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a statistically significant slope, a, in equation 
2; (3) there must be a statistically significant 
slope, b, and the size of c′ in equation 3 must 
be smaller in magnitude than is c in equation 
1. If the c′ slope in equation 3 is no longer 
statistically significant, then full mediation is 
said to have occurred. If the c′ slope in equa-
tion 3 is smaller in magnitude than the origi-
nal c but is still statistically significant, then 
partial mediation is said to have occurred. 
From the equations above, it is also known 
that

(4)  c = c′ + ab.

There are several problems associated with 
the causal steps approach for assessing media-
tion. First, this approach requires that the 
total effect of the decision aid intervention on 
screening, c, be statistically significant. If 
equation 1 does not result in a statistically 
significant slope, the assessment of mediation 
terminates. Thus, a researcher who hypothe-
sizes that the decision aid intervention will 

The proposed study regarding the effective-
ness of this aforementioned decision aid 
would include 200 individuals who will be 
randomized to a decision aid (intervention) 
condition or to a usual care (control) condi-
tion. Thus, the group variable that contains 
these 2 conditions serves as the independent 
variable. The researcher hypothesizes that the 
independent variable will cause changes in a 
mediator variable (e.g., increased intentions to 
get screened for colorectal cancer). The medi-
ator variable is then hypothesized to cause 
changes in the outcome (the dependent vari-
able), which is the actual screening behavior 
that would occur at a later time point.

STATISTICAL MEDIATION

A popular way to test the described rela-
tionship is derived from the work of Baron 
and Kenny,1 and is known as the causal steps 
approach to statistical mediation. The causal 
steps approach involves estimating the follow-
ing regression equations:

(1)   Screening = Intercept1 + (c) * (Decision 
Aid) + error1

(2)   Intentions = Intercept2 + (a) * (Decision 
Aid) + error2

(3)   Screening = Intercept3 + (b) * (Intentions) 
+ (c′) * (Decision Aid) + error3

An overlooked assumption2 underlying medi-
ation analysis is that it is a causal process in 
which the independent variable transmits an 
effect onto the mediator variable, which in 
turn transmits an effect onto the outcome 
variable. This modeling approach is preferred 
to an analysis that simply controls for the ef-
fect of each variable on all others, as a hy-
pothesized causal mechanism is being tested. 
Moreover, such approaches result in increased 
type I errors.3

Under the causal steps approach, mediation 
is said to occur under the following condi-
tions: (1) there must be a statistically signifi-
cant slope, c, in equation 1; (2) there must be 
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Important Considerations in Conducting 
Statistical Mediation Analyses

STATISTICALLY

An investigator wishes to examine mediation in a randomized control trial of the effectiveness of an intervention, which 
consists of a computerized decision aid for promoting colorectal cancer screening. Mediation is a naturally occurring 
process, and in any given instance, research investigators seek to ascertain whether it has occurred. In the case of a 
prevention intervention for a specifi c chain of events, mediation occurs (1) when the prevention intervention effects a 
change on a targeted intermediate condition: a mediator, for example, a person’s intentions to get a colorectal screening 
examination; and (2) when, at a later point in time, this condition effects a change on a targeted outcome, for example, 
the actual behavior of getting a colorectal screening exam. Full mediation is said to occur when the effectiveness of the 
intervention on the targeted outcome only takes place through the intermediate condition and does not directly affect 
the targeted outcome. Partial mediation is said to occur when the intervention causes changes in both the intermediate 
condition and the targeted outcome. The assessment of mediation is important because conclusions about the effi cacy 
of a public health intervention may depend on how these indirect infl uences are assessed.
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from the standard normal distribution, and 
95% confidence limits around the point esti-
mate of the cross product can be created.12 
These confidence intervals (CIs) are readily 
available in the statistical program, RMedia-
tion.9 If the CI does not contain 0, we con-
clude mediation is present.

Monte Carlo simulations require the as-
sumption that estimates of a and b in equa-
tions 2 and 3 are normally distributed. Given 
the estimates of the a and b parameters and 
their SEs, a researcher would randomly select 
values from a normal distribution of a and b 
and create the ab cross product. This proce-
dure would be repeated 9999 times to create 
a distribution of 10 000 ab cross products. 
The middle 95% of this distribution would 
constitute a CI. The absence of 0 from this in-
terval would indicate that the ab cross prod-
uct is statistically significant. This procedure 
works well when raw data are not available 
and software is readily available to perform 
such simulations.13

Bootstrapping is a distribution-free resam-
pling method that allows the estimation of a 
sampling distribution of a statistic. In our ex-
ample of the randomized control trial involv-
ing a total sample of 200 individuals, a re-
searcher samples (with replacement) from the 
original sample to create a sample of 200 in-
dividuals. It should be noted that some indi-
viduals from the original sample could appear 
more than once in this second sample, and 
other individuals from the original sample 
may not appear at all. The investigator would 
then estimate equations 2 and 3 in this new 
sample to derive estimates of a and b and 
form an ab cross product.

Thus in bootstrapping, this procedure of 
sampling with replacement from the original 
sample to form samples of 200 individuals 
would be repeated 9999 more times to cre-
ate a sampling distribution of 10 000 ab cross 
products. From this distribution of 10 000 
cross products, the researcher can create a 
95% CI by taking the cross product values 
that fall at the 97.5th and 2.5th percentiles. 
No distributional assumptions have been im-
posed to construct this CI. If 0 does not fall in 
this interval, then we can declare that the ab 
cross product is statistically significant.

Bias associated with the bootstrapping pro-
cedure can also be addressed by adjusting the 

upper and lower bounds of this interval. 
Hayes14 has developed SAS and SPSS macros 
that perform bootstrapping for his forthcom-
ing text. Unlike the distribution of products 
and Monte Carlo simulations, bootstrapping 
can be used for outcome variables that are ei-
ther continuous or binary.14

CONCLUSIONS AND 
RECOMMENDATIONS

Given the availability of easy-to-use soft-
ware, there is no reason to continue using 
the causal steps approach to assess media-
tion. Adopting more powerful approaches 
like those derived from bootstrapping, 
Monte Carlo simulations, or the distribution 
of products approach provides a more ro-
bust assessment of indirect intervention ef-
fects. Finally, researchers are encouraged to 
abandon the nomenclature of full and partial 
mediation. Instead, researchers should re-
port effect size measures of the indirect ef-
fect, such as the proportion of the maximum 
indirect effect.4 
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