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Abstract
Quantitatively accurate all-atom molecular dynamics (MD) simulations of protein folding have
long been considered a holy grail of computational biology. Due to the large system sizes and long
timescales involved, such a pursuit was for many years computationally intractable. Further,
sufficiently accurate forcefields needed to be developed in order to realistically model folding.
This decade, however, saw the first reports of folding simulations describing kinetics on the order
of milliseconds, placing many proteins firmly within reach of these methods. Progress in sampling
and forcefield accuracy, however, presents a new challenge: how to turn huge MD datasets into
scientific understanding. Here, we review recent progress in MD simulation techniques and show
how the vast datasets generated by such techniques present new challenges for analysis. We
critically discuss the state of the art, including reaction coordinate and Markov state model (MSM)
methods, and provide a perspective for the future.

Introduction
Understanding protein folding via molecular simulation has been an aspiration of
computational chemists ever since Anfinsen uncovered the surprising fact that proteins
folded to a unique structure[1–3]. Applying simulation to folding appeals for many reasons.
Folding is rapid and complex, requiring atomic-level resolution at nanosecond timescales for
a complete detailed picture – outside the hard limits of temporal and spatial resolution of
most experimental techniques [4]. Furthermore, the complexity of protein native states and
the inherent physical heterogeneity in the folding process have frustrated the search for
microscopic physical theories of folding, though some advanced phenomenological
approaches have been proposed [5–9]. Thus atomic-level simulations of folding, possessing
intrinsically high resolution, have been aggressively pursued with the hope of surmounting
these difficulties.

Three main problems must be overcome to achieve useful simulations of protein folding:
accurate models (forcefields), sufficient sampling, and robust data analysis. Forcefield
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development has received much attention from the field, and has been extensively discussed
[10–15]. Although more remains to be done to build and validate even more accurate
models, forcefields capable of folding proteins in good agreement with experiment already
exist (Fig. 1). Instead, the major challenge in producing reliable simulations of folding has
been harnessing enough computer power to produce sufficient sampling to study folding.
Because classical simulations must integrate Newton’s equations of motion with
femtosecond timesteps (10−15 s), folding simulations require ~1012 timesteps to reach
millisecond timescales. This expense is compounded by large system sizes (~105 atoms for
explicit solvent simulations) and the need to witness many events for statistical confidence,
making the computational effort required to study folding via simulation enormous.

Very recently, advances in hardware, software, and sampling techniques have made
millisecond simulations possible. In 2010, using an aggregate of 1.5 ms of data, Voelz et. al.
reported the first simulation describing the folding of a millisecond folder in implicit
solvent, from data generated by the distributed computing network Folding@home [16,17].
Later that year, Bowman et. al. reported a millisecond timescale in the folding dynamics of
lambda repressor in explicit solvent [18]. More recently, using 30 milliseconds of aggregate
data, Voelz et. al. studied the folding of ACBP on the 10 millisecond timescale, revealing
that an experimentally observed folding intermediate was in fact a complex, heterogeneous
ensemble of structures [19]. Finally, with the advent of ANTON, a computer specialized for
protein simulation, the first single trajectory of millisecond length was reported near the end
of 2010 [20], making it possible to predict folding times of up to 100 µs from a single
trajectory.

While challenging, generating enough sampling in an accurate forcefield does not constitute
the end of the road for a folding simulation. Another major challenge is gaining scientific
insight from the simulation – turning data into knowledge. Insights gained from simulations
have already begun to shape the protein folding field, through connection to experiment and
analysis of the simulations themselves [18,19,21–25]. These preliminary studies have
revealed that the analysis of simulation data is difficult, with cases where certain techniques
have led researchers to believe results inconsistent with their raw simulation data [20,26,27].
The simulation community needs to develop general, robust, and easy to use data analysis
tools to continue towards the goal of understanding folding.

In this review, we briefly explain how the sampling problem has been overcome, and why
we can expect the future to yield even longer simulations more efficiently. As sampling
becomes less of an issue, a new challenge in folding simulations raises its head – given the
massive amount of data extensive sampling provides, how does one make sense of it all?
MD simulations are a high-dimensional time series, and therefore present a “Big Data”
challenge [28,29]. We expect the techniques of data analysis will be the new limiting factor
in the quest to understand folding through molecular simulation.

Overcoming the Barrier to Sampling
Over the past decade, the system sizes and time scales accessible to protein simulations have
grown exponentially (Fig. 2). This gain has been achieved through progress on three main
fronts: efficient parallelization of MD codes, specialized hardware, and statistical analysis of
multiple independent trajectories. While there are many techniques designed to accelerate
dynamic sampling via biasing the system in some way (e.g. replica exchange,
metadynamics, aMD, string method, etc. [30–34]) each has advantages and disadvantages,
and detailed discussion of these methods is beyond the scope of this review. Here, we focus
on unbiased molecular dynamics simulations capable of describing realistic system kinetics.
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Traditionally, such calculations were accelerated by dividing up single, long simulations
across many processors. This tactic is inherently challenging, since each individual machine
must communicate with one another, and as the number of machines grows so does the
necessary time spent communicating, rather than actually simulating. While significant
advances in mitigating communication costs have been made [35–38], such costs
nonetheless place a hard upper limit on the efficiency of such techniques.

