and 28. At the end of the treatment
period, the animals were sacrificed by decapitation under
Isoflurane anesthesia.

2.5. Clinical Pathology. The red blood cell parameter values
were measured in the K-EDTA blood taken on study day 28
with an ADVIAI120 instrument, Siemens. Clinical chemistry
parameters were measured on a Hitachi 917 (Roche) serum
samples taken on study day 28: alanine aminotransferase,
alkaline phosphatase, y-glutamyltransferase, inorganic phos-
phate, calcium, magnesium, urea, creatinine, glucose, total
protein, total bilirubin, albumin, globulins, triglycerides, and
cholesterol.

2.6. Metabolite Profiling. For mass spectrometry-based met-
abolite profiling analysis, EDTA plasma samples were extract-
ed by a proprietary method. Three types of mass spec-
trometry analysis were applied to all samples: GC-MS (gas
chromatography-mass spectrometry) and LC-MS/MS (liquid
chromatography-MS/MS) were used for broad profiling [13],
while SPE-LC-MS/MS (solid phase extraction-LC-MS/MS)
was applied for the determination of catecholamine and

steroid hormone levels. Proteins were removed from plasma
samples by precipitation. Subsequently polar and nonpolar
fractions were separated for both GC-MS and LC-MS/MS
analysis by adding water and a mixture of ethanol and
dichloromethane. For GC-MS analysis, the nonpolar fraction
was treated with methanol under acidic conditions to yield
the fatty acid methyl esters derived from both free fatty
acids and hydrolyzed complex lipids. The nonpolar and
polar fractions were further derivatized with O-methyl-
hydroxylamine and pyridine to convert oxo-groups to O-
methyl-oximes then silylated before analysis [33]. For LC-
MS analysis, both fractions were reconstituted in appropriate
solvent mixtures. HPLC was performed by gradient elution
using methanol/water/formic acid on reversed phase separa-
tion columns. Mass spectrometric detection technology was
applied which allows target and high sensitivity MRM (Mul-
tiple Reaction Monitoring) profiling in parallel to a full screen
analysis (patent application 2003073464). Steroid hormones,
catecholamines, and their metabolites were measured by
online SPE-LC-MS/MS (Solid phase extraction-LC-MS/MS)
[34]. Absolute quantification was performed by means of sta-
ble isotope-labeled standards. Metabolite changes were calcu-
lated as the ratio of the mean of metabolite levels in individual
rats in a treatment group relative to mean of metabolite levels
in rats in a matched control group (time point, dose level, and
sex). The methods applied resulted in 225 plasma analytes
for semiquantitative analysis, 167 of which were chemically
identified and 58 were unknown (Supplemental Table 1
available online at http://dx.doi.org/10.1155/2013/202497).

2.7. MetaMap Tox Evaluation of Metabolic Profiles. Discrimi-
nating metabolite patterns for various toxicological modes of
action (“MoA’s) were developed from the metabolite profiles
in the MetaMap Tox database for over 500 compounds as
described in van Ravenzwaay et al., 2012 [35]. Briefly, metabo-
lite patterns correlating to specific toxicological modes of
action are based on at least three different chemicals from the
MetaMap Tox database, which share a common toxicological
mode of action (reference compounds). After identification
of the significantly changed metabolites and a consistency
check through experienced toxicologists, the pattern is vali-
dated against the database: a pattern should correctly identify
at least one further reference compound sharing the same
mode of action which has not been used to establish the
pattern. Furthermore, reference compounds in MetaMap Tox
which do not share this particular toxicity should not be
identified. For example, the pattern for “Thyroid indirect
Liver” includes 34 distinct metabolite changes. A second set
of reference compounds known to also have that toxicological
MoA were used to test and validate the discriminating
pattern.

The database routine of pattern ranking is a two-step
process: firstly, the algorithm used in the database yields
a ranking list based on similarity if the test compound
metabolic profile was compared to the specific patterns in
MetaMap Tox. Secondly, the similarity of the metabolite
changes as well as their quality and importance for a certain
toxicological mode of action is evaluated by an expert
panel of experienced toxicologists to determine what may
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be described as “confirmed” matches. In this process, the
metabolite changes are assessed with respect to the strength
of the change, the biochemical importance for a certain
mode of action, and similarity of metabolite changes having
biomarker character.

The sex- and day-stratified heteroscedastic ¢-test (“Welch
test”) was applied to compare metabolite levels of dose groups
with respective controls. A significance level of P < 0.05 was
applied. Test substance related changes in the metabolome
were compared: (1) with specific metabolite patterns (i.e.,
characteristic metabolite changes for a toxicological mode
of action) called “pattern ranking,” using a split correla-
tion based on median t-values, and (2) with the entire
metabolome of reference compounds, called “profile compar-
ison,” using Spearman and Pearson correlations. Based on
the reference data base, a threshold value of 0.50 for male
animals and 0.60 for female animals displays approximately
the 95th percentile of all correlation coefficients obtained by
the profile comparison. Correlation coefficients above these
values are considered as indicating a clear match between two
treatments.

Based on these evaluations, the toxicological mode of
action (including target organs and underlying toxicological
mechanisms) of the test substance was assessed. Further
reference on the development of the MetaMap Tox data base
can be found in, van Ravenzwaay et al., 2007, Strauss et al.,
2009, and Looser et al., 2005 [13, 20, 36].

3. Results

3.1. Phenytoin. The metabolic profiling of phenytoin and
comparison with the MetaMap Tox database has been
described by Kamp et al. [25]. Briefly, however, the high
dose treatment produced statistically significantly decreased
body weight throughout the entire study and minimal-to
to-slight centrilobular hepatocellular hypertrophy for both
males and females. All other findings were minimal or within
historical control ranges. On the other hand, metabolic pro-
filing revealed a significant number of changes in metabolite
levels for both dose groups and at all-time points based
on a significance level of 0.05 (Figure 1). Total metabolite
changes (increases and decreases) were greater for females in
all groups except the low dose groups at day 28. In general, the
number of metabolite changes was higher in the high dose as
compared to the low dose, except for day 28 in male animals.
Total metabolite changes were relatively constant over the
treatment for the high dose, but increased over the course of
treatment for the low dose.

As noted in Kamp et al., the comparison of the metabolite
changes induced by the high dose phenytoin treatment
against the established specific metabolite patterns present in
MetaMap Tox (i.e., pattern ranking) identified matches with
validated patterns associated with liver enzyme induction
and liver toxicity. Phenytoin did match with patterns for
GABA receptor agonism; however, it is one of the reference
compounds of this pattern. It might be noted that metabolic
evidence for GABA receptor antagonism was present only at
the low dose (which was used in the creation of this MoA
pattern). However, paradoxical effects of high phenytoin
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Total changed metabolites
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F1Gure I: Total metabolite changes induced by phenytoin treatment.
Metabolite changes were calculated as the ratio of the mean of
metabolite levels in individual rats in a treatment group relative to
mean of metabolite levels in rats in a matched control group (time
point, dose level, and sex); the significance level was 0.05.

doses (i.e., induction, rather than suppression, of seizures)
have been noted in rats [37].

In many cases validated patterns that have confirmed
matches with the metabolite profile of animals treated at one
dose (e.g., higher dose) also match the metabolite profile
of animals treated at the other dose (e.g., lower dose),
but at a lower median correlation value that under expert
evaluation cannot be “confirmed” as a match. Furthermore,
in many cases several validated patterns are associated with
a given mechanism of toxicity. Thus one can consider the
MoA patterns from the standpoint of those that have a
confirmed match at either dose, and associated with a given
common mechanism. Examining the matches between the
established patterns in the MetaMap Tox database and pheny-
toin induced metabolite profiles from this perspective shows
aclear dose dependency in the number of matches for several
types of liver toxicity (Table 1), giving further confidence in
the prediction of liver toxicity from the metabolite profile.
The phenytoin-induced metabolite profile at the high dose
also produced a weak match for the pattern for “kidney,
diuretic effect” but this would not necessarily be considered
an adverse effect.