A second avenue pursued to enhance sampling has been hardware development. GPU
technology, adapted from the video gaming industry, has resulted in tremendous
acceleration of simulations at very low cost [39–46]. GPU simulations, like their CPU
counterparts, are bounded by an upper limit of possible parallelism. Shaw and co-workers
overcame these difficulties with ANTON, a special purpose machine, that has generated
single trajectories one hundred times longer than previously reported simulations [47].
ANTON combines specialized computer chips and a fast network that allow it to generate
simulations with unprecedented speed.

A different approach, Markov state models (MSMs), have recently become a practical
alternative to overcoming computational difficulties associated with traditional single
trajectory simulations [48–52]. In this paradigm, independent short simulations are
generated and then aggregated in a statistical fashion, resulting in a complete model of the
system dynamics. The MSM effectively pieces together this complete model from
independent parts (trajectories), with each trajectory describing one small part of protein
phase space – similar to how a complete picture in a jigsaw puzzle emerges by connecting
many individual pieces. When combined in an MSM, one can predict kinetic phenomena on
timescales much longer than the individual trajectories used to build the model.

Through this mechanism, the MSM facilitates efficient use of resources, since machine-level
parallelism can be employed until it becomes inefficient due to communication costs, and
then further parallelism can be gained by running independent trajectories on different
machines. Furthermore, because the MSM framework naturally partitions the simulation
into many independent parts, and it can provide feedback about which areas of protein phase
space are undersampled. Simulations can then be intelligently placed to increase sampling in
the areas where it is most needed, through a process called adaptive sampling, avoided
wasteful simulation of processes that have already been witnessed with statistical confidence
[53–55].

Analysis: The Final Challenge
The advances in sampling techniques, along with historical exponential increases in
achievable sampling methods (Fig. 2), make us hopeful that protein folding simulations will
become routine calculations for commodity hardware within a decade. Indeed, one can now
simulate the folding of small proteins in explicit solvent at a rate of up to 100ns/day/GPU
[44–46], such that a cluster of 100 GPUs can produce MSMs with the ability to predict the
millisecond time scales in only three months. Given such extensive sampling, the next
challenge simulators must face is that of data analysis – the process of turning information
into knowledge. A successful analysis method should be able to reduce simulation data to its
essential scientific features, without oversimplifying. It should let the data tell the story,
discovering things that the investigator didn’t think to look for and mitigating any biases she
might have. Currently, the analysis techniques employed by the simulation community fall
into two broad classes: 1) methods focused on finding reaction coordinates and associated
transition states and 2) Markov State Models (Fig. 3).

In the reaction coordinate paradigm, one looks for a single coordinate capable of describing
the progress from unfolded to folded structures, and builds a model for kinetics along that
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coordinate [56–59]. This usually culminates in finding one or more transition state
ensembles, usually defined to be the structures along the coordinate that have a 50%
probability of proceeding to fold or unfold [60]. These structures are usually assumed to be
kinetically relevant in the same way transition states in physical organic chemistry are, such
that their geometry reflects the kinetics of the process. These methods are appealing because
they reduce information down to a single coordinate – discarding orthogonal degrees of
freedom – and identify specific structures (the transition states) to investigate.

Markov state models (MSMs), on the other hand, represent folding as first-order kinetics
between a set of discrete states. Automatic methods exist to employ simulation to identify a
set of states and parameterize discrete-time master equation describing dynamics on that
state space [61–63]. MSMs simplify the simulation analysis by discarding very fast
dynamics, below the so-called lag time. Because the lag time is tunable, this allows for
multiple levels of resolution, from fine (order nanoseconds) to coarse (microseconds or
longer). This tunable nature allows the same model to be simultaneously quantitatively
accurate (high resolution) and comprehendible (low resolution), all within a common
theoretical framework.

These two techniques do not always yield the same results; there has been significant
disagreement between investigators studying the same simulation datasets with different
techniques. One such disagreement is at the very heart of understanding how proteins fold –
the question of whether folding occurs via a single, dominant pathway or many independent
routes. This is one of the most basic questions in the study of folding, and has been actively
debated for almost two decades [20,26,64–69].