3.2. Cyclosporin A. While body weight for female animals
was unaffected by treatment at either cyclosporin A dose
levels, that of male animals was significantly decreased in the
low dose group at day 28 (-15%), and throughout the study
for the high dose group (-13% on day 28). Clinical pathology
and histopathology were not conducted. Metabolic profiling
revealed a significant number of changes in metabolite levels
for both dose groups and at all time points based on a
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TABLE 1: Sum of toxicity patterns matching phenytoin-induced
metabolite changes.

TABLE 2: Sum of toxicity patterns matching cyclosporin A-induced
metabolite changes.

. Phenytoin, low  Phenytoin, high L. Cyclosporin A,  Cyclosporin A,
Toxicity dose dose Toxicity low dose high dose
Bone, osteoblast inhibitor 1 Blood, anemia 1
CNS, GABA receptor ) Bone, osteoblast inhibitor 2
antagonist GI tract, duodenum, iron 1 1
Kidney, diuretic effect 1 deficiency
Liver cholestasis 2 Immune system, ] ]
Liver toxicity 2 immunosuppression
Liver, enzyme induction 1 5 Kldney, diuretic effect !
Li . Kidney, interstitial

iver, paracetamol-derived > 1
- 1 nephritis

toxicity d ) 1 bul

Thyroid, indirect effects 1 2 Kidney, glomerular tubular 1
defect

Grand total 5 13 Liver, paracetamol-like ) )

Tabulation of the number of specific patterns associated with a given toxicity toxicity

that: (1) have a confirmed match (see Section 2) with the metabolite profile Nervous system. serotonin

of phenytoin treated animals at either the high or low dose, and (2) matched t Y > : 1

the metabolite profile of treated animals with a median correlation greater receptor antagonis

than 0.5 at either dose. Data taken from [25]. Spleen, 3
methemoglobinaemia
Grand total 4 14

Cyclosporin A

100

Total changed metabolites

7 14 28
Day

B Males, 20 mg/kg
i Females, 20 mg/kg

B Males, 45 mg/kg
B Females, 45 mg/kg

FIGURE 2: Total metabolite changes induced by cyclosporin A
treatment. Metabolite changes were calculated as the ratio of the
mean of metabolite levels in individual rats in a treatment group
relative to mean of metabolite levels in rats in a matched control
group (time point, dose level, and sex); the significance level was
0.05.

significance level of 0.05 (Figure 2). Total metabolite changes
(increases and decreases) were slightly greater for females
compared to males, and higher for the high dose treatment
as compared to the low dose treatment, except for day 28. In
the low dose group total metabolite changes slightly increased
over the course of the treatment.

The comparison of the metabolite changes induced by the
high dose cyclosporin A treatment against the established

See the legend for Table 1.

MetaMap Tox patterns (i.e., pattern ranking) identified
matches with validated patterns associated with kidney
toxicity, liver toxicity, and anemia (Supplemental Figure 1).
Matches were also observed for patterns associated with
effects on the spleen. Pattern ranking of the metabolite
changes induced by the low dose cyclosporin A treatment
yielded weak matches for paracetamol-derived liver toxic-
ity (Supplemental Figure 2). Matches with the pattern for
immunosuppression take into account that the low dose
treatment of cyclosporin A was used in establishing that MoA
pattern. Overall, the pattern ranking matches show that while
signals for liver toxicity are suggested at even the low dose
of cyclosporin, signals of kidney toxicity predominate at the
high dose (Table 2).

3.3. Doxorubicin. Body weight was statistically significantly
decreased in female animals at 28 days at the high dose level
(—=5%), but unaffected in males at the high dose and in either
sex at the low dose level. Food consumption was significantly
decreased in both sexes in the high dose group throughout
the administration period. Also, in the high dose group of
both sexes, total protein, albumin and globulin levels were
decreased at day 28, and creatinine values and alkaline phos-
phatase (ALP) activities were also lower compared to con-
trols. Glucose and inorganic phosphate levels were increased
in rats of both sexes; cholesterol levels were higher only in
males. Platelet counts were increased in both sexes, while red
blood cell counts, hemoglobin, and hematocrit values were
decreased. White blood cell (WBC) counts were markedly
decreased only in males. All animals in the low dose group
showed no changes in body weight or food consumption,
and had no clinical pathology findings. Metabolic profiling
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TABLE 3: Sum of toxicity patterns matching doxorubicin-induced
metabolite changes.

Total changed metabolites

7 14 28
Day

B Males, 0.5 mg/kg
M Females, 0.5 mg/kg

B Males, 2mg/kg
B Females, 2mg/kg

FIGURE 3: Total metabolite changes induced by doxorubicin treat-
ment. Metabolite changes were calculated as the ratio of the mean of
metabolite levels in individual rats in a treatment group relative to
mean of metabolite levels in rats in a matched control group (time
point, dose level, and sex); the significance level was 0.05.

revealed a number of changes in metabolite levels for both
dose groups and at all-time points based on a significance
level of 0.05 (Figure 3), albeit the changes were greater in
the high dose groups. Total metabolite changes (increases or
decreases) were substantially greater for males compared to
females in the high dose group. Moreover, for the high dose
treatment, more changes were observed as compared to the
low dose treatment. Modest temporal increases in the total
metabolite changes occurred over the course of the treatment.

The comparison of the metabolite changes induced by
the high dose doxorubicin treatment against the established
specific metabolite patterns identified matches with validated
patterns associated with liver enzyme induction, liver toxicity,
and indirect effects on thyroid due to increased conjugation
of thyroxin, as well as antiproliferative effects (Supplemen-
tal Figure 3). Weaker matches were observed for patterns
associated with anemia and steroid biosynthesis inhibition
in the adrenal cortex (only on day 28). Pattern ranking of
the metabolite changes induced by the low dose doxorubicin
treatment yielded a clear match with tubular necrosis in the
kidney. Further weaker matches were found for bone marrow
suppression (Supplemental Figure 4). Pattern matches for
antiproliferative effects and bone marrow suppression must
take into account that doxorubicin was used for the estab-
lishment of these patterns. The key findings are then that of
signals for kidney toxicity and liver toxicity at the low dose
and high dose doxorubicin treatments, respectively (Table 3).

3.4. Captopril. No changes in food consumption or body
weight were observed in either sex at both dose levels. The
only changes in clinical pathology occurred at day 28 in

Toxicity Doxorubicin, low DO).(orubicin,
dose high dose

Blood, anemia 2
Bone marrow, suppression 2 2
Hormones, antiandrogen 1
Systemic antiproliferative 1
Kidney, tubular toxicity 1

Liver toxicity 1
Liver, enzyme induction 2
Thyroid, indirect effects 1
Grand total 3 10

See the legend for Table 1.

the high dose group, where globulins were decreased in
males, and albumin levels, red blood cell (RBC) counts, and
hemoglobin were decreased in females, and creatinine and
total protein levels were decreased in both sexes. Metabolic
profiling revealed a significant number of changes in metabo-
lite levels for both dose groups and at all-time points based on
a significance level of 0.05 (Figure 4). Interestingly enough,
total metabolite changes were greatest for male rats treated
with the low dose. There was not a clear temporal change in
total metabolite changes in any group.

MetaMap Tox-based pattern ranking using the metabo-
lite changes induced by the high dose captopril treatment
matches with validated patterns associated with kidney
toxicity, such as glomerular-tubular defect (Supplemental
Figure 5). However, the high dose treatment of captopril was
used to establish this particular pattern. A further match
was observed for steroid synthesis inhibition in the adrenal
cortex. Pattern ranking of the metabolite changes induced by
the low dose captopril treatment against the established spe-
cific metabolite patterns present in MetaMap Tox produced
matches to patterns for liver and kidney toxicity as well as to
those for effects on the bone marrow (Supplemental Figure 6).
Weaker matches were observed for other patterns indicating
effects on the kidney and liver (e.g., “glomerular-tubular
defect in kidneys” and “long chain phthalates,” which is
specific for a certain class of chemicals leading to peroxisomal
proliferation in the liver). Thus signals for bone marrow
suppression and kidney toxicity are seen at both dose levels.
Recapitulating the overall Pattern Ranking graphics, liver
toxicities are seen only at the low dose (Table 4). Such a
paradoxical dose response has been seen for other effects of
captopril, namely, the effect of this drug on drinking [38, 39],
where captopril enhanced drinking at low doses but inhibited
it at high doses. It is impossible to speculate if these diverse
results are related.