For instance, in the folding of a WW domain, Shaw et. al. employed a state of the art
technique to construct a reaction coordinate for the folding process [20,57]. From that
coordinate, they concluded that the folding of the WW domain was mechanistically
homogenous, always beginning with the first hairpin – this was in contrast to the previous
WW simulations of Noé et. al. [70]. While the coordinate reproduced the correct folding
time and was validated by a committor analysis (gave the correct probability that a give
structure would fold before completely unfolding) [71,72], it failed to detect a parallel
pathway, where the second hairpin of the WW domain folded first [26,27]. Later, the same
technique was employed to analyze the folding of 12 small proteins, once again leading to
the conclusion of predominantly single, serial folding pathways [67,68]. However, when
MSM analysis was applied to these 12 simulations, a richer picture emerged [73] that
suggested two-state models were inappropriate for half of the simulated systems.

In the above examples, the reaction coordinate scheme Shaw et. al. employed was capable
only finding the highest-flux folding path, and ignored the others. In fact, reaction
coordinates have great difficulties dealing with many of the features that make simulations
appealing, such as their ability to elucidate parallel paths. Simulations provide a way to get
information about the entire folding process, while reaction coordinates lead one to focus
just on transition state(s). Further, reaction coordinates, by construction, discard potentially
interesting dynamics orthogonal to the coordinate.

MSMs are not susceptible to these drawbacks, and are able to capture either simple or
complex phenomena. While MSM techniques are well developed, some challenges do
remain. In particular, the optimal manner in which to partition configuration space [74,75],
choose a lag time, and perform adaptive sampling remain unknown. Effective heuristics are
currently available for these problems [51,62,63], but systematic errors are often observed in
MSMs, and improvements are certainly possible. Answering these challenges is the next
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step in analysis methods development, and should go a long way towards generalizing MSM
techniques beyond protein folding.

What Has and Can Be Learned from Simulations of Folding
Given that the sampling at millisecond timescales has been possible for only two years, and
analysis methodology is still immature, unambiguous scientific results learned from atomic
simulation have thus far been modest. It will be a major challenge in the next five years to
turn advances in sampling and accuracy into scientific insight about how proteins fold.

Despite this relative immaturity, atomistic simulation has already begun to influence our
view of protein folding. Detailed comparisons to experiment have been performed for many
specific proteins, including villin, NTL9, WW domains, lambda repressor, ACBP, and the
12 fast folding proteins studied by Shaw [16,18–20,22,26,68,70,76,77]. Universally
accepted generalities amongst these specific protein simulations have not yet emerged,
though some have been suggested, for instance that folding kinetics might be hub-like [78–
80], that folding proceeds via parallel paths [26,73], and that the unfolded state of proteins is
compact [21]. These hypotheses are by no means completely vetted, and require validation
through additional simulations and experiment.

The list of potential questions the folding field might hope to address through simulation is
long. A few of the most exciting include

• Can we build models allowing for the detailed comparison of simulations to
experiment in order to both test simulations and aid in the interpretation of
experiments [81]? Further, simulations might be able to direct the design of future
experiments, suggesting those with the greatest impact.

• With a detailed comparison of experiment in hand as tests of simulation accuracy,
can we answer how do particular proteins fold? Why do so many proteins appear to
fold in a two-state manner? What is the nature of “downhill” folding? Can we
describe these in microscopic, physical terms?

• With the knowledge the mechanism of how particular proteins fold, we can learn
how this mechanism is encoded in the inherent physical interaction of the amino
acids in a given protein sequence?

• With the knowledge of how many individual proteins fold, can simulations help
reveal general features of protein folding amongst broad groups of proteins (or
ideally some general properties for all proteins)?

Much effort has been poured into advancing molecular simulation, and in this decade the
fruits of that effort are coming to bear. Hopefully with continued progress in sampling and
forcefields, combined with powerful analysis techniques, simulation can play a key role –
alongside experiment and theory – in discovering how proteins fold.
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Figure 1.
Comparison of predicted and experimentally measured folding times. Central dashed line
indicates perfect agreement, outside lines are within one order of magnitude of perfect
agreement. Given that experimental folding times can vary over more than an order of
magnitude given different conditions (temperature, salt, pH, etc.), as well as uncertainties
associated with measuring experimental and simulated folding times, an order of magnitude
agreement is close to the upper limit of accuracy one might expect. Data from [16,18–
20,68,77,82–92].
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Figure 2.
The folding times accessible by simulation have increased exponentially over the past
decade. Shown are all protein folding simulations conducted using unbiased, all-atom MD in
empirical forcefields reported in the literature. Some folding times for the same protein
differ, due to various mutations. For lambda marked with a (*), the longest timescale seen in
that simulation, which was not the folding time, occurred on the order of 10 ms [18,23].
Data are same as Figure 1, with [93].
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Figure 3.
Two methods of data analysis, the MSM (top) and reaction coordinate (bottom), shown for
the same system (ACBP) [19]. The MSM represents folding as interconversion between
structurally similar states, and can be illustrated as flow through a network. Reaction
coordinates attempt to depict folding as progress along a single degree of freedom, such as
the committors (Pfold, shown). The MSM picture is more detailed, can capture parallel paths,
has tunable resolution, and connects naturally to experiment – all advantages over the
coordinate-based approach.
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