3.5. Lisinopril. While food consumption was slightly
decreased by Lisinopril treatment at both dose levels in
both sexes and throughout the study, statistically significant
body weight increases (+6%) were seen at day 28 in female
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FIGURE 4: Total metabolite changes induced by captopril treatment.
Metabolite changes were calculated as the ratio of the mean of
metabolite levels in individual rats in a treatment group relative to
mean of metabolite levels in rats in a matched control group (time
point, dose level, and sex); the significance level was 0.05.

TABLE 4: Sum of toxicity patterns matching captopril-induced
metabolite changes.

Captopril, low Captopril, high

Toxicity dose dose

Adrenals, steroid

. s a1 1
biosynthesis inhibition
Bone marrow, suppression 2

Kidney, glomerular tubular
defect

Kidney, tubular toxicity
Liver, oxidative stress
Phthalate toxicity
Grand total

See the legend for Table 1.

O | — W N

animals in the high dose group. Statistically significant
body weight decreases (-10% on study day 28) were seen
throughout the study for male animals in the low dose
group. No body weight changes were observed for males
in the high dose group or females in the low dose group.
Clinical pathology was seen only on study day 28, in male
animals in the high dose group, where red blood cell
(RBC) counts, hemoglobin and hematocrit values as well as
globulin, albumin, and total protein levels were decreased.
In these animals creatinine, urea, and magnesium levels
were increased. Metabolic profiling revealed a significant
number of changes in metabolite levels for both dose groups
and at all-time points based on a significance level of 0.05
(Figure 5). In general, more changes were observed for the

Lisinopril
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FIGURE 5: Total metabolite changes induced by lisinopril treatment.
Metabolite changes were calculated as the ratio of the mean of
metabolite levels in individual rats in a treatment group relative to
mean of metabolite levels in rats in a matched control group (time
point, dose level, and sex); the significance level was 0.05.

high dose treatment as compared to the low dose treatment.
While total metabolite changes increased over the course of
the study in male animals treated at the high dose, a temporal
pattern was not obvious for other groups.

MetaMap Tox-based pattern ranking using metabolite
changes induced by the high dose lisinopril treatment identi-
fied matches with validated patterns associated with kidney
toxicity (ACE inhibitor like) and platelet aggregation inhi-
bition (Supplemental Figure 7). However, as with Captopril,
Lisinopril was used as reference compound for the kidney
toxicity patterns. Pattern ranking of the metabolite changes
induced by the low dose Lisinopril treatment against the
established specific metabolite patterns present in MetaMap
Tox yielded weak matches with reduced feed consumption
(in line with the clinical findings) in addition to that for
kidney toxicity (ACE inhibitor like) (Supplemental Figure 8).
Opverall the metabolite profiling recapitulates the observation
that while relatively few toxicities are seen at either dose,
signals for platelet aggregation inhibition and kidney effects
are seen at both doses (Table 5).

4. Discussion

The major finding from this evaluation was that the adverse
effects reported in preclinical animal studies and human
clinical settings for the five compounds tested in this study
were detected by matches between the compound-induced
metabolic profile and metabolite patterns for various toxi-
cological modes of action (Table 6). One clear exception is
that of doxorubicin-induced cardiomyopathy seen in both
animals and man [27, 40], where a metabolite pattern for



TABLE 5: Sum of toxicity patterns matching lisinopril-induced
metabolite changes.

Lisinopril, low  Lisinopril, high

Toxicity

dose dose
Blood, platelet aggregation ]
inhibition
Kidney, ACE-inhibitor-like 1 1
Kidney, diuretic effect 1
Reduced food consumption 1
Grand total 2 3

See the legend for Table 1.

this toxicity had not been developed, and therefore MetaMap
Tox was unable to identify such an effect. Importantly,
the potential for nephrotoxicity was correctly predicted for
cyclosporin A, doxorubicin, captopril, and lisinopril, albeit
the latter two studies were used as reference compounds
for nephrotoxicity patterns, making their nephrotoxicity
prediction a fait accompli. On the other hand, phenytoin
which is not reported as associated with nephrotoxicity, had
no pattern matches signaling nephrotoxicity.

Interestingly, in several cases these clinically relevant
adverse effects have not been reported in rodent studies.
For example, phenytoin is associated with both acute and
chronic liver injury in patients [41, 42] and is the third
leading causative agent for acute liver failure requiring liver
transplantation [43]. Other than liver enzyme induction [25,
26, 44] no such toxicity has been observed in rodent studies
[45, 46]. Yet the metabolite changes induced by phenytoin
treatment produced confirmed matches with several types
of liver toxicity, in addition to matches to liver enzyme
induction. In a similar fashion, while captopril has been
associated with clinical liver injury [41, 47], no such toxicity
has been reported in rats [32], with only one report of
variable captopril toxicity in mice [48]. On the other hand,
the metabolite profiling from rats in this study produced
matches between captopril treatment and metabolite patterns
associated with oxidative stress in the liver.

Toxicities that have been reported in both preclinical and
clinical studies were also identified through matches between
the treatment induced metabolite profile and the mechanism-
associated metabolite patterns. Cyclosporin A treatment has
been reported to induce liver lesions in rat studies [49] as well
as hepatotoxicity in man [50], consistent with a metabolite
profile matching that of liver toxicity (Table 2). Similarly the
kidney injury indicated by metabolite profiling is consistent
with the nephrotoxicity well known in rodents and man
[29, 51]. The anemia indicated for cyclosporin A treatment by
metabolite profiling has also been identified in rodents and
man [28, 52]. Anemia associated with doxorubicin treatment
in both rats and man [53, 54] is also indicated in this
study through metabolic profiling (Table 3), as is liver injury,
seen in both rats and patients [55, 56]. Finally, the bone
marrow effects indicated by metabolite profiling (Table 4) for
captopril treatment have also been noted in preclinical and
clinical studies [32, 57].
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Some effects indicated through the metabolite profile
matches have either been seen only in rat studies or have
conflicting reports in the clinical literature. Thus the bone
toxicity predicted by metabolite profiling for cyclosporin
treatment has been noted in rats [58, 59] but does not
appear to be relevant for clinical settings [60]. Similarly the
platelet effects predicted for lisinopril treatment by metabo-
lite profiling have been considered absent [61] or beneficial
[62] in clinical studies. Liver enzyme induction following
doxorubicin treatment has been observed in rat studies [63],
consistent with the metabolite profile predictions, but has not
been reported in man.

Captopril and lisinopril share a common pharmacologi-
cal mechanism of action and a common pharmacophore, and
as a class are note for a risk of kidney injury as noted above.
However, these two compounds also have unique adverse
reactions, which as noted in the results, are identified through
the matches of their metabolite profile with the mechanistic
patterns. In particular, a pattern for liver oxidative stress
matched the metabolite profile for captopril treatment, but
not that for lisinopril, in keeping with the literature recog-
nizing liver injury as a risk for captopril [47, 64] but almost
never seen for lisinopril [43].

As noted in the results, in some cases the metabolite
profiles from the compound treatments in this study had
already been used in the development of the metabolite
pattern specific for a mechanism of action, and as such,
matches between the profile and the mechanistic pattern
would be expected. Such was the case for immunosup-
pression following cyclosporin A treatment, antiproliferative
effects and bone marrow suppression following doxorubicin
treatment, and the kidney toxicity following captopril or
lisinopril treatment [65]. On the other hand, where a mech-
anistic pattern had not been developed for cardiotoxicity,
no prediction of this effect could be possible even for a
treatment such as doxorubin, where cardiomyopathy is the
major adverse effect in both rats and humans [27, 66], albeit
analysis of significantly changed individual metabolites has
the potential to suggest such toxicity (data not shown).

Metabolomics has been used for over a decade as a tool
to both “predict” toxicity in animals as well as understand
mechanisms of toxicity [12, 14, 67, 68]. The latter application
has proven valuable in elucidating areas as diverse as the
effects of copper in the soil on earthworms [69] and the
mechanism of testicular toxicity induced by the industrial
solvent ethylene glycol monomethyl ether [70]. Prediction
of toxicity from metabolomic data has been approached
in several different ways. Given the complexity of NMR
spectra obtained from biological fluids or tissues, the use
of multivariate statistical analysis of entire spectra, broken
in “bins,” has proven valuable in identifying fingerprints of
treatment responses and temporal patterns [12, 19, 68]. The
Consortium on Metabonomic Toxicology (COMET) project
took this approach further by building a database of spectra
of rat urine samples (n = 12935) from 80 different treatments
to build a modeling system for toxicity prediction. The result
was an algorithm that would detect “abnormal metabolic
states” and classify them as either liver or kidney toxicity [71].
While these fingerprinting methods rely upon condensing
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TABLE 6: Summary of metabolite profiling and comparison with know toxicities.
Drug Target Rat study standard findings Human clinical findings MMtox prediction
Captopril Kidney Yes Yes Yes ()
Lisinopril Kidney Yes Yes Yes ()
Cyclosporin A Kidney Yes Yes Yes
Doxorubicin Kidney Yes Yes Yes
Phenytoin Kidney No No No
Captopril Liver No Yes Yes
Cyclosporin A Liver Yes Yes Yes
Doxorubicin Liver Yes Yes Yes
Lisinopril Liver No No No
Phenytoin Liver No Yes Yes
Cyclosporin A Anemia Yes Yes Yes
Doxorubicin Anemia Yes Yes Yes
Captopril Bone marrow Yes Yes Yes
Lisinopril Platelet Yes Yes Yes

*The treatments with these compounds were used to define some of the patterns for kidney toxicity.

the spectral information into a multivariate analysis (such
as a principal component analysis, PCA) plot, the “loadings”
of such plot data may be investigated to identify individual
metabolite molecules [12]. A somewhat different approach
has been taken in this project to develop the predictive
patterns based on the MetaMap Tox database. A combination
of GC-MS, LC-MS/MS and SPE-LC-MS/MS (Solid phase
extraction-LC-MS/MS) were used to identify hundreds of
unique analytes for each treatment time point. Those analytes
that were consistently modulated by treatments sharing a
common mechanism of action (MoA) were then used to
create a predictive pattern. The plasma metabolite profile
of novel treatment can then be compared against this set
of MoA patterns, with the result being a number of pre-
dictions as to possible toxicities and/or physiological effects
13, 21].

This investigation supports the predictive power of
metabolite profiles developed from a large metabolomics
database and linked to physiological mechanisms of action as
tools for identifying the potential of a treatment for inducing
an adverse effect, importantly including nephrotoxicity. Not
surprisingly, the predictions identify from the plasma of
treated rats the toxicities as reported for those treatments in
previous rat studies. However, the metabolite profile matches
also suggest treatment-related adverse events that in some
cases have been reported in clinical, but not preclinical, stud-
ies. One might speculate that the metabolite patterns might
be reflective of an underlying pathophysiological response
that leads to a clinical relevant adverse reaction in some
humans, but is not yet phenomenologically evident in normal
rats with a healthy adaptive response. For example, species
differences in coumarin-induced hepatotoxicity appear to
be due to differences in detoxification pathways [72]. On
the other hand, environmental factors such as diet [73] or
inflammation [74] may alter adaptive responses to drugs in
the human population in a way that is not routinely observed
in preclinical studies. Nonetheless, the promise of metabolite

profiling as predictive safety assessment tool seems clear and
merits further exploration and use.

In summary, we successfully detected the key adverse
events associated with five paradigm compounds (phenytoin,
cyclosporin A, doxorubicin, captopril, and lisinopril) selected
for their diversity of chemical structure and preclinical and
clinical toxicities. Nephrotoxicity was correctly predicted
for those treatments known to induce this adverse event;
nephrotoxicity was not predicted for phenytoin, a negative
control for this adverse effect. Additionally, MetaMap Tox
provided significant additional value compared to a standard
28-day regulatory study, such as key mechanistic infor-
mation, the potential to detect idiosyncratic toxicities and
the differentiation of toxicities for compounds with similar
chemical structure. Overall MetaMap Tox-based metabolite
profiling as described here has the potential to be a powerful
complement to a standard 28-day safety assessment study in
rats as noted above, as well as for further qualifying final lead
selection.
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